
3D Equivariant Graph Implicit Functions: Appendices

A Equivariance: Discussions and Proofs

A.1 From layer equivariance to model equivariance

We review the definition of the equivariance of the implicit function model in Section 3.
In Eq. (3), we show that equivariance is satisfied if the implicit function is locally
invariant to any Tg applied jointly to the observation X and the query p, for any X
and p. Invariance is a special case of equivariance, where the transformation T ∗

g on the
output domain is the identity function, i.e., the output is invariant regardless of the input
transformation Tg .

Here we clarify the use of layer equivariance in creating the equivariant implicit
function model. As in Eq. (4), the graph implicit function model Fgraph is composed of
the graph latent feature extractor Φgraph and the implicit decoder Ψ , where Φgraph can
be further decomposed to the point encoder ϕ and the graph local latent aggregator ψ.
We integrate the equivariant layers in ϕ and ψ that process the input point set X and
the queries p. As shown by the literature, the composition of two equivariant functions
is also an equivariant function [46]. Thus, the graph local feature extractor Φgraph that
stacks sequential equivariant graph layers in ϕ and ψ is equivariant. Note that all the
operations other than the graph convolutions involved in ϕ and ψ, such as the k-NN graph
extration and the farthest-point-sampling for the multi-scale feature, are equivariant to
the similarity transformations as well. At the end of all the equivariant graph layers in ϕ
and ψ, we apply the invariance function Ω to obtain the locally invariant latent feature.
The implicit decoder Ψ , which processes the invariant local latent feature and predicts the
occupancy probability, is simply a standard ReLU-MLP as the non-equivariant implicit
models. We do not include the query coordinate input p in the implicit decoder Ψ in
order to satisfy translation equivariance, while the local latent feature already contains
the position information. Since the local latent feature is locally invariant, the output
is locally invariant as well, which satisfies Eq. (3). Thus far, we have shown how the
equivariant graph layers help to build the equivariant implicit function model.

A.2 Extension to translation and scale equivariance

While existing vector-based equivariance methods in 3D vision [17,40] apply only to the
SO(3) group5, we extend our method to be equivariant to the similarity transformation
group that further includes translation and scale transformations as subgroups.

Translation. The local graph structure is robust to rotation by design. The method can
further achieve numerically guaranteed translation equivariance simply by removing the
absolute coordinates input p from the graph layers in Eq. (5), keeping only the relative
positions as the spatial cue.

5 More generally, it is the O(3) group. Reflection is handled as well.



3D Equivariant Graph Implicit Functions 19

Scale. As vectors hold scale information from their norms, we extend the method
for scale equivariance by modifying to normalize the invariance function Ω(V) ←
Ω(V)/∥Ω(V)∥ based on Eq. (9). Likewise, in each layer the scalar features are scale
invariant and the vectors are scale equivariant.

A.3 Proof of translation equivariance

We discuss the translation equivariance property in separate from other transformation
groups. Because the translation equivariance property in our method is from the use of the
local graph structure, while the equivariant properties of other similarity transformations,
including rotations, reflections and scaling, rely on the hybrid features, especially the
vector part. Each of the graph layers are locally invariant to the continuous translation
group.

For any input points and queries, we discard the absolute global coordinate inputs,
and manipulate on the relative positions within a local graph structure in all graph
layers in ϕ and ψ. We consider an edge connects an input point xi′ and a query p in an
equivariant graph layer in the graph latent aggregator ψ, then the input vector feature
is xi′ − p. if a translation vector t is applied on all the points, then the input feature
becomes

(xi′ − t)− (p− t) = xi′ − p. (10)

Thus, the input is invariant to the translation t, so is the output of the graph layer. And
similarly for the graph layers in the point encoder ϕ. Therefore, the whole graph function
is translation-invariant for local predictions from any 3D point inputs, which means that
our graph implicit function, local to each of the query locations, is translation equivariant.

A.4 Proof of rotation, scaling and reflection equivariance

Next, we show the equivariance properties on other transformations including rotations,
reflections and scaling. We assume that the scalar feature h is invariant to these transfor-
mations, while the vector feature V is equivariant, before the invariance function Ω is
applied. Formally, we consider an arbitrary orthogonal matrix Q ∈ R3×3 encoding a 3D
rotation with a possible reflection, and an arbitrary positive scalar m ∈ R+ for the scale
transformation applied on the features. The scalar and vector features h and V are then
transformed into sVQ⊤ and h respectively. Note here the orthogonal matrix applying to
a stack of vector features V = [v1,v2, . . . ,vCv ]

⊤ ∈ RCv×3 returns (QV⊤)⊤ = VQ⊤.
We study how the output of each layer changes with the change of the inputs.

