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Abstract. Standard spatial convolutions assume input data with a reg-
ular neighborhood structure. Existing methods typically generalize con-
volution to the irregular point cloud domain by fixing a regular ”view”
through e.g. a fixed neighborhood size, where the convolution kernel size
remains the same for each point. However, since point clouds are not as
structured as images, the fixed neighbor number gives an unfortunate
inductive bias. We present a novel graph convolution named Difference
Graph Convolution (diffConv), which does not rely on a regular view. dif-
fConv operates on spatially-varying and density-dilated neighborhoods,
which are further adapted by a learned masked attention mechanism.
Experiments show that our model is very robust to the noise, obtaining
state-of-the-art performance in 3D shape classification and scene under-
standing tasks, along with a faster inference speed. The code is publicly
available at https://github.com/mmmmimic/diffConvNet.
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1 Introduction

The availability and affordability of 3D sensors are rapidly increasing. As a result,
the point cloud — one of the most widely-employed representations of 3D ob-
jects — is used extensively in computer vision applications such as autonomous
driving, medical robots, and virtual reality [19,3,1]. The industrial demand has
prompted a strong call for exploiting the underlying geometric information in
points, fuelling deep learning models that rely on learning effective local point
features [19,35,33,11].

Local feature learning schemes [19,38,35] typically consist of two main steps,
namely point grouping and feature aggregation. Point grouping gathers the neigh-
bors of key points, to be encoded and fused in the subsequent feature aggregation.

Unlike grid data, points are unordered and unstructured, posing great chal-
lenges to the processing; indeed, standard convolutional neural networks (CNNs)
[7,23] only work with grid data in a regular view, or neighborhood. Point group-
ing and feature aggregation are often designed to imitate the regular view, or
fixed neighborhood size and structure, that we know from convolutions on im-
ages. This imitation imposes inductive biases on the point cloud structure.
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(d) Masked attention score

Fig. 1. The blue dots refer to key points, green dots denote neighbors, orange circles
indicate neighborhoods of key points. The color scale in (d) denotes the neighbor
importance of the key point on the airplane body, given by masked attention score.

Fig. 1 illustrates problems associated with these inductive biases for the two
most common regular point groupings, namely the k nearest neighbor (KNN)
grouping [4] and ball query [19]. KNN fixes its view to the k nearest neighbors
of each key point, and the resulting groupings are sensitive to noise and outliers.
These are automatically grouped with far away points, sometimes belonging to
the object of interest, strongly affecting their downstream features (Fig. 1a).

Ball query, conversely, constrains its view to a pre-defined constant radius
ball. We see from (Fig. 1b) that using the same radius, or view, at every location
also causes problems: A small radius is needed to avoid grouping noise with far
away points as we saw with KNN, but this means that the less dense parts of
the airplane, such as its tail, easily become disconnected and mistaken for noise.

We thus see that the inductive bias imposed by regular views leads to prob-
lems. Can we process the unstructured point cloud without regular groupings?
In this paper, we analyze the irregular point cloud with an irregular
view. We present a novel graph convolution operator, named Difference Graph
Convolution (diffConv), which takes an irregular view of the point cloud. In
diffConv, we improve ball query with density-dilated neighborhoods where the
radius for each point depends on its kernel density. This induces asymmetric
neighborhood graphs, and in Fig. 1c) this e.g. helps the plane hold on to its tail.

The dilated ball query still treats all the neighbors inside the ball equally. We
further adopt masked attention to introduce an additional, task-specific learned
irregularity to the neighborhood. As illustrated in Fig 1d, the points close to the
key point get less attention than those further away, indicating that the points
near the wings, where contextual differences appear, are paid more attention.

In short, our key contributions are as follows:

– We propose diffConv, a local feature aggregator which does not rely on the
regular view constraint.

