
DeepMend: Learning Occupancy Functions to
Represent Shape for Repair

Nikolas Lamb , Sean Banerjee , and Natasha Kholgade Banerjee

Clarkson University, Potsdam, NY 13699, USA
{lambne,sbanerje,nbanerje}@clarkson.edu

Abstract. We present DeepMend, a novel approach to reconstruct resto-
rations to fractured shapes using learned occupancy functions. Existing
shape repair approaches predict low-resolution voxelized restorations or
smooth restorations, or require symmetries or access to a pre-existing
complete oracle. We represent the occupancy of a fractured shape as the
conjunction of the occupancy of an underlying complete shape and a
break surface, which we model as functions of latent codes using neural
networks. Given occupancy samples from a fractured shape, we estimate
latent codes using an inference loss augmented with novel penalties to
avoid empty or voluminous restorations. We use the estimated codes to
reconstruct a restoration shape. We show results with simulated frac-
tures on synthetic and real-world scanned objects, and with scanned real
fractured mugs. Compared to existing approaches and to two baseline
methods, our work shows state-of-the-art results in accuracy and avoid-
ing restoration artifacts over non-fracture regions of the fractured shape.

Keywords: Learned Occupancy, Shape Representation, Repair, Frac-
ture, Implicit Surface, Neural Networks

1 Introduction

Automated restoration of fractured shapes is an important area of study, with ap-
plications in consumer waste reduction, commercial recycling, cultural heritage
object restoration, medical fields such as orthopedics and dentistry, and robot-
driven repair. Despite its wide application, automated repair of fractured shapes
has received little attention. Most current automated techniques use symmetries
to complete fractured shapes [17,37]. These techniques do not generalize to ob-
jects with non-symmetrical damage. The only existing generalizable approaches
for repair operate in low-resolution voxel space [22], or infer restoration shapes
directly, resulting in smooth restorations with a high rate of failure [25].

In this work, we present DeepMend, a novel deep learning based approach
to generate high-fidelity restoration shapes given an input fractured shape. Our
approach is inspired by work that learns the signed distance function (SDF) or
occupancy function to implicitly represent a shape surface over the continuous
3D domain [7,14,21,38,45,51,51,57,62]. These approaches perform partial shape
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Fig. 1. Given a fractured shape, our approach infers latent codes for an underlying
complete shape and a break surface. We use the codes to generate a restoration shape
that repairs the input fracture shape.

completion by inferring a latent code using point samples from a partial shape,
and reconstruct the complete shape from the latent code. Different from partial
shape completion, DeepMend addresses the challenge that, unlike a partial shape
that is a subset of a complete shape, a fractured shape contains a novel break
region that is missing in the complete shape, as shown on the left of Figure 1.
DeepMend leverages the autodecoder architecture from DeepSDF [38] to esti-
mate restorations, by addressing key challenges in the autodecoder that prevent
its direct use in restoration generation. DeepSDF is geared toward single shape
representation. By itself, DeepSDF cannot predict one shape, i.e., the restora-
tion, from point samples of a different shape, i.e., the fractured shape. To solve
this, our first contribution is to represent occupancies for fractured and restora-
tion shapes as logical operations on occupancies for a shape space common to
them both, i.e., complete shapes and break surfaces. We use T-norms [19] to
relax the logical operations into arithmetic operations. We restructure the au-
todecoder loss using the fractured shape’s dependence on complete/break codes,
and reconstruct the restoration from codes estimated at inference.

Our approach estimates two codes (complete and break) from point samples
of a single fractured shape at inference, a more complex problem than DeepSDF,
that estimates one code. Using the autodecoder loss alone, trivial codes can
be estimated where the break surface lies outside the complete shape or coin-
cides with the fractured shape surface yielding empty or voluminous restora-
tions. Our second contribution is to augment the inference loss with two penalty
terms—(i) a non-empty restoration term that penalizes the mean restoration oc-
cupancy against being zero to avoid empty restorations, and (ii) a proximity term
that encourages the mean distance between the complete and fractured occu-
pancy to be low to prevent voluminous restorations. We compute the restoration
occupancy as the conjunction of the complete occupancy and the negation of the
break occupancy, and obtain a restoration mesh using Marching Cubes [33].

