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Abstract. Point cloud denoising aims to restore clean point clouds from
raw observations corrupted by noise and outliers while preserving the
fine-grained details. We present a novel deep learning-based denoising
model, that incorporates normalizing flows and noise disentanglement
techniques to achieve high denoising accuracy. Unlike existing works that
extract features of point clouds for point-wise correction, we formulate
the denoising process from the perspective of distribution learning and
feature disentanglement. By considering noisy point clouds as a joint dis-
tribution of clean points and noise, the denoised results can be derived
from disentangling the noise counterpart from latent point representa-
tion, and the mapping between Euclidean and latent spaces is modeled
by normalizing flows. We evaluate our method on synthesized 3D mod-
els and real-world datasets with various noise settings. Qualitative and
quantitative results show that our method outperforms previous state-
of-the-art deep learning-based approaches. The source code is available
at https://github.com/unknownue/pdflow.
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1 Introduction

As one of the most widely used representations for 3D objects, point clouds
have attracted considerable attention in many fields, including geometric anal-
ysis, robotic object detection, and autonomous driving. The rapid development
of 3D scanning devices, such as depth cameras and LiDAR sensors, has made
point cloud data increasingly popular. However, raw point clouds produced from
these devices are inevitably contaminated by noise and outliers, due to inher-
ent environment noise (e.g., lighting and background) and hardware limitation.
Hence, point cloud denoising, which is a technique to restore high-quality and
well-distributed points, is crucial for downstream tasks.

Despite decades of research, point cloud denoising remains a challenging
problem, because of the intrinsic complexity of the topological relationship and
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(a) Noisy data (b) DMRDenoise [32] (c) ScoreDenoise [33] (d) Ours

Fig. 1. The denoising results produced by (b) DMRDenoise [32], (c) ScoreDenoise [33]
and (d) our method from noisy input (a). Deeper color indicates higher error. Our
method preserves notably more fine details with less noise and outperforms others
especially in uniformity.

connectivity among points. Traditional denoising methods [2,28,4,8,34,30] per-
form well in some circumstances. However, they generally rely on prior knowledge
on point sets or some assumptions on noise distributions, and they may compro-
mise the denoising quality for unseen noise (e.g., distortion, non-uniformity).

Recent promising deep learning approaches [12,41,17,32,33] bring new in-
sight to point cloud denoising in a data-driven manner and exhibit superior
performance over traditional methods. These works can be classified into two
categories. The first class treats existing points as approximating the underlying
surface by regressing points [12], predicting displacements [41,51], or progres-
sive movement [33]. Nonetheless, the point features are extracted from the local
receptive field independently. Therefore, consistent surface properties may not
be preserved between neighborhood points, resulting in artifacts, such as out-
liers and scatter. The second class treats downsampling noisy data as a coarse
point set and resampling/upsampling points from the learned manifold with a
target resolution [17,32]. However, the downsampling scheme inevitably discards
geometric details, leading to distorted distribution.

In this paper, we consider the noisy point clouds as samples of the joint dis-
tribution of 3D shape and corrupted noise. Based on this setup, it is intuitive
to capture the characteristics of noise and underlying surface in the form of
distribution. Thus, we can formulate the point cloud denoising problem as dis-
entangling the clean section from its latent representation. We can also interpret
this idea from the perspective of signal processing [36], where clean points and
noise are analogous to low- and high-frequency part of signals, respectively. We
can filter out the high-frequency contents and recover the smooth signal via the
low-frequency counterpart that encodes the major information of raw signal.

Our denoising technique mainly consists of three phases: 1) learning the dis-
tribution of noisy point clouds by encoding the points into a latent represen-
tation, 2) filtering out the noise section from the latent representation, and 3)
decoding/restoring noise-free points from the clean latent code. To realize this
process, we require a generative model that can simultaneously learn the la-
tent distribution and restore clean points. In this paper, we propose to exploit
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Fig. 2. Schematic illustration of the proposed method. We disentangle the noise factor
from the latent representation of noisy point clouds and leverage NFs to model the
transformation between Euclidean and latent spaces.

normalizing flows (NFs) in an invertible generative framework, to model the
distribution mapping of point clouds. The whole process is illustrated in Fig. 2.

Compared with other popular deep learning models, such as generative ad-
versarial network (GAN) and variational autoencoder, NFs provide several ad-
vantages: (i) NFs are capable of transforming complex distributions into disen-
tangled code space, which is a desired property for point cloud denoising task,
(ii) an NF is an invertible and lossless propagation process, which ensures one-
to-one mapping between point clouds and their latent representations, and (iii)
NFs realize the encoding and decoding process in a unified framework and share
weights between forward and inverse propagations.