– We present density-dilated ball query, which adapts its view to the local point
cloud density, in particular alleviating the influence of noise and outliers.
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– We are the first to introduce masked attention to local point feature aggrega-
tion. In combination with Laplacian smoothing, it allows us to learn further
irregularities, e.g. focusing on contextual feature differences.

– We build a hierarchical learning architecture by stacking diffConv layers.
Extensive experiments demonstrate that our model performs on par with
state-of-the-art methods in noise-free settings, and outperforms state-of-the-
art by far in the presence of noise.

2 Background and Related Work

Imitating the success of CNNs in local grid feature learning, most 3D point cloud
models attempt to generalize CNNs to point clouds by fixing a regular view.

Local point feature learning with projection-based methods. Early works [21,34,44]
convert the point cloud to regular 2D or 3D grids (voxels) and leverage the well-
established standard image convolutions. Su et al. [21] projected the point cloud
to multiple views and utilized 2D convolutions with max-pooling to describe the
global features of points. MSNet [34] partitions the point cloud into multi-scale
voxels, where 3D convolutions are applied to learn discriminative local features.
These methods recast the point cloud to a regular view via the convolution-
friendly grid representation. Nevertheless, they suffer from the expensive com-
putation and inevitable loss of geometric detail due to discretization.

Point-based methods. In contrast to the expensive projection or voxelization,
point-based methods [10,9,12] process the point cloud directly and efficiently.
The pioneering PointNet [18] learns point features independently with multi-
layer perceptrons (MLPs) and aggregates them with max-pooling. Since point-
wise MLPs cannot capture local geometric structures, follow-up works obtain
local point features via regular views from different types of point grouping.

Point grouping. The KNN point grouping does not guarantee balanced den-
sity [15] and adopts different region scales at different locations of the point
cloud [19]. It thus comes with an inductive bias that makes it sensitive both to
noise and outliers in point clouds, as well as to different local point densities, as
also shown in Fig. 1. Moreover, since KNN queries a relatively small neighbor-
hood in the point-dense regions, the features encoded in subsequent aggregation
might not contain enough semantic information to be discriminative. To keep the
noise and outliers isolated, some works [19,14] adopt ball query with an upper
limit of k points. Balls with less than k points are filled by repeating the first-
picked point. Neighborhoods with more than k points are randomly subsampled.
The upper limit k prevents the neighborhood from having too many neighbors,
but does also lead to information loss. Besides, the constant ball radius and limit
k are not adaptive to the uneven density of real-world point clouds.
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Local point feature learning with point-based methods. PointNet++ [19] suggests
a hierarchical learning scheme for local point features, including point grouping
and feature aggregation. Hierarchically, PointNet++ focuses on a set of sub-
sampled key points, which are represented by a neighborhood defined via point
grouping according to pre-defined rules. Subsequently, point aggregation encodes
and fuses the features of neighboring points to represent the latent shape of the
point cloud structure. These point-based local feature learning methods regular-
ize the input point cloud in the spatial or spectral domain. The point grouping
in PointNet++ is done via ball query, and PointNet++ thus also inherits the
corresponding inductive biases. Although the multi-scale and multi-resolution
feature learning in PointNet++ can handle the uneven density to a degree, they
are too expensive for application.

Graph convolutional neural networks (GCNs) [8,36,2,45] generalize standard
convolutions to graph data by considering convolutions in the spectral domain.
Some methods [17,25,32] adopt GCNs for point aggregation. These methods
represent the point cloud as an undirected graph for spectral analysis, where
neighbors are constrained to a fixed radius ball. Thus, these methods obtain
a regular view via spectral analysis, effectively using a form of ball query. It
follows that the resulting algorithms also come with the inductive biases asso-
ciated with ball query. Additionally, GCNs entail extra computations for signal
transformation to the spectral domain.

