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Abstract. We introduce an unsupervised technique for encoding point
clouds into a canonical shape representation, by disentangling shape and
pose. Our encoder is stable and consistent, meaning that the shape en-
coding is purely pose-invariant, while the extracted rotation and trans-
lation are able to semantically align different input shapes of the same
class to a common canonical pose. Specifically, we design an auto-encoder
based on Vector Neuron Networks, a rotation-equivariant neural net-
work, whose layers we extend to provide translation-equivariance in addi-
tion to rotation-equivariance only. The resulting encoder produces pose-
invariant shape encoding by construction, enabling our approach to focus
on learning a consistent canonical pose for a class of objects. Quanti-
tative and qualitative experiments validate the superior stability and
consistency of our approach.

Keywords: point clouds, canonical pose, equivariance, shape-pose dis-
entanglement

1 Introduction

Point clouds reside at the very core of 3D geometry processing, as they are
acquired at the beginning of the 3D processing pipeline and usually serve as
the raw input for shape analysis or surface reconstruction. Thus, understanding
the underlying geometry of a point cloud has a profound impact on the entire
3D processing chain. This task, however, is challenging since point clouds are
unordered, and contain neither connectivity, nor any other global information.

In recent years, with the emergence of neural networks, various techniques
have been developed to circumvent the challenges of analyzing and understand-
ing point clouds [T9R2027TTIT5I23/T4J31T]. However, most methods rely on pre-
aligned datasets, where the point clouds are normalized, translated and oriented
to have the same pose.

In this work, we present an unsupervised technique to learn a canonical shape
representation by disentangling shape, translation, and rotation. Essentially, the
canonical representation is required to meet two conditions: stability and consis-
tency. The former means that the shape encoding should be invariant to any rigid
transformation of the same input, while the latter means that different shapes of
the same class should be semantically aligned, sharing the same canonical pose.
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Canonical alignment is not a new concept. Recently, Canonical Capsules [25]
and Compass [24] proposed self-supervised learning of canonical representations
using augmentations with Siamese training. We discuss these methods in more
detail in the next section. In contrast, our approach is to extract a pose-invariant
shape encoding, which is explicitly disentangled from the separately extracted
translation and rotation.

Specifically, we design an auto-encoder, trained on an unaligned dataset, that
encodes the input point cloud into three disentangled components: (i) a pose-
invariant shape encoding, (ii) a rotation matrix and (iii) a translation vector.
We achieve pure SE(3)-invariant shape encoding and SE(3)-equivariant pose
estimation (enabling reconstruction of the input shape), by leveraging a novel
extension of the recently proposed Vector Neuron Networks (VNN) [6]. The latter
is an SO(3)-equivariant neural network for point cloud processing, and while
translation invariance could theoretically be achieved by centering the input
point clouds, such approach is sensitive to noise, missing data and partial shapes.
Therefore we propose an extension to VNN achieving SE(3)-equivariance.

It should be noted that the shape encodings produced by our network are
stable (i.e., pose-invariant) by construction, due to the use of SE(3)-invariant
layers. At the same time, the extracted rigid transformation is equivariant to
the pose of the input. This enables the learning process to focus on the con-
sistency across different shapes. Consistency is achieved by altering the input
point cloud with a variety of simple shape augmentations, while keeping the
pose fixed, allowing us to constrain the learned transformation to be invariant
to the identity, (i.e., the particular shape), of the input point cloud.

Moreover, our disentangled shape and pose representation is not limited to
point cloud decoding, but can be combined with any 3D data decoder, as we
demonstrate by learning a canonical implicit representation of our point cloud
utilizing occupancy networks [16].

We show, both qualitatively and quantitatively, that our approach leads to a
stable, consistent, and purely SE(3)-invariant canonical representation compared
to previous approaches.