We train and test our approach on synthetically fractured meshes from
8 classes in the ShapeNet [5] dataset, and on the Google Scanned Objects
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dataset [42] which contains 1,032 scanned real-world objects. We use ShapeNet-
trained networks to restore synthetically fractured meshes from the QP Cul-
tural Heritage dataset [24], and to generate restorations for physically frac-
tured and scanned real-world mugs. We compare our work to 3D-ORGAN [22]
and MendNet [25], the only existing automated fracture restoration approaches,
and to two baselines. We show state-of-the-art results in overall accuracy and
avoiding inaccurate artifacts over non-fracture regions. Our code is available at:
https://github.com/Terascale-All-sensing-Research-Studio/DeepMend.

2 Related Work

Restoration of Fractured Shapes. Most existing approaches to generate
restoration shapes from fractured shapes rely on shape symmetry [17,37]. They
restore shapes by reflecting non-fractured regions of the shape onto fractured
regions and computing the subtraction. These approaches fail to restore asym-
metrical shapes or shapes that have non-symmetric fractures. Lamb et al. [26]
perform repair without relying on symmetries. However, they require that a
complete counterpart be provided as input alongside the fractured shape. The
complete shape may not always be available, e.g., in the case of a rare object.
Our work only requires the fractured shape as input. 3D-ORGAN [22] performs
shape restoration in voxel space using a generative adversarial network. 3D-
ORGAN operates at a resolution of 32×32×32, which is insufficient to accurately
represent the geometric complexity of the fracture region. Scaling 3D-ORGAN
to a voxel resolution necessary to represent fracture is impractical at current
dataset volumes and hardware. MendNet [25] overcomes the low resolution of
3D-ORGAN by representing shapes using the occupancy function, similar to
DeepMend. However, MendNet represents overall shape structure and the high-
frequency break surface using a single latent code, resulting in overly smooth
restoration shapes. DeepMend overcomes the challenges of MendNet by learning
separate codes for the complete shape and break surface, yielding high resolution
restoration shapes that accurately reconstruct high-frequency break geometry.

Completion of Partial Shapes. Though not directly related to our work,
a large body of prior work focuses on completing shapes from partial shape
representations, e.g. depth maps or color images. Recent approaches hypothe-
size complete shapes from partial shapes using deep networks. Approaches that
use point clouds as input [1, 11, 20, 32, 36, 43, 47, 61] lack an intrinsic surface
representation. Some approaches predict 3D meshes [18, 60] to incorporate sur-
faces. These approaches are limited in the complexity of meshes reliably pre-
dicted [35], and cannot represent arbitrary topologies. Most approaches using
voxels [3,44,46,53] struggle to predict high-resolution outputs while being compu-
tationally tractable. Some voxel approaches address computational inefficiency
by employing hierarchical models [9, 10] or sparse convolutions [9,59]. However,
voxel approaches pre-discretize the domain, making it challenging to use them
to represent arbitrarily fine resolutions needed for geometric detail, especially
for the problem of fracture surface representation considered in this work.

https://github.com/Terascale-All-sensing-Research-Studio/DeepMend
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A large body of recent work focuses on using neural networks to represent
point samples of values that implicitly define surfaces, e.g., occupancy [7, 8, 15,
23,28,30,35,39,40,49,56,57], SDF [4,14,21,29,34,38,45,51,54,55,58,62], unsigned
distance [50], or level sets [16]. By representing shapes as continuous functions,
these approaches show high reconstruction fidelity while remaining computa-
tionally tractable. In contrast to traditional encoder-decoder architectures, ap-
proaches based on the autodecoder introduced by DeepSDF [38] use maximum
a posteriori estimation to obtain a latent code for an input shape. The approach
enables reconstruction of a complete shape using a latent code estimated from
observations of an incomplete shape. Later approaches provide improvements by
using meta-learning and post-training optimization [45,58], learning increasingly
complex shape representations during training [12], deforming implicit shape
templates [62], or reconstructing shapes at multiple resolutions [21].

A potential approach for shape restoration is to convert the fractured shape
into a partial shape by removing the fracture surface, perform shape completion,
and subtract the fractured shape from the complete shape to obtain a restoration.
In Section 5 we show that subtraction approaches yield surface artifacts on the
non-fracture regions of the fractured shape. Our approach mitigates artifacts by
learning the interplay between the complete shape and break surface.