Invariance layer We first show that the invariance function works for any 3× 3 orthogo-
nal matrix Q ∈ R3×3 encoding 3D rotation and reflection and any random scaling factor



20 Y. Chen et al.

s ∈ R, such that Ω(sVQ⊤) = Ω(V):

Ω(mVQ⊤) =

〈
mVQ⊤, mQv

∥mQv∥

〉
∥∥∥〈sVQ⊤, mQv

∥mQv∥

〉∥∥∥ =
m

〈
VQ⊤, Qv

∥v∥

〉
m

∥∥∥〈VQ⊤, Qv
∥v∥

〉∥∥∥
=

〈
Q−1QV, v

∥v∥

〉
∥∥∥〈Q−1QV, v

∥v∥

〉∥∥∥ =

〈
IV, v

∥v∥

〉
∥∥∥〈IV, v

∥v∥

〉∥∥∥
=

〈
V, v

∥v∥

〉
∥∥∥〈V, v

∥v∥

〉∥∥∥
= Ω(V),

(11)

where in the second row of Eq. (11), the orthogonal matrices Q are cancelled out in
the inner product. Here we adopt a slightly abused notation to have the inner product
between a stack of vector features V = [v1,v2, . . . ,vCv ]

⊤ and the average vector v,
such that ⟨V,v⟩ = [⟨v1,v⟩ , ⟨v2,v⟩ , . . . , ⟨vCv ,v⟩]⊤.
Linear layer Next, we show that our hybrid feature linear layer is equivariant to the
rotation, reflection, and scaling transformations, encoded by arbitrary Q and m. Without
these transformations, we consider {s′,V′} as the outputs for {s,V} from the layer
denoted by f , i.e., {s′,V′} = f ({s,V}); while under the transformations encoded by
Q and m, we denote the outputs as {s′′,V′′} = f

(
{s,mVQ⊤}

)
. For the equivariance

of f , we need to show that:

s′′ = s′, and V′′ = mV′Q⊤, (12)

in which we assume that the vector feature V is equivariant for rotations, reflections and
scaling, while the scalar feature h is invariant to these transformations.

For the scalar feature output in Eq. (6), one can simply verify the invariance

s′′ = Wss+Wvs Ω(mVQ⊤)

= Wss+Wvs Ω(V)

= s′.

(13)

Here the invariance function returns

Ω(mVQ⊤) = Ω(V), (14)

as shown in Eq. (11). For the vector feature output in Eq. (6),

V′′ = Wv (mVQ⊤)⊙ (Wsv s / ∥Wsv s∥)
= m (WvV ⊙ (Wsv s / ∥Wsv s∥))Q⊤

= mV′Q
⊤

(15)

Thus far we have shown the equivariance of the linear layers.



3D Equivariant Graph Implicit Functions 21

Non-linearity For the non-linearity, the scalar features take simple ReLU activation,
hence the invariance is easily ensured as no equivariant vector feature is involved for the
output scalar feature.

For the vector non-linearity v-ReLU in Eq. (8), we first reason that the transforma-
tions Q and m does not influence whether the vector feature vc at each channel c falls in
the positive or the negative part of the piecewise non-linearity. With the untransformed
feature vc, the positive case is judged by

〈
vc,

q
∥q∥

〉
≥ 0; while with the transformed

feature vector mQvc, the learned direction vector q is transformed accordingly into
mQq. Then, the condition of the positive case becomes

〈
mQvc,

mQq
∥mQq∥

〉
≥ 0, which

is equivalent to the condition without the transformations, as the orthogonal matrices Q
are cancelled out and the positive scaling factor s does not change the sign. The same
for the negative case.

Next, we show the equivariance in both positive and negative cases of the non-
linearity in Eq. (8). When transformations Q and m are applied, in the positive case,

[v-ReLU(mVQ⊤)]c = mQvc

= mQ[v-ReLU(V)]c;
(16)

while in the negative case,

[v-ReLU(mVQ⊤)]c = mQvc −
〈
mQvc,

mQq

∥mQq∥

〉
mQq

∥mQq∥

= mQ

(
vc −

〈
vc,

q

∥q∥

〉
q

∥q∥

)
= mQ[v-ReLU(V)]c

(17)

Thus,

v-ReLU(mVQ⊤) = m (v-ReLU(V))Q⊤, or (18)

V′′ = mV′Q
⊤ (19)

has been proven in both the positive and the negative cases of the vector ReLU function,
indicating the equivariance of the non-linear layer with regard to rotation, reflection and
scaling.