2 Background and Related Work

2.1 Canonical representation

A number of works proposed techniques to achieve learnable canonical frames,
typically requiring some sort of supervision [2TJI7/10]. Recently, two unsuper-
vised methods were proposed: Canonical Capsules [25] and Compass [24]. Canon-
ical Capsules [25] is an auto-encoder network that extracts positions and pose-
invariant descriptors for k capsules, from which the input shape may be re-
constructed. Pose invariance and equivariance are achieved only implicitly via
Siamese training, by feeding the network with pairs of rotated and translated
versions of the same input point cloud.

Compass [24] builds upon spherical CNN [4], a semi-equivariant SO(3) net-
work, to estimate the pose with respect to the canonical representation. It should
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be noted that Compass is inherently tied to spherical CNN, which is not purely
equivariant [4]. Thus, similarly to Canonical Capsules, Compass augments the
input point cloud with a rotated version to regularize an equivariant pose esti-
mation. It should be noted that neither method guarantees pure equivariance.
Similarly to Canonical Capsules, we employ an auto-encoding scheme to dis-
entangle pose from shape, i.e., the canonical representation, and similarly to
Compass, we strive to employ an equivariant network, however, our network is
SE(3)-equivariant and not only SO(3)-equivariant. More importantly, differently
from these two approaches, the different branches of our network are SE(3)-
invariant or SE(3)-equivariant by construction, and thus the learning process is
free from the burden of enforcing these properties. Rather, the process focuses
on learning a consistent shape representation in a canonical pose. Close to our
work are Equi-pose [I3] and a concurrent work ConDor [22]. Both methods use
a relatively intricate equivariant backbone to estimate multiple proposal poses.
Differently, we employ a simple equivariant network (VNN) and predict a single
pose, easing the incorporation of our method with other SOTA methods for 3D
shape reconstruction. We further discuss Equi-pose [13] in our suppl. material.

2.2 3D reconstruction

Our method reconstructs an input point cloud by disentangling the input 3D
geometry into shape and pose. The encoder outputs a pose encoding and a shape
encoding which is pose-invariant by construction, while the decoder reconstructs
the 3D geometry from the shape encoding alone. Consequently, our architecture
can be easily integrated into various 3D auto-encoding pipelines. In this work,
we shall demonstrate our shape-pose disentanglement for point cloud encoding
and implicit representation learning.

State-of-the-art point cloud auto-encoding methods rely on a folding opera-
tion of a template (optionally learned) hyperspace point cloud to the input 3D
point cloud [30/9/7]. Following this approach, we employ AtlasNetV2 [7] which
uses multiple folding operations from hyperspace patches to 3D coordinates, to
reconstruct point clouds in a pose-invariant frame.

Implicit 3D representation networks [I6JI829] enable learning of the input
geometry with high resolution and different mesh topology. We utilize occupancy
networks [I6] to learn an implicit pose-invariant shape representation.

2.3 Rotation-equivariance and Vector Neuron Network

The success of 2D convolutional neural networks (CNN) on images, which are
equivariant to translation, drove a similar approach for 3D data with rotation as
the symmetry group. Most works on 3D rotation-equivariance [SJ426/28], focus
on steerable CNNs [5], where each layer “steers” the output features according
to the symmetry property (rotation and occasionally translation for 3D data).
For example, Spherical CNNs [8/4] transform the input point cloud to a spherical
signal, and use spherical harmonics filters, yielding features on SO(3)-space.
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Usually, these methods are tied with specific architecture design and data
input which limit their applicability and adaptation to SOTA 3D processing.

Recently, Deng et al. [6] introduced Vector Neuron Networks (VNN), a rather
light and elegant framework for SO(3)-equivariance. Empirically, the VNN de-
sign performs on par with more complex and specific architectures. The key
benefit of VNNs lies in their simplicity, accessibility and generalizability. Con-
ceptually, any standard point cloud processing network can be elevated to SO(3)-
equivariance (and invariance) with minimal changes to its architecture.

Below we briefly describe VNNs and refer the reader to [6] for further details.

