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1 Point Sampling Method

To obtain sample points X for training and inference, referenced in Section 3
of the main paper, for each shape S ∈ {C,F,R}, we sample n

5 points from a
uniform distribution within a cube with side lengths of 1.1 units that surrounds
S, and 4n

5 points near the surface of S. To obtain the surface points, we densely
sample the surface of the mesh corresponding to S and perturb the sampled
points by adding a random translation from a normal distribution with σ = 0.02
units. During training we merge sampled points for C, F , and R to obtain X . For
training we use n = 5, 461 for F and R, and n = 5, 462 for C. When obtaining
a set of sample points for a given tuple of training shapes, after merging the
sampled points we ensure that of the n points, at least m points are sampled
from the interior of each shape and at least m points are sampled from the
exterior of each shape, where we use m = n

6 . During inference, we use the same
sampling approach except we only sample points from F , and use n = 8, 000.
When obtaining the sample points we ensure that half of the points belong to
the interior of F and half of the points belong to the exterior of F .

2 Network Implementation Details for DeepMend

As discussed in Section 3 of the main paper, we represent the occupancy function
for the complete shape and the break shape with neural networks fΘ and gΦ
respectively. Network fΘ has 8 dense layers where layers 1 to 4 and 6 to 8
contain 512 units each and layer 5 contains 509 - p units with a skip connection
to the input. Network gΦ has 5 dense layers with 512 units each. We use the
leaky rectified linear unit (ReLU) for all intermediate dense layers, and use the
sigmoid as the activation function for the final layers of fΘ and gΦ to output the
probability that point x is inside the shape. During training we apply dropout
with a probability of 0.2 and weight normalization [2] to each layer of fΘ and
gΦ. For training we use the Adam optimizer [1] with a learning rate of 5e−4 for
the network parameters Θ and Φ and with a learning rate of 1e−3 for the latent
codes. We train for 2,000 epochs. For inference we use the Adam optimizer with
a learning rate of 5e− 3 for the latent codes, and perform optimization for 1600
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Table 1. Chamfer (CH) distance and non-fracture region error (NFRE) for our ap-
proach without the break loss (‘No LB ’) and with the break loss (‘LB ’), during training.
During inference for both approaches we use LF + Lprox + Lner to obtain the latent
codes. Bold values correspond to the best performing metric value within a class.

Metric airplanes bottles cars chairs jars mugs sofas tables Mean

No CD 0.108 0.047 0.064 0.112 0.091 0.110 0.097 0.152 0.097
LB NFRE 0.028 0.032 0.041 0.028 0.024 0.027 0.030 0.024 0.029

LB
CD 0.037 0.018 0.092 0.089 0.064 0.037 0.052 0.130 0.065

NFRE 0.008 0.011 0.018 0.009 0.007 0.008 0.011 0.012 0.011

epochs. We set p, the length of the complete shape latent code, to 128, and q, the
length of the break surface latent code, to 64. As discussed in Section 3 of the
main paper, for training we set the scalar multiplier on the regularization loss
Lreg to 1e − 4. For inference, we set the scalar multipliers for the non-zero loss
Lner, the proximity loss Lprox, and the regularization loss Lreg, to 1e− 5, 5e− 3,
and 1e− 4 respectively. We perform a grid search for Lner and Lprox on the jars,
mugs, cars, and sofas datasets to determine the values for the scalar multipliers
that give the lowest chamfer distance for predicted restoration shapes.

For the mugs dataset with 1,376 training samples and a batch size of 38,
our approach takes 40 hours to train on a machine with a 40-Core Intel Xeon
CPU and two NVIDIA 3090s. During inference, our approach takes 75 seconds
to perform optimization to obtain the latent codes for the complete shape zC
and the break surface zB , and 8 seconds to reconstruct the restoration shape.

2.1 Effect of Break Loss During Training

We observe that if the break loss, LB , is not included during training, our ap-
proach may learn an unconstrained encoding of the break surface, as the gradient
with respect to zB and Φ for sample points outside the complete shape will be
negligible. As shown in Equation (3) in the main paper, by removing LB the gra-
dient for zB and Φ is computed using Equation (4) and Equation (7), which both
have the output value for the break surface inside of a product with output value
for the complete shape. During optimization, outside of the complete shape, the
predicted value for the complete shape will trend towards 0, causing the gradient
for zB and Φ to do the same. As the trending of the gradient towards 0 in areas
outside of the complete shape cannot be avoided during inference, it is essential
to learn a well-constrained encoding for the break surface during training.

To understand the effect of training without the break loss, we provide results
with respect to the chamfer distance and the NRFE for our approach with and
without LB the in Table 1. We observe that training with the break loss produces
restoration shapes that are more geometrically accurate those produced without
the break loss, with a decrease in the chamfer distance from 0.097 to 0.065 as
shown in the last column of Table 1. Training without the break loss also causes
more artifacting, shown by the NFRE of 0.029 compared to 0.011 with the break
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Predicted Complete GT Complete Predicted Fractured GT Fractured Predicted Restoration GT Restoration Predicted Restoration
with GT Fractured

Fig. 1. Predicted and ground truth (GT) complete, fractured, and restoration shapes
for our approach, and predicted restoration shapes shown joined to ground truth frac-
tured shapes, corresponding to shapes shown in Figure 1 of the main paper. Restoration
shapes are shown in red, all other shapes are shown in grey.

loss, as the break surface may intersect multiple times with the complete shape
outside of the fracture region or be predicted as too large when the break surface
encoding is under-constrained.

3 Inputs and Outputs for Results in Main Paper

Figure 1 shows the predicted and ground truth complete, fractured, and restora-
tion shapes, and predicted restoration shapes joined to ground truth fractured
shapes, for examples shown in Figure 1 of the main paper. In Figure 2 we show
predicted and ground truth complete, fractured, and restoration shapes, and
predicted restoration shapes joined to ground truth fractured shapes, for exam-
ples shown in Figure 5(b) of the main paper. In Figure 3 we show predicted and
ground truth complete and fractured shapes, and restoration joined to ground
truth fractured shapes for each of the loss configurations discussed in Section 5.1
‘Effect of Penalties on Restoration Shape During Inference’ and shown in Fig-
ure 7 of the main paper. In Figure 3, from left to right we show results for our
approach with Linf, with Linf and Lnerp, with Linf and Lner, with Linf and Lproxp,
with Linf, Lproxp, and Lner, with Linf and Lprox and with Linf, Lner, and Lprox,
and we show the ground truth shape on the far right.
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Predicted Complete GT Complete Predicted Fractured GT Fractured Predicted Restoration GT Restoration Predicted Restoration 
with GT Fractured

Fig. 2. Predicted and ground truth (GT) complete, fractured, and restoration shapes
for our approach, and predicted restoration shapes shown joined to ground truth frac-
tured shapes, corresponding to shapes shown in Figure 5(b) of the main paper. Restora-
tion shapes are shown in red, all other shapes are shown in grey.
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Ground Truth
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Fig. 3. Predicted and ground truth (GT) complete and fractured shapes, and predicted
and ground truth restoration shapes shown joined to ground truth fractured shapes,
corresponding to shapes shown in Figure 7 of the main paper. Restoration shapes are
shown in red, all other shapes are shown in grey.
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