3 Representing Fractured Shapes

We represent the complete, fractured, and restoration shapes as point sets C,
F , and R. For S ∈ {C,F,R} the occupancy oS(x) ∈ {0, 1} of a point x is 1
if x is inside the shape, and 0 if it is on the boundary or outside the shape.
The original shapes are closed surfaces. However, we exclude boundary points
from the definitions of the sets C, F , and R to ensure that a point does not
simultaneously belong to two sets, e.g., F and R. Exclusion of boundary points
makes the sets C, F , and R open and bounded. We define the break surface as
a 2D surface that intersects the fracture region of F . Points on the side of the
break surface corresponding to the fractured shape receive an occupancy of 1.
Points on the side corresponding to the restoration shape have an occupancy of
0. We use the open unbounded set B, termed the ‘break set’ to represent the set
of points with an occupancy oB(x) of 1. In principle, the break surface is infinite.
In practice, we limit the region containing the break set to be a cube of finite
length to make point sampling for network training and inference tractable1.

As shown in Figure 2(a), we represent the fractured shape set as the intersec-
tion of the sets for the complete shape C and the break set B, i.e, as F = C ∩B.
The relationship implies that for a point x, occupancy oF (x) of the fractured
shape F is the logical conjunction of the occupancies oC(x) and oB(x) of C and
B, i.e., oF (x) = oC(x) ∧ oB(x). We represent the restoration shape R as the
intersection of C and the complement of B, i.e, as R = C ∩ B′. The relation-
ship implies that occupancy oR(x) of R is expressed as the logical conjunction

1 Hereafter, we drop ‘set’ from references to C, F , and R, and refer to them as shapes.
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Fig. 2. (a) We represent fractured and restoration shapes F and R as intersections
of the complete shape C with the break set B and its complement B′. (b) Logical
expressions for occupancy at points x1 in F and x2 in R using C and B occupancies.

of oC(x) with the negation of oB(x), i.e., oR(x) = oC(x) ∧ ¬oB(x). We show
the logical relationships in Figure 2(b). For use in neural networks, we relax the
logical relationships using the product T-norm [19], as

oF (x) = oC(x)oB(x) and (1)

oR(x) = oC(x)(1− oB(x)). (2)

We represent the occupancy functions for the complete shape C and break set
B respectively using neural networks fΘ and gΦ, such that oC(x) = fΘ(zC ,x)
and oB(x) = gΦ(zB ,x). Θ and Φ are the network weights, zC ∈ Rp is a latent
code of size p corresponding to the complete shape, and zB ∈ Rq is a latent code
of size q corresponding to the break set. We use the autodecoder architecture
introduced by Park et al. [38] for fΘ and gΦ. Figure 3(a) shows our network
structure. We provide network details in the supplementary.

3.1 Network Training

During training, we optimize for network parameters Θ and Φ, and the latent
codes zB and zC over each training sample. Each sample consists of a tuple
(F,C,R,B) representing the fractured, complete, and restoration shapes F , C,
and R, and the break set B for the sample. We define the training loss as

L =
∑

zC∈ZC ,zB∈ZB
LF + LC + LR + LB + λregLreg (3)

where ZC is the set of all training complete latent codes, and ZB is the set of
all training break latent codes. The term LF , represented as

LF = (1/|X|)∑x∈X BCE (fΘ(zC ,x)gΦ(zB ,x), oF (x)) , (4)

models the reconstruction of the fractured shape occupancy values. BCE rep-
resents the binary cross-entropy loss function. The first argument to BCE rep-
resents the occupancy expression from Equation (1), with the expressions for
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Fig. 3. (a) Networks fΘ and gΦ represent the complete and break occupancy in terms
of an input point x and latent codes zC and zB . As shown, the fractured and restoration
occupancies, oF and oR, are obtained using the complete and break occupancies, oC
and oB , where Π and Σ represent the product and sum respectively. (b) Predicted
restoration shape with high non-empty penalty and (c) with high proximity penalty.
(d) Functions used for the non-empty penalty term Lner and the proximity penalty term
Lprox during inference. (e) Predicted restoration with balanced penalties. Restoration
shapes (red) shown with ground truth fractured shapes (gray).

the complete and break occupancy values in terms of fΘ and gΦ substituted in.
The second argument represents the fractured shape ground truth occupancy
values. X represents the set of point samples used to probe the ground truth
occupancy values. We include terms LC , LB , and LR to improve the represen-
tation capability of the network by using ground truth occupancy values from
training complete shapes, break sets, and restorations. We define LC and LB as

LC = (1/|X|)∑x∈X BCE (fΘ(zC ,x), oC(x)) and (5)

LB = (1/|X|)∑x∈X BCE (gΦ(zB ,x), oB(x)) . (6)