In VNNs the representation of a single neuron is lifted from a sequence of
scalar values to a sequence of 3D vectors. A single vector neuron feature is
thus a matrix V. € R*3, and we denote a collection of N such features by
VY € RN*Ex3 The layers of VNNs, which map between such collections, f :
RVXCx3 ]RNXC/X?’, are equivariant to rotations R € R3*3, that is:

f(VR)=f(V)R, (1)

where VR = {V,,R}Y_,.

Ordinary linear layers fulfill this requirement, however, other non-linear lay-
ers, such as ReLU and max-pooling, do not. For ReLU activation, VNNs apply
a truncation w.r.t to a learned half-space. Let V, V' € R€*3 be the input and
output vector neuron features of a single point, respectively. Each 3D vector
v/ € V' is obtained by first applying two learned matrices Q,K € R to
project V to a feature q = QV € R'*3 and a direction k = KV € R'*3. To
achieve equivariance, v/ € V' is then defined by truncating the part of q that
lies in the negative half-space of k, as follows,

if (q,k) >0,
) {q (q,k) @

v =
q-— <q, ”—kH>”—k” otherwise.

In addition, VNNs employ rotation-equivariant pooling operations and normal-
ization layers. We refer the reader to [6] for the complete definition.

Invariance layers can be achieved by inner product of two rotation-equivariant
features. Let V € RE*3 and V’/ € RE*3 be two equivariant features obtained
from an input point cloud X. Then rotating X by a matrix R, results in the
features VR and V'R, and

(VR,V'R) = VR(V'R)T = VRRTV'" = vVv'" = (V, V). (3)

Note that VNN is also reflection equivariant which may be beneficial for sym-
metrical objects, although we do not take advantage of this attribute directly.

In our work, we also utilize vector neurons, but we extend the different lay-
ers to be SE(3)-equivariant, instead of SO(3)-equivariant, as described in Sec-
tion This new design allow us to construct an SE(3)-invariant encoder,
which gradually disentangles the pose from the shape, first the translation and
then the rotation, resulting in a pose-invariant shape encoding.
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3 Method

We design an auto-encoder to disentangle shape, translation, and rotation. We
wish the resulting representation to be stable, i.e., the shape encoding should
be pose-invariant, and the pose SE(3)-equivariant. At the same time, we wish
multiple different shapes in the same class to have a consistent canonical pose.
To achieve stability, we revisit VNNs and design new SE(3)-equivariant and
invariant layers, which we refer to as Vector Neurons with Translation (VNT).
Consistency is then achieved by self-supervision, designed to preserve pose across
shapes. In the following, we first describe the design of our new VNT layers.
Next, we present our VNN and VNT-based auto-encoder architecture. Finally,
we elaborate on our losses to encourage disentanglement of shape from pose in
a consistent manner.

3.1 SE(3)-equivariant Vector Neuron Network

As explained earlier, Vector Neuron Networks (VNN) [6] provide a framework
for SO(3)-equivariant and invariant point cloud processing. Since a pose of an
object consists of translation and rotation, SE(3)-equivariance and invariance
are needed for shape-pose disentanglement. While it might seem that centering
the input point cloud should suffice, note that point clouds are often captured
with noise and occlusions, leading to missing data and partial shapes, which
may significantly affect the global center of the input. Specifically, for canonical
representation learning, a key condition is consistency across different objects,
thus, such an approach assumes that the center of the point cloud is consis-
tently semantic between similar but different objects, which is hardly the case.
Equivariance to translation, on the other-hand, allows identifying local features
in different locations with the same filters, without requiring global parameters.
Therefore, we revisit the Vector Neuron layers and extend them to Vector
Neurons with Translation (VNT), thereby achieving SE(3)-equivariance.