In summary, the main contributions of this work include:

– We propose a simple yet intuitive framework for point cloud denoising, called
PD-Flow, which learns the distribution of noisy point sets and performs
denoising via noise disentanglement.

– We propose to augment vanilla flows to improve the flexibility and expres-
siveness of the latent representation of points. We investigate various noise
filtering strategies to disentangle noise from latent points.

– To validate the effectiveness of our method, extensive evaluations are con-
ducted on synthetic and real-world datasets. Qualitative experiments show
that our method outperforms the state-of-the-art works on diverse metrics.

2 Related Works

2.1 Denoising Methods

Traditional denoising methods. Conventional methods for point cloud de-
noising can be coarsely classified into three categories: 1) Statistical-based filter-
ing methods generally apply statistical analysis theories, such as kernel density
estimation [42], sparse reconstruction principle [4,45,34], principal component
analysis [35], Bayesian statistics [22] and curvature extraction [24]. 2) Projection-
based filtering methods first construct a smooth surface (e.g., Moving Least
Squares surface [2,13,3]) from a set of noisy points. Then, denoising is imple-
mented by projecting points onto surfaces. According to projection strategies,
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this class of methods can be further divided into, e.g., locally optimal projec-
tion [28,19,20], jet fitting [5], and bilateral filtering [9]. 3) Neighborhood-based
filtering methods measure the correlation and similarity between a point and
its neighbor points. Nonlocal-based methods [8,21,46,52] generally detect self-
similarity among nonlocal patches and consolidate them into coherent noise-free
point clouds. Graph-based denoising methods [14,18,43,50] naturally represent
point cloud geometry with a graph. All above methods generally require user in-
teraction or geometric priors (e.g., normals) and still lack the ability of filtering
various noise levels.
Deep-learning-based denoising methods. In recent years, several deep learn-
ing based methods [41,17,32,12,33,37] have been proposed for point cloud de-
noising. PointCleanNet [41] first removes outliers and then predicts inverse dis-
placement for each point [16]. It is the first learning-based method that directly
inputs noisy data without the acquisition of normals nor noise/device specifi-
cations. Hermosilla et al. proposed Total Denoising (TotalDn) [17] to regress
points from the distribution of unstructured total noise. This allows TotalDn
to approximate the underlying surface without the supervision of clean points.
Pistilli et al. proposed GPDNet [37], which is a graph convolutional network, to
improve denoising robustness under high noise levels. In the denoising pipeline
of DMRDenoise [32], noisy input is first downsampled by a differentiable pool-
ing layer, and then the denoised points are resampled from estimated manifolds.
However, using the downsampling schema [41,32] to remove outliers may cause
unnecessary detail loss. Recently, Luo and Hu developed a score-based denoising
algorithm (ScoreDenoise [33]), which utilizes the gradient ascent technique and
iteratively moves points to the underlying surface via estimated scores.

Our method differs from the above methods in several aspects. First, we
formulate the denoising process as disentangling noise from the factorized rep-
resentation of noisy input. Second, instead of applying separate modules to ex-
tract high-level features and reconstruct coordinates, we unify the point encod-
ing/decoding process with a bijective network design.

2.2 Normalizing Flows for Point Cloud Analysis

NFs define a probability distribution transformation for data, allowing exact
density evaluation and efficient sampling. In recent years, NFs have become
a promising method for generative modeling and have been adopted into vari-
ous applications [39,27,31,1]. Representative models include discrete normalizing
flows (DNF) [10,11,25] and continuous normalizing flows (CNF) [7,15].

As the first NF-based algorithm for point cloud generation, PointFlow [48]
employs CNF to learn a two-level distribution hierarchy of given shapes. Point-
Flow is a flexible scheme for modeling point distribution. However, the expensive
equation solvers and training instability issues still remain to be open problems.
Sharing the similar idea, Discrete PointFlow [26] proposes to use discrete flow
layers as an alternative to continuous flows to reduce computation overhead.
Pumarola et al. [40] introduced C-Flow, which is a parallel conditional scheme
in the DNF-based architecture, to bridge data between images and point clouds
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domains. Postels et al. [38] recently presented mixtures of NFs to improve the
representational ability of flows and show superior performance to a single NF
model [26]. These works mainly focus on improving generative ability and are
evaluated on toy datasets. However, there are few works concentrating on flow-
based real-world point cloud applications.

In this paper, we take advantage of the invertible capacity of NFs, which
enable exact latent variable inference and efficient clean point synthesis. To the
best of our knowledge, no prior work has been proposed for the point cloud
denoising task by developing a new framework with NFs.

