
Supplementary Material of
PD-Flow: A Point Cloud Denoising Framework

with Normalizing Flows

A Estimating ELBO of Augmented Flows

In this section, we present a brief description of the variational augmentation
used in Section 3.3. Please refer to VFlow [2] for the detailed theoretical proof.

The augmented data distribution q(P̄ | P̃;ϕ) is modeled with a conditional
flow

P̄ = f−1
ϕ (ϵ; P̃), (18)

where ϵ ∼ pϑ(ϵ) is a known prior distribution defined by user and is similar
to pϑ(z̃), f

−1
ϕ denotes the inverse propagation pass of flow fϕ (similar to Eq. 3

in the main paper), and ϕ denotes the network parameters of augmentation
module A. Here, P̃ is used as the conditional input for f−1

ϕ that helps generate

the augmented dimensions P̄. The probability density of P̄ can be computed as

log q(P̄ | P̃;ϕ) = log pϑ (ϵ)− log

∣∣∣∣∂P̄∂ϵ
∣∣∣∣ , (19)

where log q(P̄ | P̃;ϕ) is the second term in Eq. 7 and Eq. 16 in the main paper.
Please refer to Section B.1 for the detailed implementation of f−1

ϕ .

Learning the joint distribution of P̃ and P̄ can be regarded as modeling
p(H̃; θ), where H̃ = {hi = [p̃i, p̄i]}. Thus, we can formulate the probability den-
sity of H̃ by

log p(P̃, P̄; θ) = log p(H̃; θ) = log pϑ

(
fθ(H̃)

)
+ log

∣∣∣∣det ∂fθ∂H̃
(H̃)

∣∣∣∣ , (20)

where θ denotes the network parameters of flow module F . log p(P̃, P̄; θ) is the
first term in Eq. 7 and Eq. 16, and is similar to Eq. 5 in the main paper.

B Network Configurations

In this section, we present more details of network modules in PD-Flow.

B.1 Augmentation Module

The architecture of augmentation module A is composed of three components,
as shown in Fig. 9.
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Fig. 9. Architecture of augmentation module A.

The sample module As samples random variables ϵ ∈ RN×Da from prior
distribution pϑ(ϵ) as initial augmented dimensions. The condition net Ac is al-
most identical to EdgeUnit (described below), but replaces MaxPool with Avg-
Pool. Intuitively, Ac extracts neighbour context and outputs point-wise features
that helps generate extra dimensions. The transformation module At consists
of three affine coupling layers and two inverse permutation layers, conditioning
on features from Ac. Finally, a sigmoid function is applied to augmented output
dimensions P̄ to avoid gradient explosion.

B.2 Flow Components

We briefly review the flow components used in Section 3.4. The forward/inverse

propagation formulas and the corresponding log-determinant log
∣∣∣det ∂f l�

∂hl

∣∣∣ are

listed in Table 5. Note that all operations are performed on channel dimension.
Affine coupling layer. As the core component of flow module F , the affine

coupling layer, introduced in RealNVP [5], is a simple yet flexible paradigm to
implement invertible transformation.

This layer first partitions the input hl into two parts hl
1:d and hl

d:D: hl
1:d

maintains identity and hl
d:D is transformed based on hl

1:d. Then, we concatenate
them and obtain hl+1 as transformed output.

We show the detailed formulation in Table 5, where d is the partition location
of channel dimension. We set d = (Dp +Da) /2 in our experimental settings.
Transformation units f l

s and f l
b represent arbitrarily complex neural networks

from Rd 7→ RDp+Da−d and are not required to be invertible, as described in
Section B.3.

Actnorm. The actnorm layer [7] applies an affine transformation to hi, with
trainable parameters µ and σ. Similar to batch normalization, actnorm helps
improve the training stability and performance.

In Table 5, the channel-wise scale term µ ∈ RDp+Da and bias term σ ∈
RDp+Da are initialized by the first mini-batch of data to make each channel of
hi obtain zero mean and unit variance.
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Table 5. Summarization of 
ow components.