Linear layers: While linear layers are by definition rotation-equivariant, they
are not translation-equivariant. Following VNN, our linear module fji, (+; W) is
defined via a weight matrix W € RC'*C, acting on a vector-list feature V €
RE*3. Let R € R**3 be a rotation matrix and 7' € R'*3 a translation vector.
For fin (; W) to be SE(3)-equivariant, the following must hold:

fin (VR4 1cT) =WVR+ 16T, (4)

where 1 = [1,1,...,1]T € R*! is a column vector of length C. A sufficient
condition for to hold is achieved by constraining each row of W to sum to
one. Formally, W € W *¢ where

WC'XC:{WeRC’XC |5 iy =1 vz':1,...,c’}, (5)

See our supplementary material for a complete proof.
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‘
Fig. 1. Vector Neuron Translation equivariant non linear layer. We learn for each input
point feature v, three component o, q, k, and interpret them as an origin o, a feature
do = q — 0 and a direction ko = k — 0. Similarly to VNN operation, the feature

component of o which is in the half-space defined by —k, is clipped. In-addition, we
translate the feature by the learned origin o outputting the v’.

< q k o

Non-linear layers: We extend each non-linear VNN layer to become SE(3)-
equivariant by adding a learnable origin. More formally, for the ReLU activation
layer, given an input feature list V. € R“*3, we learn three (rather than two)
linear maps, Q,K,O € W'*® projecting the input to q,k,o0 € R*3. The
feature and direction are defined w.r.t the origin o, i.e., the feature is given by
do = q — 0, while the direction is given by ko, = k — o, as illustrated in Fig.
The ReLU is applied by clipping the part of qo, that resides behind the plane
defined by k, and o, i.e.,

0+ Qo if oako 207
V,:{ q (G0 ko) > 0, -

ko ko .
0+ Qo — <q0, m>m, otherwise.

Note that o + qo = q, and that K, O may be shared across the elements of V.
It may be easily seen that we preserve the equivariance w.r.t SO(3) rotations,
as well as translations. In the same manner, we extend the SO(3)-equivariant
VNN maxpool layer to become SE(3)-equivariant. We refer the reader to the
supplementary material for the exact adaptation and complete proof.

Translation-invariant layers: Invariance to translation can be achieved by
subtracting two SE(3)-equivariant features. Let V, V' € RE*3 be two SE(3)-
equivariant features obtained from an input point cloud X. Then, rotating X
by a matrix R and translating by 7', results in the features VR + 17 and
V'R + 1T, whose difference is translation-invariant:

(VR+1cT) - (VR+1cT)=(V-V)R (7)
Note that the resulting feature is still rotation-equivariant, which enables to
process it with VNN layers, further preserving SO(3)-equivariance.

3.2 SE(3)-equivariant Encoder-Decoder

We design an auto-encoder based on VNT and VNN layers to disentangle pose
from shape. Thus, our shape representation is pose-invariant (i.e., stable), while



Shape-Pose Disentanglement 7

VNT -~ "
- Layers r '/
R.T SR+T
X —> (R 1) —> I
j < s A T- Invariant VNN 7 i
‘ Layer ‘ Layers R

Zg 7
R-invariant
layer >Zs

Fig. 2. The architecture of our auto-encoder for shape-pose disentanglement. The auto-
encoder (left) disentangles the input point cloud X to rotation R translation 7' and
a canonical representation S. The shape encoding Zs is invariant by construction to
the pose, while the learned rotation and translation are equivariant to it. Our encoder
(right) learns features that are initially equivariant to the pose, and gradually become
invariant to it, first to translation and then to rotation, eventually yielding pose invari-
ant features Zs.

our pose estimation is SE(3)-pose-equivariant, by construction. The decoder,
which can be an arbitrary 3D decoder network, reconstructs the 3D shape from
the invariant features.

The overall architecture of our AE is depicted in Fig.[2] Given an input point
cloud X € RY*3 we can represent it as a rigid transformation of an unknown

canonical representation S € RV *3:
X = SR+ InT, (8)
where 1 = [1,1,...,1]7 € RV¥*! is a column vector of length N, R € R3*3 is

a rotation matrix and 7' € R'*3 is a translation vector.

