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1 SDF Network

In this section, we will give details about the math formulation of the SDF
network, the sampling scheme, and the loss functions we use for training the
human body SDF network.

To train a generalized SDF network that can predict the implicit function
of human bodies with different shapes and poses in real-time, we design the
network to predict SDF conditioned on the SMPL [3] parameters.

f(x, β⃗, θ⃗) ≈ SDFM(β⃗,θ⃗)
(x). (1)

SMPL is a PCA model computed from a large human shape data. β⃗ and θ⃗ are
its shape and pose parameters. M(β⃗, θ⃗) is the human shape reconstructed from
β⃗ and θ⃗.

To train the SDF network, we combine both the regression loss on sampled
points in the space and the geometric regularization loss on the gradient as
proposed by Park et al. and Gropp et al. [4,2]. For each garment-body pair in
the TailorNet dataset, we collect three categories of SDF value samples:

1. Randomly sampled points from the body surface, with or without Gaussian
disturbance. For samples right on the body surface, we also collect their nor-
mals. Note that, we can only get correct SDF gradients for the surface points
which are their normals. For other points, we can estimate their gradients
through analytic methods.

2. Randomly sampled points from the garment surface, with or without Gaus-
sian disturbance.

3. Randomly sampled points inside the bounding box of the body. We use a
general bounding box for all the samples with size 4m × 4m × 4m, centering
at [0,0,0].

For points from the body surface without disturbance, we denote them as
{xi}i∈IS , their normals as {ni}i∈IS . For other points, we denote them as {xj}j∈IE .
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The ground truth SDF values for all the points are {si}i∈IS∪IE . We compute the
loss for training SDF as:

LSDF = λaLv + λbLsg + λcLse (2)

Lv = Ei∈IS∪IE(∣f(xi) − si∣) (3)

Lsg = Ei∈IS(∥∇xf(xi) −ni∥) (4)

Lse = Ei∈IE(∥∇xf(xi)∥ − 1)
2, (5)

where Lv is a regression loss for the values [4], Lsg and Lse are losses for the
gradients [2]. Specifically, Lse is based on the Eikonal equation[1]. We set the
weights to balance each term as λa = 2, λb = 1, λc = 0.1.

We include the performance for the approximated SDF on the datasets we
used in Table 1. We use two metrics:

Mean Absolute Error defined in Eq. 3;
Mean Relative Error defined as

Ei∈IS∪IE (∣
f(xi) − si∣

si
∣ ⋅ 100%) . (6)

Using those loss functions, we can have supervision on the absolute values
for the SDF samples, but no supervision on the norm of the gradient for vertices
that are not on the body surfaces. Consequently, the mean relative error is
much worse than the mean absolute error. Thus, in the main paper, we use the
predicted offset scale to help ReFU improve its collision handling ability using
the approximated SDF.

Table 1: Mean absolute error and mean relative error of the SDF network.

Dataset Mean Absolute Error Mean Relative Error

Shirt Male 2.38mm 28.22%
T-shirt Male 2.37mm 25.85%
Short-pant Male 2.46mm 31.66%
Skirt Female 3.10mm 32.64%

2 Penetration Energy Histogram

Although our method cannot eliminate all the collisions when using the neural
network approximated SDF due to the inaccuracies of SDF, it brings a significant
decrease in the overall penetration energy as shown in the distribution histogram
in Fig. 1 and Fig. 2. Fig. 1 shows all the results and Fig. 2 shows the zoomed-in
results with collision energy less than 2.5 × 10−3. We compute the penetration
energy as the way described in [7].
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Fig. 1: We show the histogram of the collision energy for TailorNet without ReFU
(blue) and TailorNet with ReFU trained in the “Hybrid” SDF mode (yellow).
It shows with ReFU, the network can produce much more garments with low
collision energy.
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Fig. 2: Here is a zoomed-version of Fig. 1 for output garments with collision
energy less than 2.5 × 10−3.

3 Results with GCNN

In this section, we show how ReFU works when applied in a backbone network
based on a graph convolutional neural network (GCNN) [8] for general 3D mod-
els. This GCNN does not have a frequency division process as in TailorNet, thus
we can directly plug in the ReFU and train from scratch. We mentioned in Sec.
3.2. of the main paper, that SDF for collision handling is only useful when the
points are near the surface, so we may better train with ReFU in the refining
stage when the predicted cloth already satisfies this condition. If we train from
scratch, the initial network prediction may not satisfy the condition. Neverthe-
less, we still find the network can learn to cope with these, and have good results
when the network becomes steady as shown in Table 2. The results demonstrate
significant improvements in reducing collisions by training ReFU with GCNN
from scratch. This experiment illustrates that ReFU can work with different
kinds of backbone networks.
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Table 2: Garment prediction results of the GCNN network trained with or
without the ReFU layer.

Metric
Method

GCNN[8]
w/ ReFU

Approx. SDF Acc. SDF Hybrid

MPVE 14.05 13.05 12.82 12.93

VFCP 2.26% 0.81% 0.00% 0.72%

CFMP 8.70% 19.92% 40.98% 36.78%

4 Results on VTO Dataset [6]

VTO dataset from [6] is a new public garment-body dataset with more complex
human poses. The dataset contains 17 different shapes and several different mo-
tion sequences, including walking, running, jumping, dancing, etc. We evaluate
our results on test sets that include four unseen sequences similar to the orig-
inal paper [6]. We choose two options for the number of shapes: one with five
shapes resulting in a similar amount of samples to the TairlorNet dataset and
another with all 17 shapes. We use a 5-layer Multilayer Perception (MLP) as
our baseline. We show the results in Table 3. Our method works well in this new
dataset.