In Equations (5) and (6), the first argument to BCE represents the occupancy
for the complete shape and break set respectively expressed in terms of fΘ and
gΦ. The second argument represents the ground truth occupancy values for the
complete shape C and break set B. We define LR as

LR = (1/|X|)∑x∈X BCE (fΘ(zC ,x)(1− gΦ(zB ,x)), oR(x)) . (7)

The first argument to BCE in Equation (7) represents the expression for restora-
tion shapes from Equation (2), with expressions for complete and break occu-
pancy in terms of fΘ and gΦ substituted in. The second argument represents the
ground truth restoration occupancy. We train fΘ and gΦ together to incorporate
dependency of gradient descent update of complete parameters on break param-
eters and vice versa, based on the product rule with terms from Equations (4)
and (7). Joint training enables learning of fractured and restoration shapes in

terms of complete shapes and break surfaces. Lreg = ∥zC∥22 + ∥zB∥22 regularizes
latent code estimation by imposing a zero-mean Gaussian prior on the latent
codes. We set the weight λreg on Lreg to be 1e− 4.
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3.2 Inference of Latent Codes

During inference, we estimate optimal latent codes zC and zB for point obser-
vations of occupancy oF (x) from a novel input fractured shape F . With knowl-
edge of the fractured shape occupancy, the inference loss is given as Linf =
LF + λregLreg. By itself, the loss does not prevent the break surface from being
predicted outside or on the boundary of the complete shape. This may result
in an empty restoration shape as shown in Figure 3(b). The loss also does not
constrain the restoration shape from growing arbitrarily large. Gradient descent
on the loss may generate a locally optimal latent code that yields a plausible
complete shape, but a large restoration as shown in Figure 3(c). We introduce
two penalty terms that encourage point occupancy values for the restoration
that constrain its structure. The non-empty penalty term Lner, given as

Lner = − log
(
(1/|X|)∑x∈X fΘ(zC ,x)(1− gΦ(zB ,x))

)
, (8)

penalizes the mean restoration occupancy against being zero. The term encour-
ages the complete shape to have a non-empty intersection with the break set on
the restoration side of the break surface. The proximity loss, Lprox, given as

Lprox = − log
(
1− (1/|X|)∑x∈X(fΘ(zC ,x)− oF (x))

2
)
, (9)

penalizes the network from predicting complete shapes that are not in close
proximity to the fractured shape. The term discourages voluminous restorations.
As shown in Figure 3(d), the negative log functions for Lner and Lprox strongly
penalize the mean occupancy from being too low or the mean complete-fractured
occupancy distance from being too high. Using the non-empty and proximity
penalties, we express the augmented inference loss Linfaug as

Linfaug = Linf + λnerLner + λproxLprox + λregLreg (10)

where λner and λprox are weights on the non-empty and proximity penalties.
During code estimation, we use λner = 1e−5, λprox = 5e−3, and λreg = 1e−4. We
optimize Linfaug to estimate the complete and break codes zC and zB . We use the
estimated codes to reconstruct restoration occupancy values using Equation (2),
and obtain the restoration shape as a 3D mesh using Marching Cubes [33].

4 Datasets and Data Preparation

We evaluate our work using 3D meshes from four datasets.

1. ShapeNet. We use meshes from 8 classes in the ShapeNet dataset [5]: air-
planes, bottles, cars, chairs, jars, mugs, sofas, and tables. The classes have
1,534 to 5,614 shapes, with an average of 3,019 shapes. We train one network
per class, and use an 80%/20% train/test split within each class.

2. Google Scanned Objects Dataset. The dataset [42] contains 1,032 digi-
tally scanned common objects such as cups, bowls, plates, baskets, and shoes.
We train a network with an 80%/20% train/test split of the dataset.
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Fig. 4. Ground truth fractured shapes shown with fitted thin-plate splines (TPS) cor-
responding to the break surface, and with ground truth restoration shapes. Fractured
shapes and TPS are shown in gray, restoration shapes are shown in red.

3. QP Cultural Heritage Object Dataset. The QP dataset [24] contains
317 meshes computer-modeled in the style of ancient Greek pottery. We use
all models for testing using a network trained on ShapeNet jars.

4. Real-World Fractured Mugs. We perform in-house fractures of 4 real-
world mugs, and scan the fractured mugs for testing. We use all mug models
for testing using a network trained on ShapeNet mugs.