Our goal is to find the shape S, which is by definition pose-invariant and
should be consistently aligned across different input shapes. To achieve this
goal, we use an encoder that first estimates the translation T using translation-
equivariant VN'T layers, then switches to a translation-invariant representation
from which the rotation R is estimated using rotation-equivariant VNN layers.
Finally, the representation is made rotation-invariant and the shape encoding
Zs is generated. A reconstruction loss is computed by decoding Zg into the
canonically-positioned shape S and applying the extracted rigid transformation.
In the following we further explain our encoder architecture and the type of
decoders used.

SE(3)-equivariant Encoder Our encoder is composed of rotation and trans-
lation equivariant and invariant layers as shown in Fig. [3| We start by feeding X
through linear and non-linear VNT layers yielding Xgr € RV*¢*3 | where the
RT subscript indicates SE(3)-equivariant features, as described in Section

Xgr is then fed-forward through additional VNT layers resulting in a single
vector neuron per point Xgr € RV*1*3, We mean-pool the features to produce a
3D SE(3)-equivariant vector as our translation estimation, as shown in the upper
branch of Fig. I yielding T = fr(X) = fr(S)R+T € Rlxg, where we denote
by fr : RNX3 — R1X3 the aggregation of the VNT-layers from the input point
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T=fOSR+T

meanpool

VNN R =fx(S)R

> meanpool —»
Layers

Wi Xrr wr  Xgr YRy wn Zr — Z, = J5(S)

= — —_—— —t
X=SR+T Layers Layers Layers Layers

|| iy
’%p Translation Invariance % Rotation Invariance 7;——»

Fig. 3. The architecture of our encoder. The representation of the input point cloud X
yields a pose-invariant (bottom branch) shape encoding Zs in two steps: first, making
it invariant to translation and then to rotation. At the same time, the learned rigid
transformation (R, T) (top and middle branches) is equivariant to the input pose. The
small rendered planes at the bottom, illustrate the alignment at each stage.

cloud X to the estimated T, thus, it is a translation and rotation equivariant
network. In addition, as explained in Section 3.1} the following creates translation
invariant features, Ygr = Xgr — XrT € RV*C*3,

While Yg is translation invariant, it is still rotation equivariant, thus, we can
proceed to further process Ygr with VNN layers, resulting in (deeper) rotation
equivariant features Zg € RV*'x3,

Finally, Zgr is fed forward through a VNN rotation-invariant layer as ex-
plained in Section resulting in a shape encoding, Zg, which is by construc-
tion pose invariant. Similar to the translation reconstruction, the rotation is
estimated by mean pooling Zgr and feeding it through a single VN linear layer
yielding R = fr(X) = fr(S)R € B33, where fr : RN*3 — R3*3 denotes the
aggregation of the layers from the input point cloud X to the estimated rotation
R and, as such, it is a rotation-equivariant network. The entire encoder archi-
tecture is shown in Fig. [3| and we refer the reader to our supplementary for a
detailed description of the layers.

Decoder The decoder is applied on the shape encoding Zs to reconstruct the
shape S. We stress again that S is invariant to the input pose, regardless of the
training process. Motivated by the success of folding networks [30J97] for point
clouds auto-encoding, we opt to use AtlasNetV2 [7] as our decoder, specifically
using the point translation learning module. For implicit function reconstruction,
we follow Occupancy network decoder [16]. Please note, that our method is not
coupled with any decoder structure.

3.3 Optimizing for shape-pose disentanglement

While our auto-encoder is pose-invariant by construction, the encoding has no
explicit relation to the input geometry. In the following we detail our losses to
encourage a rigid relation between S and X, and for making S consistent across
different objects.