Flow Component Forward Propagation Inverse Propagation Log Determinant

A�ne Coupling
Layer

hl1:d; h
l
d+1:D = split

(
hl
)

hl+1
1:d ; h

l+1
d+1:D = split

(
hl+1

)
∑
id h

l
s

hls = f l�;s
(
hl1:d

)
hls = f l�;s

(
hl+1

1:d

)
hlb = f l�;b

(
hl1:d

)
hlb = f l�;b

(
hl+1

1:d

)
hl+1

1:d = hl1:d hl1:d = hl+1
1:d

hl+1
d+1:D = hld+1:D � exp

(
hls

)
+ hlb h

l
d+1:D =

(
hl+1
d+1:D � h

l
b

)
= exp

(
hls

)
hl+1 = concat

(
hl+1

1:d ; h
l+1
d+1:D

)
hl = concat

(
hl1:d; h

l
d+1:D

)
Actnorm hl+1 =

(
hl � �

)
= exp (�) hl = hl+1 � exp (�) + � N �

∑
d �d

Invertible 1� 1
Convolution

hl+1 = Whl hl = W�1hl+1 N � log j det(W)j

* In Log Determinant column, i and d denote the indices of point and channel, respectively.
* Both split (�) and concat (�) functions operate on the channel dimension.
* � is the Hadamard product.

Permutation layer. Each affine coupling layer only transforms partial chan-
nels of hi. Thus, it has limited non-linear transform capability. To ensure that
all dimensions are sufficiently processed, channel permutation techniques help
integrate various dimensions and improve transform diversity.

For instance, reverse and random permutations [4, 5] both shuffle the order of
channel dimension. The invertible 1×1 convolution [7] (inv1x1) is a special con-
volutional layer that supports invertibility. Since the dimension of W is low and
log |det(W )| is relatively easy to compute, we do not apply LU decomposition [7]
to W but simply initialize W randomly. In this paper, we interchangeably use
inv1x1 and inverse permutation layer.

B.3 Transformation Unit

We implement the transformation units f l
s and f l

b in the affine coupling layer in
two types: EdgeUnit and LinearUnit.

Concretely, let hl ∈ RN×(Dp+Da) be the input of l-th affine coupling layer.
Then, we split the first d channel of hl i.e. hl

1:d ∈ RN×(Dp+Da)/2 as input of
transformation unit f l

s/f
l
b.

Table 6. Architecture details of EdgeUnit.

Layer Kernel Size Output Size

K1 Build kNN Graph - N �K � 3 (Dp +Da) =2
F1 Full-connected + ReLU 3 (Dp +Da) =2�Dh N �K �Dh
F2 Full-connected + ReLU Dh �Dh N �K �Dh
M1 MaxPooling - N �Dh
F3 Full-connected Dh � (Dp +Da) =2 N � (Dp +Da) =2

The EdgeUnit applies EdgeConv [16] to input features, which extracts high-
level features from point-wise kNN graph. The kNN graph extraction process is
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formulated as
h⋆
i = [hi,N (hi) , hi −N (hi)], (21)

where hi = hl
1:d are input features, N (·) denotes the kNN operator, and h⋆

i ∈
RK×3(Dp+Da)/2 indicates the point-wise features extracted from kNN graph. h⋆

i

is fed into EdegUnit and then passed through the remaining layers, as listed in
Table 6. The LinearUnit is simply implemented by a bunch of convolutions, as
listed in Table 7.

Table 7. Architecture details of LinearUnit.

Layer Kernel Size Output Size

C1 Conv1D + ReLU (Dp +Da) =2�Dh N �Dh
C2 Conv1D + ReLU Dh �Dh N �Dh
C3 Conv1D + ReLU Dh �Dh N �Dh
C4 Conv1D Dh � (Dp +Da) =2 N � (Dp +Da) =2

The flow module F transforms input P with L = 4 to L = 12 flow blocks.
As demonstrated in RealNVP [5], low levels of blocks encode high frequencies of
data (i.e. concrete details), whereas the high levels encode the low frequencies
(i.e. abstract details or basic shape). Based on the above idea, we use more
EdgeUnit in low level blocks. The EdgeUnit is used to extract neighbor context,
whereas LinearUnit is used to extract high-level point-wise features. For both
EdgeUnit and LinearUnit, the hidden channels are set to Dh = 64, which is the
main overhead of network sizes.