B Detailed formulations of graph fuctions in multiple scales

We provide the detailed formulation of the layers in the multi-scale graph point encoder
ϕ and the multi-scale graph latent feature decoder ψ in Sec 4.2. Here we show the
formulations with only the scalar features for the non-equivariant graph implicit model.
All these formulations can be easily adapted to the equivariant model by replacing the
hidden features h to the hybrid features of both scalars and vectors {s,V}.
Graph point encoder. The point encoder ϕ is composed of graph convolution layers
in the downsampling stage, starting from l = 0 to l = L, followed by the upsampling
layers from l = L− 1 back to l = 0.



22 Y. Chen et al.

In each graph convolution layer with the sampled point set X(l) by farthest-point-
sampling in the downsampling stage, we obtain the hidden feature h

(l)
i for any sampled

point at this level xi ∈ X(l). To do this, we use graph convolution to aggregate infor-
mation from the k-nearest neighbor points of xi, denoted as xi′ . The information from
the neighboring points to be aggregated is the hidden feature from the previous layer
h
(l−1)
i′ . Within the local k-NN graph structure, messages are passed through η(l)↓ , hence

concatenating the inputs for a shared two-layer ReLU-MLP, and a permutation-invariant
aggregation function AGGRE; e.g., max- or mean-pooling operator:

h
(l)
i = AGGRE

i′
η
(l)
↓ (h

(l−1)
i ,h

(l−1)
i′ ,xi′ − xi). (20)

Note that there is an exception in Eq. 20 with l = 0, where the input features are the raw
coordinates.

In each upsampling layer, the point feature h(l)
i for any xi ∈ X(l) at a finer sampling

level l takes information from h
(l+1)
i′ , the hidden feature associated to xi’s 1-nearest

neighbor point xi′ from the sampled point set X(l+1) from the previous sampling level.
In addition, we skip-connect h(l)

i , the feature at the same level from the downsampling
stage, which is akin to the U-Net structure in grid-based methods:

h
(l)
i ← η

(l)
↑ (h

(l+1)
i′ ,h

(l)
i ), (21)

where η(l)↑ is a linear layer with a ReLU activation for the concatenation of inputs.
Graph local latent feature aggregator. Given the query coordinate p, we use graph
convolutions to aggregate the k-neighboring features {(xi′ ,h

(l)
i′ )} at different sampling

levels l. The aggregated features z(l)p from all sampling levels l are concatenated to yield
the local latent vector zp as output:

zp =
L

∥
l=0

z(l)p , where (22)

z(l)p = AGGRE
i′

η(l)(p,h
(l)
i′ ,x

(l)
i′ − p), (23)

Likewise, η(l) is a two-layer ReLU-MLP for the concatenated inputs, and ∥ denotes
concatenation over sampling levels.

C More Implementation Details

We use PyTorch [33] to implement our method and run experiments on a single NVIDIA
GeForce GTX 1080 Ti GPU. We train the network using the Adam optimizer [27] with
the initial learning rate is set as 10−3 for fast convergence for 200K iterations, followed
by a finetuning of 100K iterations with the learning rate 10−4. Other hyperparameters and
initializations follow the default setups in PyTorch. For the reconstruction of ShapeNet
objects, we follow [30,34] to sample 3000 points from the mesh and apply the Gaussian
noise with standard deviation 0.005. For scene-level indoor room reconstruction, the



3D Equivariant Graph Implicit Functions 23

number of input points is 10000, as in [34]. We reduce the Gaussian noise level to
0.001 standard deviation, in order to match the change of the scale to have comparable
level-of-detail information as the object dataset.