Alternative methods find other ways to define a k-size kernel for each key
point, often based on KNN. In particular, DGCNN [35] groups points by their
k nearest neighbors in feature space, and then aggregates the feature differ-
ence between points and their neighbors with max-pooling. In a similar way,
CurveNet [38] takes guided walks and arguments the KNN neighborhood by
hypothetical curves. Other works [33,27,42,39,46] learn the importance weights
of the KNN features to introduce some neighborhood irregularity, but are still
confined to the fixed, and sometimes spatially limited, KNN view.

Differing from the previous generalizations of CNNs, which all rely on taking
a regular view of the point clouds in order to define convolutional operators, we
suggest an irregular view of point cloud analysis in this paper.

3 Method

We first revisit the general formulation of local feature learning in Section 3.1.
Then we propose a flexible convolution operator, namely difference graph convo-
lution in Section 3.2. In Section 3.3 and Section 3.4, we enrich the basic diffConv
with density-dilated ball query and masked attention. We present our network
architectures for 3D shape classification and segmentation in supplements.

3.1 Revisit Local Point Feature Learning

Given a point cloud consisting of N points P = {pi|i = 1, 2, ..., N} ∈ RN×3, and

a data matrix containing their feature vectors X = [x1, x2, x3, ..., xN ]
T ∈ RN×d
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for each point pi, local feature extraction can be formulated as:

gi = Λ(h(pi, pj , xi, xj)|pj ∈ N (pi)) (1)

where gi denotes the learned local feature vector, N (pi) refers to the neighbors
of pi, h(·) is a function encoding both the coordinates pi of the ith point, and
the coordinates pj of its neighbors, as well as their feature vectors xi and xj ,
respectively. Moreover, Λ denotes an aggregation function such as MAX or AVG.

Most previous works focus on the design of h(·) [35,46,47,33]. Among them,
one of the most widely applied methods is the edge convolution (edgeConv) ap-
pearing in DGCNN [35]. In edgeConv, the neighborhood of a point is defined by
its KNN in the feature space. The feature difference xi − xj is used to indicate
the pair-wise local relationship between the point and its neighbor. The rela-
tionships are concatenated with the original point features. The concatenated
pair is processed by a multi-layer perceptron lθ and summarized by a MAX
aggregation. The whole process can be described as

gi = MAX(lθ(xi − xj ||xi)) (2)

where || refers to concatenation, and pj ∈ N (pi). In this paper, DGCNN is
included as a baseline model. In edgeConv, KNN brings convenience to matrix-
level operations, such as feature concatenation and linear transformation. One
challenge tackled in this paper is the generalization of edgeConv to the irregular
view, and in particular inclusion of feature differences into the convolution.

3.2 Difference Graph Convolution

Inspired by GCNs [8] and edgeConv [35], we propose the Difference Graph Con-
volution (diffConv). We present a basic version of diffConv in this subsection,
with further improvements described in the following subsections. Fig. 2 gives an
overview of the complete diffConv, where the querying radius is pre-computed.

By treating each point as a node, we represent the aforementioned point
cloud P as a directed graph G = {X,A}, where A is the adjacency matrix, and X
refers to point feature vectors. In G, each point is connected to its neighbors. The
commonly-adopted neighbor-wise feature difference in edgeConv has been proven
to be very effective in capturing the local structure of point clouds [11,35,38].
When processing graphs, the Laplacian matrix efficiently measures the differ-
ence between nodes and their neighbors. Borrowing from GCNs [8], we apply
Laplacian smoothing on the point feature vector by

S = X − ÂX (3)

where S = [s1, s2, ..., sN ]
T

contains the updated feature vectors and Â is the
normalized adjacency matrix. Like edgeConv, our Difference Graph Convolution
is an MLP lθ on the combination of S and the original point features X

G = lθ(S||X) (4)

where G = [g1, g2, ..., gN ]
T
includes the learned feature vectors. Here, X is con-

catenated to present the global shape information of the point cloud.
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Fig. 2. Structure of our diffConv. Specifically, masking denotes the conditional
statements in Eq. 9, which takes the adaptive radius ri from density-dilated ball query.
In our implementation, dk was set to (d+3)

4
. M is the number of sampled key points.