Data Preparation. We center meshes and scale them to lie within a unit
cube. ShapeNet and QP models come pre-oriented to be consistent. Though
meshes from the Google Scanned Objects dataset have a common ground plane,
they are not oriented in a consistent direction. We augment the training set for
Google Scanned Objects by randomly rotating meshes by 90◦ around the ground
plane normal. We orient all real-world mugs to line up with ShapeNet mugs. We
waterproof all meshes using the approach of Stutz and Geiger [48].

The ShapeNet, Google Scanned Objects, and QP datasets lack fractures.
We synthetically fracture meshes in these datasets by repeatedly subtracting a
randomized geometric primitive from each mesh. We adopt the fracture approach
from Lamb et al. [27] to remove 5-20% of the mesh surface area. We show example
fractured shapes, restorations, and break surfaces in Figure 4. The mugs, jars,
and bottles classes from ShapeNet have fewer than 600 meshes. We fracture
meshes belonging to these classes 10, 3, and 3 times respectively. We augment
the mugs set by requiring that 3 fractures for each complete mesh only remove
parts of the handle. We fracture meshes in the remaining ShapeNet classes and
the QP and Google Scanned Objects datasets once.

We obtain point samples for the set X by randomly sampling a unit cube
around the object and sampling on the surface of the mesh, as described in the
supplementary. To generate the break surface for each training sample, we fit a
thin-plate spline (TPS) [13] to the fracture vertices, such that the spline domain
corresponds to the closest fitting plane to the fracture region vertices. We use the
spline to partition sample points in the interior of the fractured and restoration
meshes into two groups. We denote the side of the spline that contains the most
fractured shape sample points as belonging to the break set B.

5 Results

Metrics. For evaluation we use the chamfer distance (CD), non-empty restora-
tion percent (NE%), and non-fracture region error (NFRE). NFRE measures



DeepMend: Learning Occupancy Functions to Represent Shape for Repair 9

(a) (b)

Fig. 5. (a) Predicted break surface and predicted complete shape, predicted break
surface and fractured shape, predicted restoration shape and fractured shape, and
ground truth fractured and restoration shape for three objects. (b) Predicted restora-
tion shapes, shown with ground truth fractured shapes joined and opened to show the
fracture surface. Restoration shapes and break surfaces in red, all other shapes in gray.

the presence of incorrect geometric protrusions on the restoration near the non-
fracture region of the fractured shape. Bulk metrics, e.g. precision/recall using
point occupancies over the whole shape, do not model thin protrusions which
contain very few points. To capture protrusions using the NFRE, we sample
n points on the surfaces of the predicted restoration, ground truth restoration,
and non-fractured region of the fractured shape. We count protruding points on
the predicted restoration shape as points that have a nearest neighbor in the
non-fracture region of the fractured shape closer than η and a nearest neighbor
in the ground truth restoration farther than η. We normalize the count by n.
We use η = 0.02 and n = 30, 000.

5.1 Results using ShapeNet

Figure 5(a) shows DeepMend-generated complete shapes and predicted break
surfaces, and restoration shapes joined to input fractured shapes using shapes
from ShapeNet. The break surfaces predicted by DeepMend mimic the frac-
ture region at the join, resulting in accurate connections between fractured
and restoration shapes. Figure 5(b) shows restorations joined to correspond-
ing ground truth fractured shapes and opened to show the fracture. DeepMend
restoration shapes match closely to the fracture, and avoid surface artifacts that
may otherwise prevent the restoration shape from being joined to the fractured
shape. DeepMend regenerates complex missing geometry, such as the tail of
the plane in Figure 5(b) and the car spoiler in Figure 1. It also restores multi-
component fractures such as the center airplane, top right mug, and armchair
in Figure 5(b). In contrast to symmetric approaches [17, 37], DeepMend repairs
shapes with asymmetrical fractures such as the sofa, plane with broken tail,
bottle, and chairs in Figure 5, and the car, mug, sofa, and airplane in Figure 1.

Effect of Penalties on Restoration Shape During Inference. We eval-
uate the impact of our augmented inference loss Linfaug in Equation (10) versus
adding no penalty terms, adding solely the non-empty term Lner, and adding
solely the proximity term Lprox. We also evaluate alternate penalties given as
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Penalty combinations with mean NE% Penalty combinations with mean CD

Mean: 0.096 Mean: 0.265 Mean: 0.150 Mean: 0.060 Mean: 0.073 Mean: 0.050 Mean: 0.065Mean: 92.2 Mean: 99.7 Mean: 100.0 Mean: 73.6 Mean: 96.8 Mean: 80.0 Mean: 97.3

Fig. 6. Percentage of non-empty restorations (NE%, left) and chamfer distance (CD,
right) for our approach with various combinations of penalties for the inference loss.