Table 3: Results on the new VTO dataset [6]

Shape Num. Train Num. Test Num. Metric
Method

Baseline ReFU (Approx. SDF)

5 33525 2060
MPVE 15.36 13.15

VFCP 1.78% 0.56%

CFMP 18.69 52.53%

17 113985 7004
MPVE 18.23 16.12

VFCP 3.18% 0.86%

CFMP 13.30% 38.39%

5 Ablation Study for Networks Computing αi

We compare alternative options for computing the scale αi. In the final ReFU
structure, we use the following networks to compute:

αi = g(k(z)i, f(xi)),z ∈ RM , (7)
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with k ∶ RM → RN×D as a topology-dependent MLP network that infers the
latent vector for every vertex from the global feature z.

There are two additional possible choices. The first one (“Alt. 1”):

αi = g(k
′
(z), f(xi)),z ∈ RM , (8)

with k ∶ RM → RD′ as another MLP inferring one shared latent vector from z.
Here we let D′ ∝ N ×D to maintain the parameter size of the whole network
and ensure a fair comparison.

The second one (“Alt. 2”):

αi = g
′
(f(xi)),z ∈ RM , (9)

where g′ is a network directly predicting the scale from each vertex’s SDF value.
We show the comparison results on “Shirt Male” dataset in Table 4. For all

the experiments, we use approximate SDF. The results show that our final choice
in Eq. 7 achieves better results since it considers each vertex’s information to
compute the final scale.

Table 4: Results trained with different αi computing networks.

Metric
Method

Baseline Alt. 1 Alt. 2 ReFU

MPVE 11.27 10.65 10.66 10.59

VFCP 1.18% 0.76% 0.79% 0.62%

CFMP 11.92% 21.36% 20.81% 26.9%

Table 5: Per-frame running time, including approximated SDF query, accurate
SDF query computed using spatial data structures, ReFU layer inference, and
the backbone network based on TailorNet inference [5].

Dataset
Component

Approx. SDF Acc. SDF ReFU Backbone

Shirt Male 1.97ms 121.96ms 0.29ms 22.14ms
T-Shirt Male 1.77ms 99.27ms 0.28ms 21.51ms
Short-pant Male 1.58ms 89.69ms 0.21ms 18.82ms
Skirt Female 1.67ms 107.38ms 0.23ms 19.76ms

All Garments 1.75ms 105.50ms 0.25ms 20.57ms
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6 Running Time

We include the running time for SDF, ReFU layer, and the backbone network
TailorNet in Table 5.

7 Moving Offset Analysis
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Fig. 3: We show the bar plot of the predicted scale grouped by the ratio of ap-
proximated to actual SDF values. A larger scale can push collided vertices further
to compensate for smaller than actual SDF value prediction, and vice versa. It
shows that our moving offset based on the predicted scale can compensate for
the error from the SDF approximation.

We analyze the ratio of the approximated SDF values to the actual ones with
the predicted moving offset scale α. We show the bar plot for all collision-resolved
vertices in Fig. 3. When the ratio is smaller than one, the approximated SDF
value is smaller than the actual one. A larger moving offset scale lets ReFU push
the vertices even further and compensate for the error from SDF prediction.
Similarly, when the ratio is larger than one, the approximated SDF value is
larger than the actual one; a smaller scale can avoid putting the vertex too far
away. Among the collision-resolved vertices, the minimum ratio is 0.39 with a
scale of 2.68; the maximum ratio is 9.13 with a scale 0.25. Notice that the mean
predicted scale equals 1 for the group (2.25,2.75], which shows that our layer
learns to push the vertices even further than the distance to the surface to resolve
the EE cases.

8 Local Geometric Comparison with Optimization
Post-Processing

We use local Laplacian error on the collision resolving regions to show that our
method can better preserve small-scale geometric details, as compared to other
post-processing methods. For each initial collided vertex, we compute its 1-ring
neighborhood Laplacian error. We summarize the mean error on the ‘shirt male’
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Table 6: Local Laplacian error for collision resolving region on ‘shirt male’
dataset. Our method can preseve local geometry details than previous methods.

w/ Opt. Post-Process w/ ReFU
Approx. SDF Acc. SDF Approx. SDF Acc. SDF Hybrid

7.02 5.85 5.29 4.24 4.36

dataset in Table 6. Our method with different settings results in lower errors
compared to the post-processing counterparts.

9 Comparison with Collision Loss
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Fig. 4: We highlight the benefits of our approach on samples distinct from the
training set over methods based on collision loss. Collision loss can only help
reduce collisions for samples close to the training set.

As we mentioned in the main paper, adding collision loss introduces even
more collisions for testing samples that are farther away from the training set.
For each sample in the test set, we compute the minimal Euclidean distance to
the training set samples in the parameter space (pose, shape, and style). In Fig. 4,
we show the mean collision error for “Shirt Male” grouped by the distance. The
soft constraint can only reduce collisions for samples near the training set and
even introduces more errors for samples far away. In contrast, ReFU can still
resolve some collisions for samples with great differences from the seen training
ones.

10 Visualized Comparison Results

We include more visulizations for the results generated with or without our
ReFU layer, in Fig. 5, Fig. 6, Fig. 7 and Fig. 8.
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Fig. 5: Additional examples from Shirt Male dataset, showing collisions resolved
by applying our ReFU in TailorNet.
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Fig. 6: Additional examples from T-Shirt Male dataset, showing collisions re-
solved by applying our ReFU in TailorNet.
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Fig. 7: Additional examples from Short-pant Male dataset, showing collisions
resolved by applying our ReFU in TailorNet.
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Fig. 8: Additional examples from Skirt Female dataset, showing collisions re-
solved by applying our ReFU in TailorNet.
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