The dotted line is used to avoid overlapping with the solid lines.

Relationship to edgeConv. We argue that our diffConv is a variant of edgeConv
in a more flexible neighborhood. When applying diffConv on KNN grouping, it
only differs in the sequence of nonlinear activation and aggregation from edge-
Conv. As a demonstration, we consider a basic diffConv, with a simple binary
adjacency matrix A whose entries indicate connections between points. When
the neighborhood is defined by ball query (without an upper limit on the number
of neighbors), the connection between pi and pj , Aij , is given by

Aij =

{
1 if ∥pi − pj∥2 < r

0 otherwise
(5)

where r is the priory-given ball query search radius. An arithmetic mean is
leveraged to normalize the adjacency matrix. According to Eq. 3, for pj ∈ N (pi),
the smoothed feature vector si calculated by

si = xi −AVG(xj) = AVG(xi − xj) (6)

is the average of the neighbor-wise feature difference from Eq. 2. In line with
Eq. 4, diffConv for point pi becomes gi = lθ (AVG(xi − xj)||xi) . When lθ is
linear, diffConv can be further decribed by gi = AVG(lθ(xi−xj ||xi)). Compared
with Eq. 2, in the case of linear activation, the only difference between diffConv
and edgeConv is in the aggregation function. When lθ is nonlinear, the feature
difference is activated before aggregation, while diffConv operates in reverse
order. In contrast to edgeConv, our diffConv is more flexible with respect to the
definition of neighborhood - the number of neighbors is no longer fixed.
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Fig. 3. Left: Ball query in a point cloud with noise. The blue circles refer to key points,
green circles denote neighbors, orange circles refer to neighborhoods, and gray circles
denote other points in the point cloud. Right: Visualizations of the kernel density on
some objects from ModelNet40 [37]. Brighter color indicates higher density.

3.3 Density-dilated Ball Query

In Eq. 5, the point cloud is constructed as an undirected graph, where Aij =
Aji for point pair pi and pj . The directed relations between points and their
neighbors are therefore neglected, as illustrated in Fig. 1b). We relax this to a
density-dilated ball query where the search radius for each point is expanded
according to its kernel density.

Point density, defined as the number of neighbors of each point, reflects the
spatial distribution of points. Fig. 3 demonstrates a point cloud with noise. Note
that under a fixed-radius ball query, contour points of the 3D object (e.g. point
B) have a lower density than the points from the flat area (e.g. point A). Noise
generates extreme cases (e.g. point C), which can be isolated from the object.

As illustrated in Fig. 1, in KNN, points with low density, such as noise,
get a spatially larger neighborhood than others, grouping them with unrelated
features far away. The adversarial effect of noise points on estimated object
properties is thus negatively correlated with their density, and assigning smaller
neighborhoods to low-density points therefore contributes to resisting noise.

Xiang et al. [38] claim that boundary points provide different feature dif-
ferences from neighbors while points from flat areas usually have similar and
unrecognizable local feature differences. To enlarge the variance of feature dif-
ference, points with a higher density (points from flat areas) thus ought to have
larger local regions. The KNN grouping queries small neighborhoods for points
with high density. Our ball query enlarges the neighborhood to include more
contextually different neighbors, giving access to more diverse information.

Instead of counting neighbors, which is computationally expensive, we de-
scribe the spatial distribution of points using kernel density estimation [28]. For
each point pi, its kernel density di is estimated by a Gaussian kernel

di =
1

Nh

N∑
j=1

1√
2π

e−
∥pi−pj∥

2
2

2h2 , (7)
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where h is a parameter controlling the bandwidth. The density di indicates the
probability of point pi to be located in flat areas of the object, i.e., the degree
of dilation. Fig. 3 shows the kernel density of various objects, where points from
flat areas have a higher density. This is in accordance with our former analysis.