(h) Ground Truth(a) (b) (c) (d) (g)(e) (f)

Fig. 7. Predicted restoration shapes (red) shown with ground truth fractured shapes
(gray) using using various combinations of penalty terms for the inference loss.

Lnerp = −(1/|X|)∑x∈X log (fΘ(zC ,x)(1− gΦ(zB ,x))) and (11)

Lproxp = (1/|X|)∑x∈X BCE(fΘ(zC ,x), oF (x)), (12)

that penalize individual distance rather than mean distance. Lnerp penalizes 0
values for R, and is the same as the non-zero penalty used in MendNet [25]
restorations. Lproxp encourages individual values in C to be similar to F .

We summarize results in the bar plots in Figure 6. Using no penalties predicts
large restoration shapes, or generates multiple empty restorations as shown by
the jar in Figure 7(a). Mean NE% and CD with Linf are 92.2% and 0.096.
Including Lnerp raises mean NE% to 99.7%. However, since the penalty is applied
to individual points, restorations appear splayed out and non-smooth as shown
by the jar in Figure 7(b). Mean CD is the highest with Lnerp at 0.265. By
penalizing mean occupancy, Lner remedies the splaying by keeping occupancy
values concentrated, improves restoration quality, and lowers CD to a mean of
0.150. However, restorations may now appear bulkier as shown by the mug in
Figure 7(c). Mean CD is higher than when no penalty term is used.

When comparing the effect of the proximity penalties on inference, we find
that including Lproxp improves mean CD to 0.060. However, it drops the per-
centage of non-empty restorations to 73.6%. The per-point penalty induces indi-
vidual points to approach the fracture surface, causing sparse and non-smooth
restorations as shown in Figure 7(d). Including the non-empty restoration term
Lner improves NE% to 96.8% with minimal impact on CD. However, shapes are
still non-smooth, as shown by the jar in Figure 7(e). By using the penalty on
the mean complete-fractured proximity Lprox, per-point distances remain con-
centrated and NE% is higher than with Lproxp. Combining it with Lner improves
NE% over solely using Lprox from 80.0% to 97.3%, without compromising on the
mean CD at 0.065. As shown by Figure 7(g), penalties on the mean occupancy
and proximity values provides balanced, concentrated, and smooth restorations.
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5.2 Comparing DeepMend to Existing Approaches and Baselines

We compare DeepMend restorations to MendNet [25] and 3D-ORGAN [22], the
only existing approaches to restore fractured shapes, and to two baselines.

MendNet.MendNet takes a fractured shape as input and predicts a restora-
tion shape directly using the occupancy function. We train MendNet on fractured
shapes from ShapeNet. As recommended by the authors, we use a latent code
of size 256 for bottles, jars, and mugs, and of size 400 for all other classes.

3D-ORGAN. 3D-ORGAN takes a voxelized fractured shape at a resolution
of 323 as input and predicts a corresponding complete voxelized shape. We obtain
the restoration shape for 3D-ORGAN as the element-wise difference between the
predicted complete voxels and the input fractured voxels. We train 3D-ORGAN
on fractured shapes from ShapeNet. During training, we generate random frac-
tured shapes by removing voxel regions from each complete shape according to
the original implementation. During testing, we input voxelized fractured shapes
generated using the approach described in Section 4. As recommended by the
authors, we use a two-step approach to predict complete shapes by feeding the
output of the first iteration to 3D-ORGAN again for a second iteration.

Baselines of Performing Subtraction from Complete Shape. We
adapt the partial shape completion approach of DeepSDF [38] to generate restora-
tion shapes using subtraction. We generate a partial shape from the fractured
shape by removing fracture region points detected by a fracture/non-fracture
classifier. We train a PointNet [41] classifier to classify points as fracture versus
non-fracture. The classifier provides a test accuracy of 81.3%. We remove de-
tected fracture points to generate the partial shape. We train DeepSDF on com-
plete shapes for the 8 ShapeNet classes studied in this work. We use DeepSDF
to complete the partial shape using the shape completion method discussed by
the authors. We use two approaches for subtraction as baselines. For the first
approach, Sub-Occ, we convert SDF values for the input fractured shape and
DeepSDF-predicted complete shape into occupancy values. We take the differ-
ence of the complete and fractured occupancy, and extract the 0-level isosurface.
To remove artifacts, we discard closed surfaces with a volume less than η = 0.01.
If this step removes all closed surfaces, we retain the largest surface. For the sec-
ond method, Sub-Lamb, we use Lamb et al. [26] to perform subtraction. Lamb
et al. additionally requires a complete counterpart to be provided as input. We
use the complete shape from DeepSDF as the complete counterpart. We repair
self-intersections at the fracture-restoration join using MeshFix [2].