C Implementation details

C.1 Dataset configuration

Training phase. The point clouds for training are extracted from 40 mesh
models in [17] and then split into patches of 1024 points. These point clouds
are randomly perturbed by Gaussian noise with a standard deviation of 0.5% to
2% of the bounding sphere’s radius. A pair of noisy patch and the correspond-
ing noise-free patch are cropped on the fly during training. We adopt common
data augmentation techniques for training patches, including point perturbation,
scaling, and random rotation to increase data diversity and avoid over-fitting.

Evaluation phase. For PUSet/DMRSet, point clouds for testing are points
extracted from 20/60 mesh models, at a resolution range from 10K/20K to 50K
points. Noisy test points are synthesized by adding Gaussian noise with standard
deviation from 1% to 3% of the bounding sphere’s radius. We normalize the noisy
input points into a unit sphere before denoising and then split them into a cluster
by a patch size of 1K for independent denoising. During patch extraction, we
first select seed points from input point set as patch centers by the farthest point
sampling (FPS) algorithm, and grow the patch to target size by kNN, as done
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in [10]. Thereafter, noisy patches are fed into PD-Flow for filtering. Finally, we
merge the output patches and sample output points to the target resolution by
the FPS algorithm as our final estimation [13]. For the patch-based method,
all evaluation metrics are estimated on the whole point set after merging from
denoised patches.

C.2 Network Training

In this section, we present the training details of our method, including training
strategy, network size and hyper-parameters.

For FBM filter, we set the last Dm channel of m̄ to 0. For LBM filter, we
randomly initialize m̃ to [0, 1] for all channels. For LCC filter, we initialize W
as an identity matrix.

We train our model with Adam optimizer for 700K iterations. The learning
rate is initialized as 2 × 10−3 and updated by ReduceLROnPlateau scheduler
with LEMD as the monitored metric. We set both prior distribution pϑ(z̃) and
pϑ(ϵ) as standard Gaussian distribution N (0, I). We use the checkpoint of last
training epoch as our final model.

Augmenting noisy input P̃ with Da = 32 in A and using a flow module F
with L = 8 blocks can achieve good performance for most cases. The tunning
hyper-parameters α, β and γ in Eq. 17 in the main paper are empirically set as
1e−6, 0.1 and 10, respectively.

C.3 Partition denoising

In experiments, we observe an obvious performance degradation of our model
in denoising high resolution point clouds along with high noise levels. This is
primarily because patch-based denoise methods [12, 9, 10] generally use a fixed
patch size as the denoising unit (e.g., 1024 points per patch). Denoising a higher
resolution point cloud indicates that the network handles a patch with a smaller
surface region. The surface estimation becomes unstable as the respective field
that the network perceives become small, particularly in the denoising problem.

To resolve this problem, we first partition the high-resolution point cloud
(e.g., 50K points) into several parts (e.g., 10K points), with each part sharing
approximately the same shape as the original point cloud. Then, we send each
part to the network for patch-based denoising (Section C.1). Finally, we concate-
nate each part back to the original resolution. In this way, we avoid clustering
much noise in a single patch and maintain good denoising performance across
different point resolutions. We only use this setting for point clouds with both
high resolution and high noise levels.

Another solution to this problem may use ball-query algorithm instead of
KNN to generate point patch. This method introduces another hyperparameter
(i.e. radius for query), which is required to be fine-tuned for each point resolution.
From experiments, we observe that this solution does help to preserve good
results under high noise level and high point resolution. In most cases, it achieves
competitive performance as the first solution.
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D Evaluation metrics

In this section, we introduce the metrics used in quantitative comparison. For
all the metrics, the lower the values are, the better the denoising quality is.

Chamfer distance (CD) between the predicted point cloud P̂ and ground
truth point cloud P is defined as

LCD(P̂,P) =
1

|P̂|

∑
p̂∈P̂

min
p∈P

∥p̂− p∥+ 1

|P|
∑
p∈P

min
p̂∈P̂

∥p− p̂∥, (22)

where |P̂| and |P| denote the number of points in P̂ and P, ∥·∥ denotes L2 norm.
This first term in Eq. 22 measures the average accuracy to the ground truth
surface of each predicted point, whereas the second term in Eq. 22 encourages
an even coverage to ground truth distribution.