3 Method

3.1 Overview

Given an input point set P̃ = {p̃i = pi + oi} ∈ RN×Dp corrupted by noise O =
{oi}, we aim to predict a clean point set P̂ = {p̂i} ∈ RN×Dp , where N is the
number of points, Dp is the point coordinate dimension, and p̂i is the prediction
of clean point pi. In our study, we consider the coordinate dimension withDp = 3
and make no assumptions about the noise distribution of O.

In this paper, we propose to utilize NFs to model the mapping of point dis-
tribution between Euclidean and latent spaces, thereby allowing us to formulate
point cloud denoising as the problem of disentangling the noise factor from its
latent representation. The overall denoising pipeline is shown in Fig. 3.

3.2 Flow-based Denoising Method

We consider the point cloud denoising problem from the perspective of distribu-
tion learning and disentanglement. We suppose the distribution of noisy point
set P̃ is the joint distribution of clean point set P = {pi} and noise O. Given
a dataset of observation P̃, we aim to learn a bijective mapping fθ, which is
parameterized by θ to approximate the data distribution:

z̃ = fθ(P̃) = fθ(P,O), (1)

where z̃ ∼ pϑ(z̃) is a random variable with known probability density. Note that
pϑ(z̃) follows a factorized distribution [10], such that pϑ(z̃) =

∏
i pϑ (z̃i) (i.e. the

dimensions of z̃ are independent of each other).
We further assume that fθ can simultaneously learn to embed noise factor and

intrinsic structure of point cloud into a disentangled latent code space (i.e. where
noise is uniquely controlled by some dimensions). Based on this assumption, we
approximate the clean latent representation z by

ẑ = ψ (z̃) , (2)

where ψ : RD → RD is a disentanglement function defined in latent space, and
ẑ is an estimation of z. In this way, clean point samples P̂ can be derived by
taking the inverse transformation

P̂ = gθ (ẑ) , (3)
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Fig. 3. The proposed flow-based denoising framework. Given a noisy point set P̃ ={
p̃i ∈ RDp

}
, we first augment it with an additional Da dimensional variable p̄i ∈ RDa

and obtain augmented point hi = [p̃i, p̄i] ∈ RDp+Da . We transform the augmented
points H̃ = {hi} to latent distribution z̃ ∼ pϑ(z̃) by NFs. To estimate noise-free latent
point ẑ, we filter out the noise factor from noisy z̃. We restore the noise-free point set
P̂ from ẑ by the inverse propagation of F , which utilizes the invertible capacity of NFs.
Finally, the coordinates of the clean point set are derived from truncating the first Dp

dimensions and discarding the augmented Da dimensions.

where gθ(·) = f−1
θ (·). The bijective mapping fθ, which consists of a sequence of

invertible transformations f1θ , · · · , fLθ , is referred to as normalizing flows. Denote
by hl the output of l-th flow transformation. Then hl+1 can be formulated as

hl+1 = f l+1
θ

(
hl
)
, (4)

where h0 = P̃, hL = z̃. Applying the change-of-variables formula and chain
rule [10], the output probability density of P̃ can be obtained as

log p(P̃; θ) = log pϑ

(
fθ(P̃)

)
+ log

∣∣∣∣det ∂fθ∂P̃
(P̃)

∣∣∣∣
= log pϑ

(
fθ(P̃)

)
+

L∑
l=1

log

∣∣∣∣det ∂f lθ∂hl
(
hl
)∣∣∣∣ , (5)

where
∣∣∣det ∂fθ

∂P̃ (P̃)
∣∣∣ is the log-absolute-determinant of the Jacobian of mapping

fθ, which measures the volume change [10] caused by fθ. fθ can be trained with
the maximum likelihood principle using the gradient descent technique.

3.3 Augmentation Module

Dimensional bottleneck. To maintain the analytical invertibility, flow models
impose more constraints on the network architecture than non-invertible models.
One particular constraint is that the flow components f1, · · · , fL must output
the same dimensionality D with the input data (where D = 3 for raw point
clouds). The network bandwidth bottleneck sacrifices the model expressiveness,
as shown in Fig. 4a.
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Fig. 4. Illustration of dimension augmentation. (a) The dimensionality of raw data
limits the bandwidth of the network in vanilla flows. (b) Augmented flows can share
considerable information among flow blocks, thereby improving model expressiveness.