Based on this density, we softly dilate the searching radius from Eq. 5 to

ri =

√
r2(1 + d̂i), (8)

where the square and root operations are applied to slow down the dilation
speed, d̂i denotes the normalized kernel density within 0 and 1 by dividing the
largest density. The dilated search radius varies from point to point, resulting
in a directed graph. Since the search radius is enlarged to different degrees,
the message propagation on the graph is boosted, accelerating the long-range
information flow. Finally, our method is intuitively robust to noise, which is also
demonstrated by our experiments in Section 4.4.

3.4 Masked Attention

The dilated ball query still treats all the neighbors inside the ball equally. We
further introduce an additional, task-specific learned irregularity to the neigh-
borhood by attention mechanism [5,30]. Different from other attention-based
methods [46,33], we employ the masking mechanism in self-attention [30] to
handle the no-longer-fixed neighborhood. We call this learning scheme masked
attention. In a transformer built by self-attention [30] [31], there are two kinds of
masks: the padding mask in the encoder is exploited to address sequences with
different lengths and the sequence mask in the decoder is used to prevent ground
truth leakage in sequence prediction tasks. In contrast, we employ a neighbor-
hood mask in our masked attention to learn the local features of points. It works
in the encoder while playing a different role than the padding mask. It includes
three steps, the calculation of edge weight for each pair of connected points on
the graph, local normalization, and balanced renormalization.

First, we revise the adjacency matrix A in Eq. 5 to

Aij =

{
lϕ(xi||pi)lψ(xj ||pj)T if ∥pi − pj∥2 < ri

−∞ otherwise,
(9)

where lϕ and lψ are two MLPs mapping the input to a given dimension dk. The
MLPs are employed to learn the latent relationship and alignment between pi and
pj in the feature space. The MLPs encode both point features and coordinates,
as we expect them to recognize both the semantic and geometric information. In
the implementation, −∞ is approximated by −109, which is orders of magnitude
smaller than the computed attention score.

The adjacency matrix is then normalized by softmax

Ãi,j =
eAi,j∑N
k eAi,k

. (10)
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Since e−109 ≈ 0, points outside the neighborhood are automatically masked.
Hence, Eq. 10 becomes the softmax normalization in neighborhoods. With the
masking mechanism, we normalize the attention score locally with only matrix-
wise operations instead of expensive iterations. In each local region, neighbor
features are aggregated dynamically and selectively.

In self-attention [30], the dot product in Eq. 9 is scaled by
√
dk before the

softmax normalization, in order to prevent the product from getting extreme
values as dk increases. Here, we refine the scaling by a balanced renormalization
of the attention scores Ã from Eq. 10. We apply the l1-norm twice on the square
root of the former attention score in different dimensions by

Aij =

√
Ãij∑N

k

√
Ãkj

and Âij =
Aij∑N
k Aik

. (11)

Here, the square root reduces the variation in attention scores, to prevent overly
attention on a few points. Considering the matrix product in Eq. 3, l1-norm is
to balance the contribution of feature channels and neighbor points respectively.
The experimental results in supplemental materials illustrate the effectiveness
of the proposed renormalization strategy.

Position encoding. Local spatial information is defined as the coordinate differ-
ence between points and their neighbors. Many prior works have demonstrated
the importance of local spatial information in point cloud analysis [33,14,47]. We
employ the Local Point-Feature Aggregation block [38] as the position encoder
in diffConv. The encoded coordinates are fused with point features by

G = σ(lθ(S||X) + lπ(P )), (12)

where σ is a nonlinear activation function, P = [p1, p2, p3, ..., pN ]
T ∈ RN×3

contains the 3D coordinates of points in P, and lπ is the position encoder working
in the dilated neighborhoods and mapping the positional difference to the same
dimension as the updated point features from lθ.