Point-to-mesh (P2M) distance is defined as

LP2M(P̂,M) =
1

|P̂|

∑
p̂∈P̂

min
f∈M

d(p̂, f) +
1

|M|
∑
f∈M

min
p̂∈P̂

d(p̂, f), (23)

where M is the corresponding mesh of P̂, |P̂| is the number of points in P̂, and
f is the triangular face in M (with a total of |M| faces). The d(p, f) function
measures the squared distance from point p to face f . The P2M metric estimates
the average accuracy that approximates the underlying surface.

Point-to-surface (P2S) distance is defined as

LP2S(P̂,P) =
1

|P̂|

∑
p̂∈P̂

min
p∈P

min
q∈Sp

∥p̂− q∥, (24)

where |P̂| denotes the number of points in P̂ and ∥ · ∥ denotes L2 norm. Note
that Sp is the surface (i.e. flat plane) defined by the coordinate and normal of
p, whereas q is the closest points to p̂ on Sp. The P2S metric is similar to P2M
metric, but requires normal data of testing point clouds instead of mesh data.

Hausdorff distance (HD) is defined as

LHD(P̂,P) = max(max
p̂∈P̂

min
p∈P

∥p̂− p∥,max
p∈P

min
p̂∈P̂

∥p− p̂∥), (25)

where ∥ · ∥ denotes L2 norm. LHD measures the maximum distance of point set
to the nearest point in another point set, which is sensitive to outliers.

Uniform metric (Uni), which is proposed in PU-GAN [8], is used to eval-
uate point distribution uniformity.

This metric first uses FPS to pick seed points and then estimates the unifor-
mity on point subset within a ball query centered at each seed point. Depending
on the ball query radius rd, it can evaluate the uniformity of different area sizes.

In general, we prefer the generated point clouds to follow a uniform distri-
bution. In our experiment settings, we evaluate the Uni metric with rd =

√
p

where p ∈ {0.4%, 0.6%, 0.8%, 1.0%, 1.2%}. Please refer to [8] for the detailed
formulation.
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E Additional Quantitative Results

E.1 Evaluation on DMRSet

Table 8 shows the quantitative results evaluated on DMRSet. For a fair compar-
ison, we retrain the deep-learning-based models including PCNet [14], ScoreDe-
noise [10] and our method on the training set of DMRSet, and use the pretrain
model of DMRDenoise [9]. Since the resolution of 20K points is not released by
authors [9], we generate 20K points and corresponding normals from the released
50K points.

Table 8. Comparison of denoising algorithms on DMRSet.

#Points 20K 50K

Noise 1% 2% 2.5% 3% 1% 2% 2.5% 3%

Method
CD

10�4
P2S
10�4

CD
10�4

P2S
10�4

CD
10�4

P2S
10�4

CD
10�4

P2S
10�4

CD
10�4

P2S
10�4

CD
10�4

P2S
10�4

CD
10�4

P2S
10�4

CD
10�4

P2S
10�4

Jet[1] 2.21 0.56 2.50 0.73 2.66 0.84 2.85 0.98 2.31 1.01 4.05 2.39 4.89 3.08 5.74 3.78
MRPCA[11] 2.07 0.44 2.26 0.51 2.43 0.61 2.67 0.76 2.07 0.75 4.06 2.18 5.04 2.97 5.95 3.71

GLR[18] 2.14 0.53 2.18 0.59 2.39 0.73 2.61 0.89 1.78 0.65 2.83 1.47 3.55 2.04 4.41 2.72

PCNet[14] 2.25 0.64 2.69 0.88 3.02 1.11 3.36 1.35 2.15 0.71 3.43 1.54 4.18 2.06 4.92 2.61
DMR[9] 2.13 0.51 2.30 0.64 2.42 0.72 2.54 0.82 1.77 0.65 2.70 1.40 3.41 1.97 4.27 2.68
Score[10] 2.21 0.59 2.48 0.76 2.61 0.86 2.74 0.96 1.91 0.73 2.81 1.40 3.43 1.84 4.19 2.38

Ours 2.02 0.50 2.17 0.61 2.30 0.71 2.49 0.86 1.71 0.65 2.49 1.15 2.77 1.45 3.30 1.92

From Table 8, we can observe that our method yields better performance than
other methods in most noise settings. The performance improvement becomes
obvious especially in denoising 50K points.