Previous works [11,25] generally use a squeezing operator to alleviate this
limitation by exchanging spatial dimensions for feature channels. However, the
squeezing operator is mainly designed for image manipulation. It is non-trivial
to adopt squeezing to point cloud due to the unorder nature in point sets.
Dimension augmentation. Inspired by VFlow [6], we resolve the bottleneck
by increasing the dimensionality of input data. To be specific, for each input
point p̃i ∈ RDp in P̃, we augment it with a random variable p̄i ∈ RDa . This
process is modeled by an augmentation module A:

p̄i = A (p̃i,N (p̃i)) , P̄ = {p̄i} , (6)

where N (p̃i) denotes the k-nearest neighbors of p̃i, and P̄ represents the set
of augmented dimensions. We feed the augmented point set H̃ = {hi = [p̃i, p̄i]}
as input of flow module F , and the underlying NFs become z̃ = fθ(H̃), where
z̃ ∈ RDp+Da , as shown in Fig. 4b.
Variational augmentation. To model the distribution of the augmented data
space, VFlow [6] resorts to optimizing the evidence lower bound observation
(ELBO) on the log-likelihood of augmented data as an alternative of Eq. 5:

log p(P̃; θ) ≥ Eq(P̄|P̃;ϕ)

[
log p(P̃, P̄; θ)− log q(P̄ | P̃;ϕ)

]
, (7)

where q(P̄ | P̃;ϕ) indicates the distribution of augmented data, which is modeled
by the augmentation module A, θ and ϕ denote the parameters of F and A,
respectively. We briefly explain Eq. (7) in supplementary material.

3.4 Flow Module

The flow module F transforms augmented points H̃ = {hi} ∈ RN×(Dp+Da) from
the Euclidean space to the latent space, and vice versa.

The architecture of flow module F comprises L blocks, where each block
consists of a couple of flow components, as shown in Fig. 3. Each component
is designed to satisfy the efficient invertibility and tractable Jacobian, including
affine coupling layer [11], actnorm [25], and permutation layer [25]. The descrip-
tions of each flow component are detailed in supplementary material.
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3.5 Disentanglement Module

Let zp and zn be the clean point and noisy parts of the latent point z̃, i.e.
z̃ = [zp, zn]. We aim to disentangle noise zn from z̃ by a smooth operator ψ :
RD → RD

ẑ = [zp, zc] = ψ(z̃), (8)

where zc is the denoised feature and D = Dp +Da. ẑ denotes the prediction of
noise-free point representation, which is fed as the input of inverse propagation
of flow module F . However, how to implement ψ(·) is non-trivial. In this paper,
we investigate three types of noise filtering strategies (Fig. 5) to formulate ψ(·)
as follows:
Fix Binary Mask (FBM). Similiar to a previous work [29], we explicitly
divides the channels of latent code into two groups, i.e. clean and noisy channels.
FBM simply sets noisy channels to 0 by

ψ(z̃) = m̄⊙ z̃, (9)

Ldenoise = LFBM = 0, (10)

where m̄ ∈ {0, 1}D is a fixed binary mask specified by the user, ⊙ denotes
element-wise product and LFBM is the corresponding loss function of FBM.
Learnable Binary Mask (LBM). We employ a soft masking to latent z̃ by

ψ(z̃) = m̃⊙ z̃, (11)

Ldenoise = LLBM = |m̃ (1− m̃)| , (12)

where m̃ ∈ RD is a learnable parameter, | · | denotes L1 norm, and LLBM is the
corresponding loss of LBM that encourages m̃ to approximate the binary mask.
Latent Code Consistency (LCC). We minimize the latent representation
between clean points and noisy points by

ψ(z̃) =Wz̃, (13)

Ldenoise = LLCC =

N∑
i=1

∥Wz̃(i) − z(i)∥, (14)
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where W ∈ RD×D is a learnable matrix to transform z̃, N is the number of
points, ∥·∥ denotes L2 norm, and z = fθ(P) is the latent representation encoded
from reference points P by the forward propagation of flow (similar to Eq. (1)).
LLCC is the corresponding loss of LCC that encourages the transformed ẑ to be
consistent with noise-free representation z, which is analogous to perceptual loss
[23] that evaluates difference on high-level features.