4 Experiments

We demonstrate our model performance in 3D shape classification, object shape
part segmentation, and real-scene semantic segmentation tasks. Due to the lim-
ited space, we describe the training settings as well as the corresponding ablation
studies on the hyperparameters in supplements.

4.1 Point Cloud Classification

ModelNet40 with the official split. We conducted experiments performing ob-
ject shape classification on the ModelNet40 dataset [37], which contains 12,311
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Table 1. 3D shape classification results on ModelNet40 dataset with official split as well
as ModelNet40-C, and part segmentation results on ShapeNet Part dataset. Here, ’xyz’
stands for coordinates of points; ’nor’ stands for normals of points; ’#points’ means
the number of input points in classification; ’OA’ stands for the overall accuracy over
instances on ModelNet40; and ’MA’ stands for the mean accuracy within each category
on ModelNet40; ’CER’ denotes the corruption error rate on ModelNet40-C; ’mIOU’
denotes the instance average Inter-over-Union on ShapeNetPart. Not all papers report
MA and CER; these are recorded as ’-’ in the table.

Methods Input #points OA(%) MA(%) CER(%) mIOU (%)

A-CNN[10] xyz+nor 1k 92.6 - - 86.1
Kd-Net[9] xyz 32k 91.8 88.5 - 82.3
SO-Net[12] xyz+nor 5k 93.4 90.8 - 84.6

PointNet[18] xyz 1k 89.2 - 28.3 83.7
PointNet++[19] xyz 1k 90.7 - 23.6 85.1
DGCNN[35] xyz 1k 92.9 90.2 25.9 85.1
CurveNet[38] xyz 1k 93.8 - 22.7 86.6
RS-CNN[14] xyz 1k 92.9 - 26.2 86.2
Spec-GCN [32] xyz 1k 91.5 - - 85.4
PointASNL[41] xyz 1k 92.9 - - 86.1
PCT[6] xyz 1k 93.2 - 25.5 86.4
GDANet[40] xyz 1k 93.4 - 25.6 86.5

Ours xyz 1k 93.6 90.6 21.4 85.7

synthetic meshed CAD models from 40 different categories. The official split in-
cludes 9,843 models for training and 2,468 models for testing. Following most
publicly available implementations [35,38,19], our validation on the official split
was made by reporting the best-observed test performance over all epochs. Simi-
lar to previous works, we represented each CAD model by 1,024 points uniformly
sampled from mesh faces with (x, y, z) coordinates.

We measured both the overall accuracy (OA), treating every point cloud with
equal weight, and the mean accuracy (MA), where the mean was computed from
the category-specific accuracies. Note that the MA up-weights the importance
of small categories, giving them equal weight as the larger categories.

Our results can be found in Table 1. All results for other methods are taken
from the cited papers. Note that RS-CNN, CurveNet, and GDANet adopt a
voting strategy to improve the model performance. We report their classification
accuracy without this trick for a fair comparison. Our model achieves the second-
best overall accuracy at 93.6%. Even compared to SO-Net, which takes 5k points
with normal as input, our model has a better performance in OA.

ModelNet40 with resplits for assessing robustness. In addition to benchmark-
ing on the official split, we also performed repeated experiments on resampled
dataset splits, to obtain an evaluation that is robust to over-fitting to any spe-
cific data split. Here, we selected parameters in a more traditional fashion with
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Table 2. Classification results on ModelNet40 with resplits and ScanObjectNN.
OBJ ONLY and OBJ BG denote the overall accuracy in the corresponding variant.