Shape-Pose Disentanglement 9

Rigidity To train the reconstructed shape S to be isometric to the input
point cloud X, we enforce a rigid transformation between the two, namely

X =SR+1nT.
For point clouds auto-encoding we have used the Chamfer Distance (CD):

Lyoe = CD (X, SR+ ]INT) , 9)

Please note that other tasks such as implicit function reconstruction use equiv-
alent terms, as we detail in our supplementary files.

In addition, while R = fz(X) is rotation-equivariant we need to constrain it
to SO(3), and we do so by adding an orthonormal term:

Lortho = HI - RRT”% (10)

where || - ||2 is mean square error (MSE) loss.

Consistency Now, our shape reconstruction S is isometric to X and it is in-
variant to 7' and R. However, there is no guarantee that the pose of S would be
consistent across different instances.

Assume two different point clouds Xi,Xs are aligned. If their canonical
representations Sq,So are also aligned, then they have the same rigid transfor-
mation w.r.t their canonical representation and vice versa, i.e., X; = SR+ 15T,
1 = 1,2. To achieve such consistency, we require:

(fr(X1), fr(X1)) = (fr(X2), fr(X2)) . (11)

We generate such pairs of aligned point clouds, by augmenting the input point
cloud X with several simple augmentation processes, which do not change the
pose of the object. In practice, we have used Gaussian noise addition, furthest
point sampling (FPS), patch removal by k-nn (we select one point randomly
and remove k of its nearest neighbors) and re-sampling of the input point cloud.
We then require that the estimated rotation and translation is the same for the
original and augmented versions,

£ =57 1 (X) = fr (AX)) I3+ |7 (X) — fr (AX) B, (12)
AcA
where A is the group of pose preserving augmentations and || - ||2 is MSE loss.
In addition, we can also generate a version of X, with a known pose, by
feeding again the learned canonical shape. Empirically, we found it beneficial to
use the reconstructed shape, thus, we transform S by a random rotation matrix
R* and a random translation vector T* and require the estimated pose to be
consistent with this transformation .

e = I (SR +T7) = R+ Ifr (SR +T*) = T3, (13)
Our overall loss is

L= ‘Crec + /\llcortho + A2£aug8ist + )\3 o (14)

con consisty

where the \; are hyper parameters, whose values in all our experiments were set
to )\1 = 0.57 )\2 = )\3 =1.
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Fig. 4. Aligning planes and chairs. The input planes and chairs (first and third row,
respectively) have different shapes and different poses, as can be seen separately and
together (rightmost column). We apply the inverse learned pose, transforming the input
to its canonical pose (second and fourth row).

o

3.4 Inference

At inference time, we feed forward point cloud X € R¥ X3~and retrieve its shape

and pose. However, since our estimated rotation matrix R is not guaranteed to
be orthonormal, at inference time, we find the closest orthonormal matrix to R
(i.e., minimize the Forbenius norm), following [I], by solving:

R-R (RTR)_% | (15)

The inverse of the square root can be computed by singular value decomposition
(SVD). While this operation is also differentiable we have found it harmful to
incorporate this constraint during the training phase, thus it is only used during
inference. We refer the reader to [I] for further details.

4 Results

We preform qualitative and quantitative comparison of our method for learning
shape-invariant pose. Due to page limitations, more results can be found in our
supplementary files.

4.1 Dataset and implementation details

We employ the ShapeNet dataset [2] for evaluation. For point cloud auto-encoding
we follow the settings in [25] and [7], and use ShapeNet Core focusing on air-
planes, chairs, tables and cars. While airplanes and cars are more semantically
consistent and containing less variation, chairs exhibit less shape-consistency and
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Fig. 5. Histogram of canonical pose deviation from the mean canonical pose. We esti-
mate the canonical pose of aligned 3D point clouds from ShapeNet using our method,
Canonical Capsules [25] and Compass [24]. In the bottom row, we show the normal-
ized histogram of the deviation from the mean pose. It is clear that while our method
is shape-consistent, both Compass and Canonical Capsules struggle to have a single
canonical pose. In the top row, we focus on small, medium and large deviation cases
of Canonical Capsules, marked by cyan, red, and orange circles on the histogram plot,
respectively. The canonical pose of the same objects is shown for Compass and our
method, as well as their location on the corresponding histogram plot. The arrow next
to the objects is directed toward the local shape z+ direction.

may contain different semantic parts. All 3D models are randomly rotated and
translated in the range of [—0.1,0.1] at train and test time.