3.6 Joint Loss function

We present an objective function for training PD-Flow that combines the recon-
struction loss, prior loss and denoise loss (Section 3.5) as follows:
Reconstruction loss quantifies the similarity between the generated points
P̂ ∈ RN×Dp and reference clean points P ∈ RN×Dp . In this paper, we use the
Earth Mover’s Distance (EMD) metric as Lrec by minimizing

Lrec = LEMD(P̂,P) = min
φ:P̂→P

∑
p̂∈P̂

∥p̂− φ (p̂)∥ , (15)

where φ : P̂ → P is a bijection and ∥·∥ denotes L2 norm.
Prior loss optimizes the transformation capability of flow module F by max-
imizing the likelihood of observation P̃. We implement the prior loss by mini-
mizing the negative ELBO in Eq. (7):

Lprior(P̃) = L(P̃; θ, ϕ) = −
[
log p(P̃, P̄; θ)− log q(P̄ | P̃;ϕ)

]
(16)

where P̄ = A(P̃) are augmented dimensions (Section 3.3). Intuitively, Lprior

encourages the input points P̃ to reach high probability under the predefined
prior pϑ(z̃).
Total Loss. Combining the preceding formulas, our method can be trained in
an end-to-end manner by minimizing

L (θ, ϕ, σ) = αLrec + βLprior + γLdenoise, (17)

where θ, ϕ and σ denotes the network parameters of F , A and M, respectively.
And, α, β, γ are the hyper-parameters to balance the loss.

3.7 Discussion

Benefit of dimension augmentation. The dimension augmentation setting
provides extra benefits to vanilla flows: (i) The augmented NFs are generaliza-
tion of vanilla flows, where the extra dimensionality Da can be freely adjusted by
users, allowing it to model more complex function. (ii) The augmented dimen-
sions afford more flexibility and expressiveness to intermediate point features
(i.e. hl in Section 3.2) between flow transformations, avoiding extracting high
dimensional features from scratch. (iii) The augmented dimensions increase the
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Table 1. Comparison of denoising algorithms on PUSet.

#Points 10K 50K

Noise Level 1% 2% 3% 1% 2% 3%

Method
CD
10−4

P2M
10−4

HD
10−3

CD
10−4

P2M
10−4

HD
10−3

CD
10−4

P2M
10−4

HD
10−3

CD
10−4

P2M
10−4

HD
10−3

CD
10−4

P2M
10−4

HD
10−3

CD
10−4

P2M
10−4

HD
10−3

Jet [5] 3.47 1.20 1.58 4.83 1.89 2.97 6.15 2.86 7.00 0.82 0.19 0.90 2.38 1.35 3.36 5.64 4.16 9.05
GPF [30] 3.28 1.17 1.52 4.18 1.54 3.45 5.37 2.75 8.14 0.76 0.23 1.42 2.04 0.94 4.25 3.82 2.87 10.4

MRPCA [34] 3.14 1.01 1.77 3.87 1.26 2.59 5.13 2.03 4.84 0.70 0.12 0.79 2.11 1.06 3.21 5.64 3.97 7.65
GLR [50] 2.79 0.92 1.16 3.66 1.14 2.88 4.84 2.08 6.80 0.71 0.18 0.93 1.61 0.85 4.90 3.74 2.67 11.7

PCNet [41] 3.57 1.15 1.54 7.54 3.92 6.25 13.0 8.92 13.9 0.95 0.27 2.21 1.56 0.62 9.84 2.32 1.32 8.42
GPDNet [37] 3.75 1.33 3.03 8.00 4.50 6.08 13.4 9.33 13.5 1.97 1.09 1.94 5.08 3.84 7.56 9.65 8.14 16.7
Pointfilter [51] 2.86 0.75 2.87 3.97 1.30 6.21 4.94 2.14 9.26 0.82 0.24 2.38 1.46 0.77 4.58 2.25 1.44 8.70

DMR [32] 4.54 1.70 6.72 5.04 2.13 7.02 5.87 2.86 8.60 1.17 0.46 2.26 1.58 0.81 4.29 2.45 1.54 7.32
Score [33] 2.52 0.46 4.30 3.68 1.08 5.78 4.69 1.94 10.5 0.71 0.15 2.30 1.28 0.57 4.95 1.92 1.05 9.30

Ours 2.12 0.38 1.36 3.25 1.02 3.71 4.45 2.05 5.31 0.65 0.16 1.71 1.18 0.60 2.58 1.94 1.26 5.21

degrees of freedom for noise filtering in the disentanglement phase, which is par-
ticularly helpful because raw point clouds contain only one dimension of Dp = 3.
We investigate the influence of dimension augmentation in Section 4.3.

Although the augmented dimensions increase the network size of flow module
F , the overhead is only marginal. The computation overhead mainly depends
on the hidden layer size Dh of the internal transformation unit of F instead of
the output dimensionality Dp +Da.
Unified noise disentanglement pipeline. Considering the invertible property
of NFs, raw points P̃ and latent z̃ share the identical information in different
domains. We only manipulate the point features in the disentanglement module
throughout the whole denoising pipeline, demonstrating the feature disentangle-
ment capability of NFs.