Methods OA(%) MA(%) OBJ ONLY OBJ BG

PointNet[18] 90.19 ± 0.58 84.55 ± 0.81 79.2 73.3
DGCNN[35] 92.89 ± 0.43 89.62 ± 0.83 86.2 82.8
CurveNet[38] 92.86 ± 0.49 89.51 ± 0.81 84.3 84.4

Ours 93.15± 0.34 89.86± 0.56 86.6 84.9

the help of an independent validation set. To this end, we randomly re-split
the dataset into 8,617/1,847/1,847 point clouds for training/validation/testing,
respectively, and picked the model with the best validation performance for eval-
uation on the test. This was repeated 10 times, reporting the mean and standard
deviation of the corresponding performance measures. The baseline models were
trained with settings from their paper.

We compare our model performance with PointNet, DGCNN, and CurveNet,
where the latter has the highest performance on the official split. According to
Table 2, our method outperforms all the other models in both overall and class-
mean accuracy, showing a better generalization capability on the resampled data
splits than other methods. Moreover, our model has the smallest standard devi-
ation in both OA and MA, indicating a more stable performance. This supports
our hypothesis that diffConv’s irregular view gives discriminative local features.

ModelNet40-C with corruptions for assessing robustness. To further assess the
corruption robustness, we evaluated the model trained on ModelNet40 with the
official split on the ModelNet40-C dataset [22], which imposes 15 common and
realistic corruptions with 5 severity levels on the original ModelNet40 point
clouds. We used the corruption error rate (CER) as the evaluation metric.

The corruption performance of different models is shown in Table 1. All
results for other methods are taken from [22]. Our model outperforms all existing
methods with at least a 1.3% difference, showing strong robustness to corruption.

ScanObjectNN. Besides the synthetic datasets, we also validated our model on
the ScanObjectNN dataset [29], with 2,902 scanned real-world objects from 15
categories, with 1,024 points each. Compared to ModelNet40, ScanObjectNN
is more challenging due to the presence of noise, backgrounds, and occlusion.
80% of the objects are split into the official training set and the remaining 20%
are used for testing. We conducted experiments on objects with and without
background respectively (the OBJ BG and OBJ ONLY variant of the dataset).

Table 2 summarizes the performance of our model and the baselines. The
results of PointNet and DGCNN are taken from [29], while CurveNet was re-
trained as it is not shown in [29]. Our model gets the highest OA on both two
variants, indicating that it is practical in addressing real-world problems.
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Fig. 4. Example masked attention maps for ModelNet40-C. Red dots are picked key
points; green dots denote neighbors; the color scale denotes the masked attention score.
Zoom in for details.

Visualizations of masked attention. Our model achieves state-of-the-art perfor-
mance and shows strong robustness in 3D object classification. Fig. 4 illustrates
some examples of the attention maps from the second diffConv layer in our clas-
sification network on ModelNet40. We randomly picked two key points from 8
different objects of the ModelNet40-C benchmark. As shown in the figure, the
noise points are isolated and the flat-area points have a larger neighborhood
than the boundary points. Besides, neighbors with larger contextual differences
to the query point, e.g., the edges of the airplane and the laptop, usually get
more attention. More visualizations are presented in the supplements.

4.2 3D Semantic Segmentation

We performed the scene-level understanding task on Toronto3D [24]. Compared
with the indoor datasets, the Toronto3D dataset, collected by LiDAR in outdoor
scenarios, contains more noise and requires more from the model’s robustness.
Toronto3D contains 8 different classes and 78.3M points. Following TGNet [13],
we divided the scene into 5mx5m blocks, and sampled 2,048 points from each
block. There are 956 samples for training and 289 for testing. The mean intersec-
tion over union over categories(mean IoU) and IoU for each category are shown
in Tab. 3, where the results of other methods are taken from [24]. Our model
outperforms all other methods in mean IOU, and in many categories. Specifi-
cally, our model surpasses other methods significantly in recognizing small ob-
jects, such as road marks and poles. This demonstrates the effectiveness of our
method on scene-level understanding tasks.

4.3 Shape Part Segmentation

We conducted the 3D part segmentation task on the ShapeNetPart dataset [43],
which consists of 16,881 CAD models from 16 categories with up to 50 different
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Table 3. Segmentation results on Toronto3D. Here, mean IoU denotes the category
average Inter-over-Union in Toronto3D.