The number of neighbors in k-NN graphs is set as k = 20 for all the graph convo-
lution layers. For the multi-scale graph structure, the point set is downsampled twice
with farthest point sampling (FPS) to 20% and 5% of the original cardinality respec-
tively. The permutation invariant function AGGRE is a mean-pooling aggregation for
vector features and a max-pooling for scalar features. Empirically, we find that using
vector max-pooling function as in [17] generates artifacts in the qualitative results, so
we simply take the average of the vector features. For the non-equivariant GraphONet,
the number of output feature channels is set as 64 for all the layers in the graph latent
feature extractor function Φ. For the equivariance model E-GraphONets with hybrid
features, the number of output channels for the vector features is 8, and 32 for scalar
features. For the input geometric features, the 3D coordinates or the relative position are
considered as 3 channels for the GraphONet, or 1 vector channel and 0 scalar channel
for the equivariant layer. For both equivariant and non-equivariant models, the implicit
decoder F is the same as that in the ConvONet [34], which is a light-weight ReLU-MLP
architechture with skip-connections.

D Additional Experiments and Results

D.1 Vector vs. scalar channels in hybrid feature equivariant layers.

We extend the ablation experiments on hybrid feature channels in Fig. 7 of the main paper.
Here we show that our hybrid feature paradigm benefits different architectures and tasks.
For implicit surface reconstruction, we evaluate the equivariant implicit model without a
graph embedding. We follow the VN-ONet architecture and the implementation details
from [17], and use hybrid layers instead of pure vector neuron layers. In addition, we
evaluate point cloud classification on the ModelNet40 dataset. Similarly, the architecture
and the experimental setups follow VN-PointNet from [17], and we replace a portion of
vector channels with scalars in each layer. We evaluate the performance with different
ratios of vector channels, where one vector channel is equivalent to three scalar channels.

In Table 6, we report the performance with different ratio of vector channels, where
one vector channel is considered equivalent to three scalar channels. In both cases, our
method with hybrid features achieves higher accuracy than pure vector features (100%)
as in [17]. The conclusion is consistent with the ablation experiments in Fig. 7 of the
main paper, and our hybrid feature paradigm is advantageous in general cases.

D.2 Ablation on the architecture.

We ablate the implementation choices of our models. First, we explore how our models
perform without the multi-scale sampling design on the ShapeNet object reconstruction
and the Synthetic Room (SynRoom) scene reconstruction tasks. In Table 7, we show that
the scene reconstruction performance drops more without the multi-scale architecture,



24 Y. Chen et al.

Table 6: Ablation on vector vs. scalar channels. We evaluate on ShapeNet surface
reconstruction with non-graph structured equivariant implicit models, and ModelNet40
point cloud classification with equivariant point cloud networks, for which we follow
the VN-PointNet and the VN-ONet architectures in [17] and use hybrid layers instead of
pure vector neuron layers.

Ratio of vector channels 0% 12.5% 25% 50% 75% 87.5% 100%

ShapeNet implicit surface reconstruction (mIoU) 0.408 0.630 0.707 0.719 0.719 0.704 0.694
ModelNet40 point cloud classification (mAcc) 0.808 0.830 0.852 0.856 0.855 0.852 0.847

Table 7: Graph functions with and without multi-scale graph neighbor samplings.
The multi-scale structure improves more on scene reconstruction performance.

Model GraphONet E-GraphONet
Dataset ShapeNet SynRoom ShapeNet SynRoom

Multi-scale sampling 0.904 0.883 0.890 0.848
Single-scale sampling 0.897 [-0.007] 0.859 [-0.024] 0.884 [-0.006] 0.814 [-0.034]

while the difference in object reconstruction performance is subtle. We argue that scene
reconstruction is a more complex task, so the multi-scale design plays a more important
role to aggregate global and local context in different scales.

Then, we show the effect of using different point cloud encoders in our graph models
and the baseline methods ConvONets [34]. The results are in Table 8. For the graph
models, the scene-level reconstruction performance drops much more when the graph
encoder is replaced by a PointNet encoder. The results indicate that both the locality
modelling and the awareness of the translation equivariance from the graph encoder
are more crucial for scene-level reconstruction as a more comlex task. However, in
ConvONets, using the graph point encoder instead of the PointNet encoder does not
lead to a significantly improved performance. Unlike our graph methods, ConvONets
learn the latent feature with an intermediate grid feature tensor. So feature embedding
in ConvONet relies more on the regular convolution layers applied on the grid feature,
while the point encoder plays a less important role.

Next, we show how the model performs under different numbers of neighboring
points k and layers L. In Table 9 we report the mean IoU ↑ on the ShapeNet dataset.
From the results, using too smaller k and L could suffer from underfitting, while using
too large values increases computation cost and may cause over-smoothed graph features.

D.3 Learning curve with limited training data.