Additionally, we do not explicitly introduce extra network modules to predict
point-wise displacement [41] or upsample to a target resolution [32] for point
generation. Utilizing the flow invertibility can share parameters between forward
and inverse propagations, which help us to reduce the network size and avoid
the use of a decoding module.

4 Experiments

4.1 Datasets

We evaluate our method on the following datasets: (i) PUSet. This dataset is
a subset of PUNet [49] provided by [33], which contains 40 meshes for training
and 20 meshes for evaluation. (ii) DMRSet. This dataset collects meshes from
ModelNet40 [47] provided by [32], which contains 91 meshes for training and 60
meshes for evaluation. These point clouds are perturbed by Gaussian noise of
various noise levels at resolutions ranging from 10K to 50K points.

We implement PD-Flow with the PyTorch framework. The training settings,
datasets and network configurations are detailed in the supplementary material.

4.2 Comparisons with State-of-the-art Methods

Evaluation metrics. We use four evaluation metrics in quantitative compar-
ison, including (i) Chamfer distance (CD), (ii) Point-to-mesh (P2M) distance,
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Table 2. Comparison of uniformity on 10K points under various Gaussian noise levels.
This metric is estimated in the local area of different radii p. Besides, we also show the
corresponding CD loss (×10−4) of the full point clouds.

Noise Methods CD
Uniformity for different p

0.4% 0.6% 0.8% 1.0% 1.2%

1%

MRPCA [34] 3.14 1.89 2.30 2.42 2.59 2.83
DMR [32] 4.54 4.02 5.06 6.02 7.03 7.95
Score [33] 2.52 1.10 1.38 1.69 2.05 2.45

Ours 2.12 0.33 0.43 0.55 0.71 0.89

2%

MRPCA [34] 3.87 2.21 2.56 2.85 2.97 3.14
DMR [32] 5.04 3.45 4.04 4.68 5.35 6.03
Score [33] 3.68 1.95 2.39 2.91 3.44 4.04

Ours 3.25 0.89 1.18 1.49 1.83 2.18

3%

MRPCA [34] 5.13 2.28 2.29 2.32 2.45 2.60
DMR [32] 5.87 3.81 4.53 5.16 5.85 6.55
Score [33] 4.69 4.19 5.42 6.43 7.46 8.37

Ours 4.45 1.80 2.33 2.83 3.34 3.87

(iii) Hausdorff distance (HD), and (iv) Uniformity (Uni). The detailed descrip-
tion of each metric is available in the supplementary material.

Quantitative comparison. We compare our method with traditional methods
(including Jet [5], MRPCA [34], GPF [30], GLR [50]) and state-of-the-art deep
learning-based methods (including PointCleanNet (PCNet) [41], Pointfilter [51],
DMRDenoise (DMR) [32], GPDNet [37], ScoreDenoise (Score) [33]).

We use LCC as the default noise filter. The benchmark is based on 10K and
50K points disturbed by isotropic Gaussian noise with the standard deviation of
noise ranging from 1% to 3% of the shape’s bounding sphere radius.

As shown in Table 1, traditional methods can achieve good performance in
some cases depending on the manual tuning parameters, but they have difficulty
in extending to all metrics. PCNet [41] and DMRDenoise [32] perform less sat-
isfactory under 10K points, while GPDNet [37] fails to handle high noise levels.
In most cases, our method outperforms Pointfilter [51] and ScoreDenoise [33],
especially in CD and HD metrics. The quantitative comparison on DMRSet and
more results of various noise types are provided in the supplementary material.

Furthermore, we present the quantitative results on uniformity metric under
various noise levels in Table 2. Although MRPCA [34] achieves the best uni-
formity under 3% Gaussian noise, it fails to keep good generation accuracy on
CD metric. Compared with other state-of-the-art methods [32,33], our method
considerably promotes the uniformity of generated points.

Qualitative comparison. Fig. 6 visualizes the qualitative denoising results
between ours and competitive works. We observe that our method achieves the
most robust estimation under high noise corruption. In particular, our method
can keep consistent density across different regions and avoid clustering phe-
nomenon, resulting in better uniformity.
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Clean Noisy

(a) Noisy (b)MRPCA[34] (c) PCNet[41] (d) DMR [32] (e) Score [33] (f) Ours (g) Clean

Fig. 6. Visual comparison of state-of-the-art denoising methods under 2% isotropic
Gaussian noise. The color of each point indicates its reconstruction error measured by
P2M distance. See supplementary material for visual results under more noise settings.