Methods mean IoU Road Rd. mrk. Natural Building Util. line Pole Car Fence

PointNet++ [19] 56.55 91.44 7.59 89.80 74.00 68.60 59.53 52.97 7.54
PointNet++(MSG) [19] 53.12 90.67 0.00 86.68 75.78 56.20 60.89 44.51 10.19
DGCNN [35] 49.60 90.63 0.44 81.25 63.95 47.05 56.86 49.26 7.32
KPFCNN [26] 60.30 90.20 0.00 86.79 86.83 81.08 73.06 42.85 21.57
MS-PCNN [16] 58.01 91.22 3.50 90.48 77.30 62.30 68.54 52.63 17.12
TG-Net [13] 58.34 91.39 10.62 91.02 76.93 68.27 66.25 54.10 8.16
MS-TGNet [24] 60.96 90.89 18.78 92.18 80.62 69.36 71.22 51.05 13.59

Ours 76.73 83.31 51.06 69.04 79.55 80.48 84.41 76.19 89.83

parts. Each CAD model is represented by 2,048 uniformly-sampled points. We
followed [33] and trained our model on 12,137 instances with the rest for testing.
All 2,048 points in each point cloud were used.

We report the instance average Inter-over-Union (mIOU) in Table 1. The
results for other methods are taken from the cited papers. Fig. 5 shows our
model predictions, which are very close to the ground truth.

4.4 Performance analysis

Robustness study. According to our analysis, our method is robust to noise,
especially in contrast to KNN-based models. To further verify the robustness
of our model, like KCNet [20], we evaluated the model on noisy points in both
classification and part segmentation tasks. A certain number of randomly picked
points were replaced with uniform noise ranging from -1 to 1. In segmentation,
these noise points were labeled the same as the nearest original point. Fig. 6
demonstrates the results. We compared our model with the baseline methods
used in previous experiments. In classification, we also report the performance
of KCNet and PointASNL, with the results taken from papers. As presented
in the figure, our model shows clear robustness to noise. Even with 100 noise
points, our method has an OA of 86.2% and an mIOU of 74.3%.

Computational resources We compare the corrupted error rate on ModelNet40-
C, inference time (IT), floating-point operations (FLOPs) required, parameter
number (Params), and memory cost against baselines in Table 4. FLOPs and

Fig. 5. Examples of ShapeNetPart segmentation. Ground truth (top); ours (bottom).
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Fig. 6. Results of robustness study on ModelNet40 (left) and ShapeNetPart (right).

Params are estimated by PyTorch-OpCounter1. The inference time per batch
is recorded with a test batch size of 16. We conducted the experiments on a
GTX 1080 Ti GPU. For a fair comparison in inference time and memory cost,
each model is implemented in Python without CUDA programming. The table
illustrates the efficiency of our method, which is twice as fast as CurveNet.

Table 4. Computational resource requirements.

Methods CER(%) IT (ms) FLOPs Params Memory

PointNet [18] 28.3 19 0.45G 3.47M 2061M
DGCNN [35] 25.9 88 2.43G 1.81M 8067M
CurveNet [38] 22.7 190 0.66G 2.14M 4309M

Ours 21.4 78 0.28G 1.31M 3971M

5 Conclusion

We have reviewed contemporary local point feature learning, which heavily relies
on a regular inductive bias on point structure. We question the necessity of this
inductive bias, and propose diffConv, which is neither a generalization of CNNs
nor spectral GCNs. Instead, equipped with Laplacian smoothing, density-dilated
ball query and masked attention, diffConv analyzes point clouds through an
irregular view. Through extensive experiments we show that diffConv achieves
state-of-the-art performance in 3D object classification and scene understanding,
is far more robust to noise than other methods, with a faster inference speed.
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