E.2 Generalizability on unseen noise pattern

In this section, we investigate the denoising performance of our method on a
variety of unseen noise types. We use the same noise settings as that of Score-
Denoise [10]. Please refer to supplementary material of [10] for detailed noise
configurations.

For a fair comparison, we evaluate on the same models used in Section 4.2,
which are trained with Gaussian noise. We compare our method against Jet [1],
MRPCA [11], DMRDenoise [9] and ScoreDenoise [10], as these methods represent
the state-of-the-art performance.

Table 9 shows the quantitative denoising results under simulated LiDAR
noise. The LiDAR noise reproduces the common noise pattern generated by
scanners. We can observe that both ScoreDenoise [10] and our method obtain
the most accurate estimation. Our method outperforms ScoreDenoise [10] in
different metrics, probably thanks to the uniform distributed pattern.

Table 11 shows the quantitative denoising results under non-isotropic Gaus-
sian noise, uni-directional noise, uniform noise, discrete noise, respectively. Tra-
ditional methods generally rely on parameters turning to achieve good denoising
performance (such as noise levels, repeating iterations and neighbor sizes, etc).
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Table 9. Comparison of denoising algorithms under simulated LiDAR noise.

Jet MRPCA GLR DMR Score Ours

CD 3.84 3.76 3.28 4.28 3.17 2.82

P2M 1.37 1.49 1.13 1.67 0.92 0.76

HD 3.74 3.69 3.75 4.32 3.56 3.20

Therefore, these methods are difficult to preserve consistent performance under
various noise settings and point resolutions. Our method obtains the best results
in the majority of cases. More importantly, our method can maintain reliable
quality and achieve competitive results in all metrics. This indicates the robust
generalizability of our method.

E.3 Training on various noise distributions

In this section, we investigate how the noise distribution used for training affects
the denoising results of deep-learning based methods. Thus, we retrain these
methods on various noise types and evaluate them on PUSet with 10K points.
From Table 10, we observe that using the model trained on the same noise type
as evaluation can further improve denoising performance.

Table 10. Comparison of deep-learning based methods trained on various noise types.

Noise Type
(Training)

isotropic
Gaussian

non-isotropic
Gaussian

Uniform

Noise Type
(Evaluation)

Method
CD
10�4

P2M
10�4

HD
10�3

CD
10�4

P2M
10�4

HD
10�3

CD
10�4

P2M
10�4

HD
10�3

isotropic
Gaussian(2%)

DMR [9] 5.04 2.13 7.02 5.24 2.27 4.58 6.14 2.88 5.31
Score [10] 3.68 1.08 5.78 3.85 1.34 6.19 4.86 1.91 4.56

Ours 3.25 1.02 3.71 3.28 1.07 2.70 6.05 3.08 4.62

non-isotropic
Gaussian(2%)

DMR [9] 5.26 2.33 7.40 4.00 1.31 3.78 6.24 2.98 5.40
Score [10] 3.75 1.15 4.35 3.58 1.08 3.26 5.16 2.19 5.65

Ours 3.36 1.12 3.09 3.19 1.01 2.87 6.25 3.29 6.48

Uniform
DMR [9] 4.52 1.75 6.14 3.96 1.33 6.10 3.75 0.94 3.56
Score [10] 2.48 0.42 1.27 3.00 0.92 1.89 2.43 0.38 0.92

Ours 2.05 0.25 0.93 2.51 0.71 1.26 1.94 0.27 0.77

F Additional Qualitative Results

F.1 Visualization on denoised patch

To obtain a more intuitive perception of denoised results for patch-based meth-
ods, we visualize the denoised patches of different methods from the same noisy
patch (a), as shown in Fig. 10.
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(a) Noisy (b) DMR [9] (c) Score [10] (d) Ours (e) Clean

Fig. 10. Visual comparison of a denoised patch from di�erent view angles. The �rst
row shows the top views, and the second row shows the front views.