We also compare the denoising result under the Paris-rue-Madame [44]
dataset, which contains real-world scene data captured by laser scanner. As
shown in Fig. 7, our method improves the surface smoothness and preserves
better details than DMRDenoise [32] and ScoreDenoise [33].

4.3 Ablation Study

We conduct ablation studies to demonstrate the contribution of the network
design of PD-Flow. The evaluation is based on 10K points with 2% Gaussian
noise in PUSet.
Flow architecture. The number of parameters mainly depends on the depth
of flow module F (e.g., the number of flow blocks L). As shown in Table 3, the
fitting capacity improve as L increases. However, when L increases to 12, the
relative performance boost becomes marginal, with the cost of a large number
of network parameters and training instability. We find that L = 8 achieves the
best balance between performance and training stability.

To verify the effectiveness of inverse propagation of F , we replace the inverse
pass with MLP layers, which are commonly used in other deep-learning-based
methods [41,32]. As shown in Table 3, the inverse pass achieves better generation
quality without introducing extra network parameters, which demonstrates the
feasibility of flow invertibility. The similar result is also verified by the “forward
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(a) Noisy (b) DMRDenoise [32] (c) ScoreDenoise [33] (d) Ours

Fig. 7. Visual results of our denoiser on the real-world dataset Paris-rue-Madame [44].

Table 3. Ablation study of flow architectures.

Pass #Flow block #Params CD P2M

Forward + Inverse 4 299K 3.55 1.22

Forward + Inverse 8 470K 3.25 1.03

Forward + Inverse 12 647K 3.57 1.23

Forward + MLP 8 578K 4.65 2.14

+ mlp” curve in Fig. 8a, where using MLP as point generator leads to degraded
performance.
Dimension augmentation. To investigate the impact of the number of aug-
mentation channels Da on model convergence, we show the training curve in
Fig. 8a. The baseline model with Da = 0 (i.e. vanilla flows) fails to converge to
reasonable results. As the Da increases, we observe faster convergence and bet-
ter fitting capability. The similar trending can also be observed in quantitative
evaluation under different Da. This indicates that the dimension augmentation
makes a key contribution to activate the denoising capability of NFs.
Effect on noise filtering strategies. We compare the performances of vari-
ous filtering strategies with Da = 32. As shown in Table 4, all these strategies
can achieve competitive performance, and the LCC filter achieves the best re-
sults. For LBM with Da = 16 to Da = 64, we observe that about 2/3 channels
approximate zeros in m̃ after training.

We further investigate the impact of the number of masked channels Dm

on FBM filter in Fig. 8b, which shows the training curve under different Dm

settings. For Dm = 0, the flow network produces the same result as input due
to the invertible nature of NFs. For Dm = 1 to Dm = 16, our method can
converge to reasonable performance and presents little differences in convergence.
This indicates that our method can adaptively embed noisy and clean channels
to disentangled position, even if Dm is set to a low value. For Da = 32 and
Dm ≥ 32, the latent code space only contains 3 or less channels to embed intrinsic
information of clean points. We can observe that the insufficient channels for
clean point embedding obviously lead to degrade performance, demonstrating
that the dimension of latent point has great impact on model expressiveness
and denoising flexibility. In Section 3.5, we introduce Ldenoise as a regularization
term to improve noise disentanglment capability. Table 4 compares the effects
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(b) Ablation on FBM filter

Fig. 8. (a) Loss curves of training PD-Flow with augmentation channels and LCC
noise filter. For better visualization, we use linear mapping below dashed line and non-
linear mapping above dashed line. (b) Loss curves of training PD-Flow with FBM noise
filter. All these models are augmented with Da = 32 and vary in mask channels Dm.

Table 4. Ablation study of different filtering strategies.

#Points, Noise 10K,1% 10K,2% 10K,3%

Strategy CD P2M CD P2M CD P2M

FBM 2.22 0.44 3.40 1.14 4.56 2.16

LBM (w/o LLBM) 2.54 0.62 3.65 1.38 5.06 2.32

LBM (w/ LLBM) 2.37 0.53 3.50 1.23 4.80 2.23

LCC (w/o LLCC) 2.32 0.45 3.48 1.19 4.62 2.20

LCC (w/ LLCC) 2.13 0.38 3.26 1.03 4.50 2.09

of Ldenoise term. The “LBM (w/o LLBM)” term means that the experiment
is trained without the LLCC loss (Eq. (12)), but still uses LBM as the filter
strategy (Eq. (11)). As shown in Table 4, both LFBM and LLCC loss make positive
contributions to model performance.