For all experiments, unless stated otherwise, we sample random 1024 points
for each point cloud. The auto-encoder is trained using Adam optimizer with
learning rate of 1le~3 for 500 epochs, with drop to the learning rate at 250 and
350 by a factor of 10. We save the last iteration checkpoint and use it for our
evaluation. The decoder is AtlasNetV2 [7] decoder with 10 learnable grids.

4.2 Pose consistency

We first qualitatively evaluate the consistency of our canonical representation
as shown in Fig. [@] At test time, we feed different instances at different poses
through our trained network, yielding estimated pose of the input object w.r.t
the pose-invariant shape. We then apply the inverse transformation learned, to
transform the input to its canonical pose. As can be seen, the different instances
are roughly aligned, despite having different shapes. More examples can be found
in our supplementary files.

We also compare our method, both qualitatively and quantitatively, to Canon-
ical Capsules [25] and Compass [24] by using the alignment in ShapeNet (for
Compass no translation is applied). First, we feed forward all of the aligned test
point clouds {Xl}f\il through all methods and estimate their canonical pose
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Fig. 6. Stability of the canonical representation to rigid transformation of the input.
The location and orientation of the same point cloud affects its canonical representa-
tion in both Canonical Capsules [25] and Compass [24]. Our canonical representation
(bottom row) is SE(3)-invariant to the rigid transformation of the input.

{Rl}ivzfl We expect to have a consistent pose for all aligned input shapes, thus,
we quantify for each instance ¢ the angular deviation df°™*s* of its estimated

pose R; from the Chordal L2-mean [12] pose dsomsist = Z(Ri, N% > Rl) We

present an histogram of {dfons“t}f\il in Fig. [5| As can be seen, our method re-
sults in a more aligned canonical shapes as indicated by the peak around the
lower deviation values. We visualize the misalignment of Canonical Capsules by
sampling objects with small, medium and large deviation, and compare them to
the canonical representation achieved by Compass and our method for the same
instances. The misalignment of Canonical Capsules may be attributed to the
complexity of matching unsupervised semantic parts between chairs as they ex-
hibit high variation (size, missing parts, varied structure). In Table We quantify

the consistency by the standard deviation of the estimated pose 4/ N% >, d? and

we present the Instance-Level Consistency (IC) and Ground Truth Consistency
(GC) as defined in [22]. Evidently, Compass falls short for all object classes,
while our method preforms overall in a consistent manner. Canonical Capsules
preforms slightly better than our method for planes, though most of the miss-
consistency is rooted in the symmetry of the object as indicated by the low GC.
The table class is a unique example of a canonic pose which is not well-defined
due to the rotation symmetry of tables (especially round tables). Despite the
relatively low quantitative performance, in our supplementary files we show that
the canonic shape of the tables is generally aligned.

4.3 Stability

A key attribute in our approach is the network construction, which outputs a
purely SE(3)-invariant canonical shape. Since we do not require any optimization
for such invariance, our canonical shape is expected to be very stable compared
with Canonical Capsules and Compass. We quantify the stability, as proposed
by Canonical Capsules, in a similar manner to the consistency metric. For each
instance i, we randomly rotate the object & = 10 times, and estimate the canon-
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Table 1. Comparison of consistency and stability (lower is better).