We explore how the implicit model performs with very few training data of 130 examples,
and provide the validation loss curve, as illustrated in Fig. 9. This result is a supplement
to the test performance in Table 4 of the main paper. Both ConvONet-2D and ConvONet-
3D suffer from overfitting in the very early stage of training, prior to 500 training steps.
By contrast, our graph methods are able to learn properly from very few training data.
The equivariant model is with better validation loss and more stable learning curve,



3D Equivariant Graph Implicit Functions 25

Table 8: Implicit functions with different point encoders. Graph models with graph
point encoders replaced by PointNets would lead to more performance drop on scenes
than on objects, because PointNet models no locality or translation equivariance which
are more crucial for scenes; ConvONets with different point encoders show similar
performance, because in such methods, feature embedding relies more on the grid
encoder than the point encoder.

Model GraphONet E-GraphONet ConvONet-2D ConvONet-3D
Dataset ShapeNet SynRoom ShapeNet SynRoom ShapeNet SynRoom ShapeNet SynRoom

Graph encoder 0.904 0.883 0.890 0.848 0.881 [-0.003] 0.803 [+0.001] 0.872 [+0.002] 0.853 [+0.006]

PointNet encoder 0.887 [-0.017] 0.826 [-0.057] 0.879 [-0.011] 0.797 [-0.051] 0.884 0.802 0.870 0.847

Table 9: Graph implicit functions with different numbers of neighboring points k
and layers L. Reporting IoU ↑ on the ShapeNet dataset.

Evaluating IoU↑ k = 6 k = 12 k = 20 k = 32 k = 64
GraphONet / E-GraphONet 0.860 / 0.813 0.885 / 0.867 0.904 / 0.890 0.902 / 0.890 0.891 / 0.872

Evaluating IoU↑ L = 1 L = 2 L = 3 L = 4 L = 5
GraphONet / E-GraphONet 0.824 / 0.659 0.904 / 0.890 0.900 / 0.887 0.890 / 0.874 0.884 / 0.865

which indicates that the equivariance property works as a regularization that controls the
model complexity.

D.4 More qualitative and quantitative results.

We evaluate ShapeNet reconstruction performance by each object category. The results
are shown in Table 10, where our graph model shows better performance with most of
the object categories.

In Fig. 10, we show some additional ShapeNet reconstruction examples under
transformations. Our final equivariance model guarantees equivariance to all kinds of
similarity transformations.

Though not the main focus of this paper, our method scale to scene-level reconstruc-
tions, and we show some more room reconstruction examples in Fig. 11. Our GraphONet
models better details. The equivariant model E-GraphONet achieves relatively good
performance but generates more noisy artifacts, especially on the synthetic-to-real evalu-
ation on the ScanNet dataset with corrupt areas in the point cloud scans. We argue that
the restricted representation power of the equivariant layers limits the model to learn
denoising and completion alongside reconstruction while generalize to more complex
corrupted scenes. See the discussion on the limitation in the main paper.

E Limitations and Future Work

A limitation that comes with equivariance is that, by constraining the model complexity
to conform to equivariant designs, expressive power may be affected as well. As a
consequence, accuracy drops in stylized settings and datasets. In particular, we observe



26 Y. Chen et al.

that the shapes generated from equivariance models are usually less smooth than non-
equivariant methods, especially for the more complex scenes. See Fig. 8 in the main paper
and Fig. 11 in the Appendix. We argue that the restricted power of equivariance models
limits the ability to identify the denoised geometry from the noisy point observations,
while at the same time, the equivariant model are designed to avoid leveraging the prior
of the flat straight and planar structures aligned with the Cartesian coordinate axes. To
this end, relevant future directions include exploring more powerful equivariant models,
or incorporating filtering techniques for implicit fields.

0 20000 40000 60000 80000 100000 120000 140000
training steps

0

50

100

150

200

250

300

350

va
lid

at
io

n 
lo

ss

ConvONet-2D
ConvONet-3D
GraphONet
E-GraphONet

Fig. 9: Learning curve with 130 training examples. We show the validation loss curves.
Graph methods can learn properly from very few training data, while ConvONets suffer
from overfitting.

Table 10: Category-specific ShapeNet reconstruction performance. We evaluate our
methods and compare with the baseline implicit representation models.