5 Conclusion

In this paper, we present PD-Flow, a point cloud denoising framework that
combines NFs and distribution disentanglement techniques. It learns to trans-
form noise perturbation and clean points into a disentangled latent code space by
leveraging NFs, whereas denoising is formulated as channel masking. To alleviate
the dimensional bandwidth bottleneck and improve the network expressiveness,
we propose to extend additional channels to latent variables by an dimension
augmentation module. Extensive experiments and ablation studies illustrate that
our method outperforms existing state-of-the-art methods in terms of generation
quality across various noise levels.
Acknowledgements: This work was supported by the NSF of Guangdong
Province (2019A1515010833, 2022A1515011573), the Natural Science Founda-
tion of China (61725204) and Tsinghua University Initiative Scientific Research
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35. Narváez, E.A.L., Narváez, N.E.L.: Point cloud denoising using robust principal
component analysis. In: Proceedings of the First International Conference on Com-
puter Graphics Theory and Applications (GRAPP). pp. 51–58 (2006)

36. Pauly, M., Gross, M.: Spectral processing of point-sampled geometry. In: Proceed-
ings of the 28th annual conference on Computer graphics and interactive tech-
niques. pp. 379–386 (2001)

37. Pistilli, F., Fracastoro, G., Valsesia, D., Magli, E.: Learning graph-convolutional
representationsfor point cloud denoising. In: The European Conference on Com-
puter Vision (ECCV) (2020)



PD-Flow 17

38. Postels, J., Liu, M., Spezialetti, R., Van Gool, L., Tombari, F.: Go with the flows:
Mixtures of normalizing flows for point cloud generation and reconstruction. arXiv
preprint arXiv:2106.03135 (2021)

39. Prenger, R., Valle, R., Catanzaro, B.: Waveglow: A flow-based generative network
for speech synthesis. In: ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). pp. 3617–3621 (2019)

40. Pumarola, A., Popov, S., Moreno-Noguer, F., Ferrari, V.: C-flow: Conditional
generative flow models for images and 3d point clouds. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7949–
7958 (2020)

41. Rakotosaona, M.J., La Barbera, V., Guerrero, P., Mitra, N.J., Ovsjanikov, M.:
Pointcleannet: Learning to denoise and remove outliers from dense point clouds.
In: Computer Graphics Forum. vol. 39, pp. 185–203. Wiley Online Library (2020)

42. Schall, O., Belyaev, A., Seidel, H.P.: Robust filtering of noisy scattered point
data. In: Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graph-
ics, 2005. pp. 71–144 (2005)

43. Schoenenberger, Y., Paratte, J., Vandergheynst, P.: Graph-based denoising for
time-varying point clouds. In: 2015 3DTV-Conference: The True Vision-Capture,
Transmission and Display of 3D Video (3DTV-CON). pp. 1–4 (2015)

44. Serna, A., Marcotegui, B., Goulette, F., Deschaud, J.E.: Paris-rue-madame
database: a 3d mobile laser scanner dataset for benchmarking urban detection,
segmentation and classification methods. In: 4th International Conference on Pat-
tern Recognition, Applications and Methods ICPRAM 2014 (2014)

45. Sun, Y., Schaefer, S., Wang, W.: Denoising point sets via l0 minimization. Com-
puter Aided Geometric Design 35, 2–15 (2015)

46. Wang, R.f., Chen, W.z., Zhang, S.y., Zhang, Y., Ye, X.z.: Similarity-based denoising
of point-sampled surfaces. Journal of Zhejiang University-Science A 9(6), 807–815
(2008)

47. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A
deep representation for volumetric shapes. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 1912–1920 (2015)

48. Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S., Hariharan, B.: Pointflow: 3d
point cloud generation with continuous normalizing flows. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 4541–4550 (2019)

49. Yu, L., Li, X., Fu, C.W., Cohen-Or, D., Heng, P.A.: Pu-net: Point cloud upsampling
network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 2790–2799 (2018)

50. Zeng, J., Cheung, G., Ng, M., Pang, J., Yang, C.: 3d point cloud denoising using
graph laplacian regularization of a low dimensional manifold model. IEEE Trans-
actions on Image Processing 29, 3474–3489 (2019)

51. Zhang, D., Lu, X., Qin, H., He, Y.: Pointfilter: Point cloud filtering via encoder-
decoder modeling. IEEE Transactions on Visualization and Computer Graphics
(2020)

52. Zheng, Q., Sharf, A., Wan, G., Li, Y., Mitra, N.J., Cohen-Or, D., Chen, B.: Non-
local scan consolidation for 3d urban scenes. ACM transactions on graphics (TOG)
29(4), 94 (2010)


	PD-Flow: A Point Cloud Denoising Framework with Normalizing Flows