Stability /Consistency IC/GC (x10%)

Capsules Compass Ours ‘ Capsules Compass Ours

Airplanes 7.42 /45.76 13.81/71.43 0.02/49.97 | 2.1/6.4 6.3/20.1 1.9e—4/8.1
Chairs  4.79/68.13 12.01/68.2 0.04/24.31| 2.4/13.1 84/51.2 2e—4/12.1
Cars 81.9/11.1  19.2/87.5  0.03/35.6 |34.5/3.53 5.7/10.5 1.6e—4/1.2
Tables  14.7/119.3 74.8/115.3 0.02/106.3|10.5/78.1 14/92.9 1.2¢—3/15.3

Y i"":i"

Input, Re-posed Pose-Invariant Input Input Re-posed Pose-Invariant Input
Input reconstruction  reconstruction Input reconstruction  reconstruction

Fig. 7. Reconstruction of chairs and planes under SE(3) transformations. The input
point cloud (left) is disentangled to shape (second from the right) and pose, which
together reconstruct the input point cloud, as shown in the right most column. The
inverse pose is applied to the input point cloud to achieve a canonical representation
(second image from the left). The colors of the reconstructed point cloud indicate
different decoders of AtlasNetV2 [7].

ical pose for each rotated instance {R;; }?Zl. We average across all N; instances
the standard deviation of the angular pose estimation as follows,

o . - N2
iy = 5[5, (R 5 Ry)
The results are reported in Table [l As expected, Canonical Capsules and
Compass exhibit non-negligible instability, as we visualize in Fig. [6}

4.4 Reconstruction quality

We show qualitatively our point cloud reconstruction in Fig.|7] Please note that
our goal is not to build a SOTA auto-encoder in terms of reconstruction, rather
we learn to disentangle pose from shape via auto-encoding. Nonetheless, our
auto-encoder does result in a pleasing result as shown in Fig. [7] Moreover, since
we employ AtlasNetV2[7] which utilizes a multiple patch-based decoder, we can
examine which point belongs to which decoder. As our shape-encoding is both
invariant to pose and consistent across different shapes, much like in the aligned
scenario, each decoder assume some-what of semantic meaning, capturing for
example the right wing of the airplanes. Please note that we do not enforce any
structuring on the decoders.



14 0. Katzir et al.

4

5\
\
=5 /\\

o |

Fig. 8. Reconstruction results of OccNet [16] via shape-pose disentanglement. An input
point cloud on the left is disentangled to shape encoding and pose. OccNet decodes only
the shape encoding yielding a canonical shape on the right column. The reconstruction

is then transformed by the estimated pose as seen in the middle column. Meshes are
extracted via Multiresolution IsoSurface Extraction (MISE) [16]
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4.5 3D implicit reconstruction

We show that our encoder can be attached to a different reconstruction task
by repeating OccNet [16] completion experiment. We replace OccNet encoder
with our shape-pose disentagling encoder. The experiment is preformed with
the same settings as in [I6]. We use the subset of [3], and the point clouds are
sub-sampled from the watertight mesh, containing only 300 points and applied
with a Gaussian noise. We have trained OccNet for 600K iterations and report
the results of the best (reconstruction wise) checkpoint. We show in Fig. [8] a
few examples of rotated point clouds (left), its implicit function reconstruction
(middle) and the implicit function reconstruction in the canonical pose (right).

5 Conclusions

We have presented a stable and consistent canonical representation learning. To
achieve a pose-invariant represenation, we have devised an SE(3)-equivairant
encoder, extending the VNN framework, to meet the requirements of canon-
ical pose learning, i.e., learning rigid transformations. Our experiments show,
both qualitatively and quantitatively, that our canonical representation is signifi-
cantly more stable than recent approaches and has similar or better consistency,
especially for diverse object classes. Moreover, we show that our approach is
not limited to specific decoding mechanism, allowing for example to reconstruct
canonical implicit neural field. In the future, we would like to explore the po-
tential of our canonical representation for point cloud processing tasks requiring
aligned settings, such as completion and unsupervised segmentation, where the
canonical representation is learned on-the-fly, along with the task.
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