ConvONet-2D [34] ConvONet-3D [34] IF-Net [11] GraphONet E-GraphONet-SO(3)
IoU Chamfer Normal IoU Chamfer Normal IoU Chamfer Normal IoU Chamfer Normal IoU Chamfer Normal

airplane 0.849 0.034 0.931 0.849 0.033 0.932 0.862 0.031 0.936 0.881 0.027 0.941 0.867 0.028 0.930
bench 0.830 0.035 0.921 0.791 0.041 0.911 0.815 0.037 0.915 0.836 0.034 0.924 0.807 0.037 0.906
cabinet 0.940 0.046 0.956 0.923 0.054 0.953 0.936 0.048 0.956 0.943 0.047 0.958 0.927 0.050 0.944

car 0.886 0.075 0.893 0.877 0.080 0.891 0.890 0.072 0.894 0.897 0.068 0.895 0.890 0.072 0.886
chair 0.871 0.046 0.943 0.853 0.049 0.942 0.878 0.043 0.946 0.895 0.039 0.951 0.879 0.043 0.939

display 0.927 0.036 0.968 0.904 0.042 0.965 0.923 0.036 0.968 0.936 0.034 0.972 0.922 0.036 0.963
lamp 0.785 0.059 0.900 0.792 0.066 0.910 0.820 0.047 0.916 0.847 0.042 0.922 0.848 0.040 0.915

loudspeaker 0.918 0.064 0.939 0.914 0.065 0.942 0.928 0.056 0.945 0.938 0.053 0.946 0.936 0.055 0.941
rifle 0.846 0.028 0.929 0.826 0.031 0.924 0.842 0.028 0.928 0.877 0.022 0.943 0.868 0.023 0.933
sofa 0.936 0.042 0.958 0.923 0.046 0.956 0.938 0.040 0.959 0.946 0.037 0.963 0.931 0.041 0.951
table 0.888 0.038 0.959 0.860 0.043 0.956 0.880 0.038 0.959 0.896 0.036 0.963 0.869 0.040 0.950

telephone 0.955 0.027 0.983 0.942 0.030 0.981 0.949 0.027 0.983 0.954 0.026 0.983 0.946 0.027 0.979
vessel 0.865 0.043 0.919 0.860 0.045 0.919 0.876 0.040 0.923 0.901 0.033 0.934 0.892 0.035 0.924

mean 0.884 0.044 0.938 0.870 0.048 0.937 0.887 0.042 0.941 0.904 0.038 0.946 0.890 0.041 0.936



3D Equivariant Graph Implicit Functions 27

Rotation

Translation

Scale

ONet ConvONet-2D ConvONet-3D VN-ONet
SO(3)

GraphONet
(ours)

E-GraphONet
SO(3) (ours)

E-GraphONet
SE(3) (ours)

E-GraphONet
Sim. (ours)

Rotation

Translation

Scale

ONet ConvONet-2D ConvONet-3D VN-ONet
SO(3)

GraphONet
(ours)

E-GraphONet
SO(3) (ours)

E-GraphONet
SE(3) (ours)

E-GraphONet
Sim. (ours)

Rotation

Translation

Scale

ONet ConvONet-2D ConvONet-3D VN-ONet
SO(3)

GraphONet
(ours)

E-GraphONet
SO(3) (ours)

E-GraphONet
SE(3) (ours)

E-GraphONet
Sim. (ours)

Fig. 10: More examples on ShapeNet object reconstruction under unseen transfor-
mations. With transformations we show the back-transformed shapes.



28 Y. Chen et al.

Input

GT

ONet

ConvONet 
-2D

ConvONet 
-3D

GraphONet 

E-GraphONet 
-SE(3)

Fig. 11: More scene reconstruction examples. The left three columns are from the
Synthetic Room dataset. The right two columns are from ScanNet.



3D Equivariant Graph Implicit Functions 29

References

1. Atzmon, M., Haim, N., Yariv, L., Israelov, O., Maron, H., Lipman, Y.: Controlling neural
level sets. arXiv preprint arXiv:1905.11911 (2019) 3

2. Atzmon, M., Lipman, Y.: Sal: Sign agnostic learning of shapes from raw data. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2565–2574
(2020) 3

3. Atzmon, M., Lipman, Y.: Sal++: Sign agnostic learning with derivatives. arXiv preprint
arXiv:2006.05400 (2020) 3

4. Bautista, M.A., Talbott, W., Zhai, S., Srivastava, N., Susskind, J.M.: On the generalization of
learning-based 3d reconstruction. In: Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision. pp. 2180–2189 (2021) 4

5. Chabra, R., Lenssen, J.E., Ilg, E., Schmidt, T., Straub, J., Lovegrove, S., Newcombe, R.: Deep
local shapes: Learning local sdf priors for detailed 3d reconstruction. In: European Conference
on Computer Vision. pp. 608–625. Springer (2020) 3, 6

6. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva,
M., Song, S., Su, H., et al.: Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012 (2015) 11

7. Chatzipantazis, E., Pertigkiozoglou, S., Dobriban, E., Daniilidis, K.: Se (3)-equivariant atten-
tion networks for shape reconstruction in function space. arXiv preprint arXiv:2204.02394
(2022) 4

8. Chen, Y., Fernando, B., Bilen, H., Mensink, T., Gavves, E.: Neural feature matching in implicit
3d representations. In: International Conference on Machine Learning. pp. 1582–1593. PMLR
(2021) 4

9. Chen, Y., Hu, V.T., Gavves, E., Mensink, T., Mettes, P., Yang, P., Snoek, C.G.: Pointmixup:
Augmentation for point clouds. arXiv preprint arXiv:2008.06374 (2020) 4

10. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5939–5948 (2019)
1, 3

11. Chibane, J., Alldieck, T., Pons-Moll, G.: Implicit functions in feature space for 3d shape
reconstruction and completion. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 6970–6981 (2020) 2, 3, 5, 7, 11, 26

12. Choy, C.B., Gwak, J., Savarese, S., Chandraker, M.: Universal correspondence network. arXiv
preprint arXiv:1606.03558 (2016) 11

13. Cohen, T., Welling, M.: Group equivariant convolutional networks. In: International confer-
ence on machine learning. pp. 2990–2999. PMLR (2016) 4, 5

14. Cohen, T.S., Welling, M.: Steerable cnns. arXiv preprint arXiv:1612.08498 (2016) 4
15. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: Richly-

annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 5828–5839 (2017) 14

16. Davies, T., Nowrouzezahrai, D., Jacobson, A.: On the effectiveness of weight-encoded neural
implicit 3d shapes. arXiv preprint arXiv:2009.09808 (2020) 2, 4, 8, 11

17. Deng, C., Litany, O., Duan, Y., Poulenard, A., Tagliasacchi, A., Guibas, L.: Vector neurons: A
general framework for so (3)-equivariant networks. arXiv preprint arXiv:2104.12229 (2021)
2, 3, 4, 8, 9, 10, 11, 12, 13, 18, 23, 24

18. Erler, P., Guerrero, P., Ohrhallinger, S., Mitra, N.J., Wimmer, M.: Points2surf learning implicit
surfaces from point clouds. In: European Conference on Computer Vision. pp. 108–124.
Springer (2020) 2, 3

19. Fuchs, F., Worrall, D., Fischer, V., Welling, M.: Se (3)-transformers: 3d roto-translation
equivariant attention networks. Advances in Neural Information Processing Systems 33
(2020) 4



30 Y. Chen et al.

20. Fujiwara, K., Hashimoto, T.: Neural implicit embedding for point cloud analysis. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 11734–
11743 (2020) 3

21. Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Deep structured implicit functions.
arXiv preprint arXiv:1912.06126 (2019) 2

22. Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Local deep implicit functions for
3d shape. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 4857–4866 (2020) 3

23. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for
quantum chemistry. In: International conference on machine learning. pp. 1263–1272. PMLR
(2017) 7

24. Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., Cohen-Or, D.: Meshcnn: a network
with an edge. ACM Transactions on Graphics (TOG) 38(4), 1–12 (2019) 7

25. Jiang, C., Sud, A., Makadia, A., Huang, J., Nießner, M., Funkhouser, T.: Local implicit grid
representations for 3d scenes. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2020) 2, 3, 6

26. Jiang, Y., Ji, D., Han, Z., Zwicker, M.: Sdfdiff: Differentiable rendering of signed distance
fields for 3d shape optimization. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 1251–1261 (2020) 3

27. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014) 11, 22

28. Li, J., Chen, B.M., Lee, G.H.: So-net: Self-organizing network for point cloud analysis.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp.
9397–9406 (2018) 3

29. Liu, S., Saito, S., Chen, W., Li, H.: Learning to infer implicit surfaces without 3d supervision.
In: Advances in Neural Information Processing Systems. pp. 8295–8306 (2019) 3

30. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks:
Learning 3d reconstruction in function space. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 4460–4470 (2019) 1, 3, 4, 5, 11, 22

31. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering:
Learning implicit 3d representations without 3d supervision. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 3504–3515 (2020) 3

32. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning continuous
signed distance functions for shape representation. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 165–174 (2019) 1, 3

33. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep
learning library. arXiv preprint arXiv:1912.01703 (2019) 11, 22

34. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional occupancy
networks. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part III 16. pp. 523–540. Springer (2020) 2, 3, 5, 7, 8, 11,
13, 14, 22, 23, 24, 26

35. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classifi-
cation and segmentation. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 652–660 (2017) 4, 7

36. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point
sets in a metric space. Advances in neural information processing systems 30 (2017) 3

37. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image
segmentation. In: International Conference on Medical image computing and computer-
assisted intervention. pp. 234–241. Springer (2015) 7



3D Equivariant Graph Implicit Functions 31

38. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitization. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 2304–2314 (2019) 3

39. Satorras, V.G., Hoogeboom, E., Welling, M.: E(n) equivariant graph neural networks. arXiv
preprint arXiv:2102.09844 (2021) 4

40. Shen, W., Zhang, B., Huang, S., Wei, Z., Zhang, Q.: 3d-rotation-equivariant quaternion neural
networks. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XX 16. pp. 531–547. Springer (2020) 4, 8, 18

41. Simeonov, A., Du, Y., Tagliasacchi, A., Tenenbaum, J.B., Rodriguez, A., Agrawal, P., Sitz-
mann, V.: Neural descriptor fields: Se (3)-equivariant object representations for manipulation.
In: 2022 International Conference on Robotics and Automation (ICRA). pp. 6394–6400. IEEE
(2022) 4

42. Sitzmann, V., Chan, E., Tucker, R., Snavely, N., Wetzstein, G.: Metasdf: Meta-learning signed
distance functions. Advances in Neural Information Processing Systems 33, 10136–10147
(2020) 4

43. Sosnovik, I., Szmaja, M., Smeulders, A.: Scale-equivariant steerable networks. In: Interna-
tional Conference on Learning Representations (2019) 4

44. Takikawa, T., Litalien, J., Yin, K., Kreis, K., Loop, C., Nowrouzezahrai, D., Jacobson, A.,
McGuire, M., Fidler, S.: Neural geometric level of detail: Real-time rendering with implicit
3d shapes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 11358–11367 (2021) 3

45. Tang, J.H., Chen, W., Wang, B., Liu, S., Yang, B., Gao, L., et al.: Octfield: Hierarchical
implicit functions for 3d modeling. Advances in Neural Information Processing Systems 34,
12648–12660 (2021) 3

46. Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L., Kohlhoff, K., Riley, P.: Tensor field
networks: Rotation-and translation-equivariant neural networks for 3d point clouds. arXiv
preprint arXiv:1802.08219 (2018) 4, 5, 18

47. Wang, P.S., Liu, Y., Tong, X.: Dual octree graph networks for learning adaptive volumetric
shape representations. arXiv preprint arXiv:2205.02825 (2022) 3

48. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph cnn
for learning on point clouds. Acm Transactions On Graphics (tog) 38(5), 1–12 (2019) 3, 7

49. Weiler, M., Geiger, M., Welling, M., Boomsma, W., Cohen, T.: 3d steerable cnns: Learning
rotationally equivariant features in volumetric data. In: NeurIPS (2018) 4

50. Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant
cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 849–858 (2018) 4

51. Worrall, D.E., Garbin, S.J., Turmukhambetov, D., Brostow, G.J.: Harmonic networks: Deep
translation and rotation equivariance. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 5028–5037 (2017) 4

52. Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: Disn: Deep implicit surface network
for high-quality single-view 3d reconstruction. In: Advances in Neural Information Processing
Systems. pp. 492–502 (2019) 3

53. Xu, Y., Fan, T., Yuan, Y., Singh, G.: Ladybird: Quasi-monte carlo sampling for deep implicit
field based 3d reconstruction with symmetry. In: European Conference on Computer Vision.
pp. 248–263. Springer (2020) 3

54. Yuan, Y., Nüchter, A.: An algorithm for the se (3)-transformation on neural implicit maps for
remapping functions. IEEE Robotics and Automation Letters (2022) 4

55. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R., Smola, A.: Deep sets.
arXiv preprint arXiv:1703.06114 (2017) 4

56. Zhu, W., Qiu, Q., Calderbank, R., Sapiro, G., Cheng, X.: Scale-equivariant neural networks
with decomposed convolutional filters. arXiv preprint arXiv:1909.11193 (2019) 4