Table 1 summarizes results of CD and NFRE using MendNet, 3D-ORGAN,
Sub-Occ, Sub-Lamb, and DeepMend. 100% of restorations are generated by Sub-
Occ and Sub-Lamb for all classes, and by 3D-ORGAN for all classes except cars
and mugs. We report results over all shapes where DeepMend and MendNet
return non-empty restorations. For 3D-ORGAN, we exclude metrics for cars
and mugs, as 3D-ORGAN only produces restorations for 6 out of 349 or 1.7% of
mugs and 159 out of 661 or 24.1% of cars. Figure 8 shows qualitative results.

DeepMend shows state-of-the-art results compared to MendNet, 3D-ORGAN,
and the baselines in terms of overall CD and NFRE and per-class NFRE. Deep-
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Table 1. Chamfer (CD) distance and NFRE for MendNet, 3D-ORGAN, Sub-Occ,
Sub-Lamb, and DeepMend. For 3D-ORGAN, we do not report results for cars and
mugs, as it only restores 21.7% cars and 1.8% mugs. Overall mean values are provided
over reported classes. Bold values correspond to the lowest value within a class.

Metric airplanes bottles cars chairs jars mugs sofas tables Mean

MendNet
CD 0.091 0.080 0.025 0.171 0.129 0.109 0.190 0.208 0.126

NFRE 0.070 0.045 0.017 0.143 0.028 0.008 0.085 0.203 0.075

3D-ORGAN
CD 0.173 0.146 - 0.184 0.262 - 0.320 0.333 0.237

NFRE 0.192 0.070 - 0.588 0.041 - 0.200 0.138 0.205

Sub-Occ
CD 0.050 0.041 0.024 0.112 0.119 0.035 0.066 0.122 0.071

NFRE 0.099 0.076 0.142 0.262 0.183 0.070 0.170 0.175 0.147

Sub-Lamb
CD 0.075 0.039 0.050 0.086 0.082 0.100 0.053 0.093 0.072

NFRE 0.302 0.120 0.272 0.330 0.289 0.452 0.192 0.204 0.270

DeepMend (Ours)
CD 0.037 0.022 0.108 0.088 0.065 0.035 0.057 0.129 0.068

NFRE 0.009 0.012 0.017 0.009 0.007 0.008 0.012 0.012 0.011

Sub-Occ Sub-Lamb3D-ORGAN Ground Truth Sub-Occ Sub-Lamb3D-ORGAN Ground TruthDeepMendDeepMendMendNet MendNet

Fig. 8. Pictorial results of restorations using MendNet, 3D-ORGAN, baselines Sub-
Occ and Sub-Lamb, and DeepMend, together with ground truth restorations.

Mend also shows lower CD for all classes compared to 3D-ORGAN, 7 out of 8
classes compared to MendNet, 5 out of 8 classes compared to to Sub-Occ, and 4
out of 8 classes compared to Sub-Lamb. MendNet predicts smooth restoration
shapes that may not join completely to the fractured shape. While MendNet
generates lower CD than DeepMend for cars common to both methods, Mend-
Net only restores 57.9% cars, and fails for 42.1% cars as shown in Figure 8. On
average, MendNet generates 84.8% restorations compared to 97.3% generated by
DeepMend. As shown in Figure 8, 3D-ORGAN predicts small restoration shapes,
e.g. the table, sofa, and car. The histogram on the left of Figure 9 shows that
MendNet and 3D-ORGAN predict 36.3% and 1.0% restorations with a chamfer
distance less than 0.05 respectively, compared to 67.9% with DeepMend.

Restoration shapes generated using Sub-Occ exhibit artifacts on the surface
of the fractured shape as shown in Figure 8. The histogram of the NFRE values
for Sub-Occ in Figure 9 shows that 21.8% of restorations have NFRE lower
than 0.025, as opposed to 87.8% by DeepMend. The fracture classifier may not
reliably remove the entire fracture region to create a partial shape that is a
precise subset of the complete shape. As such, Sub-Occ generates restorations
that exhibit elements of the fracture, e.g., the sofa, car, and bottle in Figure 8. As
shown in Figure 9, Sub-Lamb is effective at removing artifacts for some objects,
as 58.0% of restoration shapes have NFRE lower than 0.025. However, Sub-Lamb
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Fig. 9. Histograms of chamfer distance (CD, top) and non-fracture region error (NFRE,
bottom) for MendNet, 3D-ORGAN, Sub-Occ, Sub-Lamb, and DeepMend.