From the first row of Fig. 10, we observe that our method distinguishes
from other methods in terms of uniformity, even though we do not explicitly
enforce the uniform metric in the training loss. From the second row of Fig. 10,
both ScoreDenoise [10] and our method can produce points with less jitters
on surface, indicating that both methods can infer smooth surface properties
between estimated points.

F.2 Investigation on disentangled latent space

To verify whether the latent point representation is disentangled, we conduct an
experiment to investigate how the latent z of NFs affects generative quality. We
inspect the effect of clean and noisy channels by adding noise od.

To be specific, let zp and zn be the channels of noisy latent z̃, which are
supposed to embed point and noise respectively. We set Da = 33 and use FBM
filter with m̄ = [1, 1, · · · , 1︸ ︷︷ ︸

18 elements

, 0, 0, · · · , 0︸ ︷︷ ︸
18 elements

], such that zp and zn both contain 18

channels. Let zc ∈ R18 denotes the channels denoised by FBM filter, where
zc = 0 in this case. Fig. 11 visualizes the patches decoded from several latent
z combinations by adding noise to different components. The directional noise
od is defined as od = δ1, where 1 ∈ R18 is an all-ones vector and δ is a scalar
adjusted by user (δ = 1.0 in this case).

Since Fig. 11a does not change the noisy latent z̃, our method generates the
same patch as noisy input due to the invertibility of NF. By replacing zn with
zc, we obtain a well-distributed patch in Fig. 11b. Since zc does not embed any
information and NF is a lossless propagation process, without loss of generality,
we can hypothesize that NF encodes the noisy patch to a regularized space of
zp where points are uniformly distributed and embeds the point-wise distortion
to zn. This gives us an intuitive explanation of why our method achieves better
uniformity.
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(a) ~z = [zp; zn] (b) ẑ = [zp; zc] (c) z1 = [zp + od; zc] (d) z2 = [zp; zc + od]

Fig. 11. Point patches generated from di�erent latent vectors ẑ.

If we add directional noise od to zp, we observe an unified translation to each
point in Fig. 11c. For figure plotting convenience, we only show a relative small
amount of translation in Fig. 11c. This phenomenon indicates that zp probably
embeds some information that is absolute to point’s coordinate. If we add di-
rectional noise od to zc, we observe that each point in Fig. 11d is corrupted by
random noise, indicating that the zc channels probably encode some properties
that disturb patch uniformity. The different behaviors in Fig. 11c and Fig. 11d
verify that zp and zc share different functions in latent point representation; in
other words, the latent code space of z is disentangled.

F.3 More denoised results

In this section, we illustrate more denoised results in the following figures. Fig. 12
shows some denoising examples on Paris-CARLA-3D [3] dataset. Fig. 13 shows
more denoising examples on Paris-rue-Madame [15] dataset. Fig. 14 shows some
denoising examples on 3DCSR [6] dataset. Fig. 15 shows more denoising exam-
ples under simulated LiDAR noise. Fig. 16 shows more denoising examples under
1% to 3% Gaussian levels. Fig. 17 shows more denoising examples under unseen
noise types.

G Limitation and Future work

Most existing methods (including our method) do not contain noise level esti-
mation. Therefore, how many denoising iterations are needed to achieve the best
result is uncertain. Generally, for our method, a single iteration is enough for
low noise level (e.g., 1% and 2% Gaussian noise), while 2 iterations are needed
for high noise level (e.g., 3% Gaussian noise).

In the future, we will enhance the denoising capability of PD-Flow by intro-
ducing the outlier filtering operator and make further investigation on the influ-
ence of latent dimensions. Furthermore, we can extend the propagation pipeline
of PD-Flow to point cloud compression task, which takes high priority in efficient
storage and detail reconstruction.
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(a) Noisy (b) Ours

Fig. 12. Denoised results on Paris-CARLA-3D [3] dataset.

(a) Noisy (b) DMRDenoise [9] (c) ScoreDenoise [10] (d) Ours

Fig. 13. More visual comparison on Paris-rue-Madame [15] dataset.