Psykter VaseLekane Vase

Effigy Bowl Dinos Bowl

(a) Google Scanned Objects (b) QP Cultural Heritage Objects (c) Scans of Real Fractured Mugs

Fig. 10. Results using (a) synthetic breaks on Greek pottery from QP [24], (b) synthetic
fractures on 3D scans from Google Scanned Objects [42], and (c) 3D scans for real-world
fractured mugs. Ground truth restoration shapes shown on right when applicable.

may incorrectly mark the exterior region of the fractured shape as belonging to
the fracture, causing the entirety of the fractured shape to be merged with the
restoration, e.g., for the airplane and jar in Figure 8. Figure 9 shows that for
Sub-Lamb, 20.4% of restoration shapes have a high NFRE between 0.975 and 1.

5.3 Results with Google Scanned Objects, QP, and Fractured Mugs

We show results of training and testing DeepMend with the Google Scanned Ob-
jects dataset in Figure 10(a). We obtain a chamfer distance of 0.112. DeepMend
generates closely fitting restorations for objects that are prone to fracture such
as the plate, the pot, and the bowls in Figure 10(a), and reasonable restoration
shapes for objects with high intra-class variety such as shoes.

We demonstrate the generalizability of our approach to novel datasets by us-
ing ShapeNet-trained jars and mugs networks to restore synthetically fractured
shapes for objects from the QP dataset, shown in Figure 10(b), and for 3D scans
of 4 real-world fractured mugs, shown in Figure 10(c). We achieve a mean cham-
fer distance of 0.047 for QP objects. DeepMend generates plausible restorations
for shapes that resemble modern bowls, such as the effigy bowl in Figure 10(b),
and for uncommon shapes, such as the psykter vase in Figure 10(b).

The restoration process for real-world mugs is particularly challenging. For
synthetic breaks, the fractured and non-fracture regions in synthetic breaks have
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a clear edge. In real-world mugs, the break structure is far more complex with
sharp curvature and smoothed out edges as seen in Figure 10(c). Scanning lim-
itations may cause the fracture surface geometry to be less precisely captured
in comparison to the roughness of simulated fractures. Despite the challenges,
our approach shows the capability to reconstruct the restoration by generating
break surfaces that approach the fracture surface of real broken mugs.

6 Conclusion

Input Predicted Ground Truth

Fig. 11. Restorations with
multiple components.

We provide DeepMend, an approach to automati-
cally restore fractured shapes by learning to repre-
sent complete shapes, break surfaces, and their in-
terplay. We contribute penalty functions for infer-
ence that penalize mean occupancy values against
being too high or low, thereby ensuring well-
structured restorations. DeepMend does not re-
quire ground truth knowledge of the fracture re-
gion, making it amenable for rapid repair.

One limitation of our work is that it may pre-
dict multiple unnecessary components, especially
for thin structures, e.g., the chair in Figure 11, which are often problematic for
learned volumetric functions. Since the components are on the restoration side
of the surface, NFRE remains lower than with the baseline methods and the
components do not effect joinability. In many cases, e.g. the table in Figure 11,
multiple components yield plausible restorations. For the table class, these com-
ponents together with the high intra-class variance contribute to an increased
CD, as shown in Table 1. Multiple component prediction may arise as the break
surface can adopt arbitrarily complex geometries during inference. As part of
future work, data-driven priors can be incorporated on the structure of break
surfaces. Future work can use datasets to learn prior probability distributions of
occupancy of 3D objects. The learned shape representation can be strengthened
with structural constraints, e.g., symmetries and planarity.

While not explored in this work, DeepMend may be combined with ap-
proaches to perform fractured object reassembly [6, 31, 52] to enable automatic
restoration of fractured objects with multiple components. Novel scanned datasets
of objects with diverse materials and diverse damage, e.g., chipping, shearing,
splintering, and ductile versus brittle fractures can benefit the study of the dam-
age process and impact on fracture surface geometry. Our work contributes a
geometric foundation for the study of fractured shape repair using closed 3D sur-
faces. The work opens the scope for future research on automated shape repair
using depth and color images to facilitate democratization of the repair process.
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