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Abstract. In this paper we address the task of the comparison and the
classification of 3D shape sequences of human. The non-linear dynamics
of the human motion and the changing of the surface parametrization
over the time make this task very challenging. To tackle this issue, we
propose to embed the 3D shape sequences in an infinite dimensional
space, the space of varifolds, endowed with an inner product that comes
from a given positive definite kernel. More specifically, our approach
involves two steps: 1) the surfaces are represented as varifolds, this rep-
resentation induces metrics equivariant to rigid motions and invariant
to parametrization; 2) the sequences of 3D shapes are represented by
Gram matrices derived from their infinite dimensional Hankel matrices.
The problem of comparison of two 3D sequences of human is formulated
as a comparison of two Gram-Hankel matrices. Extensive experiments
on CVSSP3D and Dyna datasets show that our method is competitive
with state-of-the-art in 3D human sequence motion retrieval. Code for
the experiments is available at https://github.com/CRISTAL-3DSAM/

HumanComparisonVarifolds

Keywords: 3D Shape Sequence · Varifold · 3D Shape Comparison ·
Hankel matrix

1 Introduction

Understanding 3D human shape and motion has many important applications,
such as ergonomic design of products, rapid modeling of realistic human char-
acters for virtual worlds, and an early detection of abnormality in predictive
clinical analysis. Recently, 3D human data has become highly available as a re-
sult of the availability of huge MoCap (Motion Capture) datasets [1,4] along with
the evolution of 3D human body representation [24] leaded to the availability
of huge artificial human body datasets [25,33]. In the meantime, evolutions in
4D technology for capturing moving shapes lead to paradigms with new multi-
view and 4D scan acquisition systems that enable now full 4D models of human
shapes that include geometric, motion and appearance information [35,9,30,15].

https://github.com/CRISTAL-3DSAM/HumanComparisonVarifolds
https://github.com/CRISTAL-3DSAM/HumanComparisonVarifolds
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The first difficulty in analyzing shapes of 3D human comes from noise, vari-
ability in pose and articulation, arbitrary mesh parameterizations during data
collection, and shape variability within and across shape classes. Some examples
of 3D human highlighting these issues are illustrated in Figure 1. In particu-
lar, the metrics and representations should have certain invariances or robust-
ness to the above-mentioned variability. Recently, Kaltenmark et al. [21] have
proposed a general framework for 2D and 3D shape similarity measures, invari-
ant to parametrization and equivariant to rigid transformations. More recently,
Bauer et al. [7], adopted the varifold fidelity metric as a regularizer for the prob-
lem of reparameterization in the framework of elastic shape matching using the
SRNF [18] representation. Motivated by the progress of using varifolds and cur-
rent in shape analysis, we propose to compare 3D surface of human shapes by
comparing their varifolds.

(a) (b)
(c)

Fig. 1: Different challenges of 3D Human Sequence Comparison: (a)
Shape variability within and across shape classes, (b) variability in pose and
articulation, (c) noisy and arbitrary mesh parameterizations (topological noise,
vertex noise and disconnected components).

As a second difficulty, it is critical to identify precise mathematical repre-
sentations of underlying shapes and then impose efficient dynamical models on
representation spaces that capture the essential variability in shape evolutions.
In addition to the nonlinearity of shape spaces, one expects nonlinearity in tem-
poral evolutions that makes the inference process difficult. In this paper, we
propose to use Gram matrices derived from Hankels matrices to represent the
dynamic of human motion.

In our approach, as illustrated in Figure 2, we propose to embed the human
shape space H in an infinite dimensional Hilbert space with inner product corre-
sponding to a positive definite kernel ⟨., .⟩V inspired by the varifold framework.
Using this kernel product we are able to compute the Gram matrix relative to
a motion. Each of this Gram matrix is transformed to Gram-Hankel matrix of
fixed size r.

In summary, the main contributions of this article are: (i) We represent
3D human surfaces as varifold. This representation is equivariant to rotation
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and invariant to the parametrization. This representation allows us to define an
inner product between two 3D surfaces represented by varifolds. (ii) It is the
first use of the space of varifolds in human shape analysis. The framework does
not assume that the correspondences between the surfaces are given. (iii) We
represent 4D surfaces by Hankel matrices. This key contribution enables the use
of standard computational tools based on the inner product defined between
two varifolds. The dynamic information of a sequence of 3D human shape is
encapsulated in Hankel matrices and we propose to compare sequences by using
the distance between the resulting Gram-Hankel matrices; (iv) The experiments
results show that the proposed approach improves 3D human motion retrieval
state-of-the-art and it is robust to noise.

2 Related Work

2.1 3D Human Shape Comparison

The main difficulty in comparing human shapes of such surfaces is that there
is no preferred parameterization that can be used for registering and comparing
features across surfaces. Since the shape of a surface is invariant to its parame-
terization, one would like an approach that yields the same result irrespective of
the parameterization. The linear blending approaches [16,3,24] offer a good rep-
resentation for human shape, along with a model of human deformations while
being able to distinguish shape and pose deformations. However these methods
need additional information on the raw scans such as MoCap markers [16,3],
gender of the body, or additional texture information [24,9] to retrieve such rep-
resentations. Recently, deep learning approaches [34,6,41] propose human bodies
latent spaces that share common properties with linear blending models. How-
ever, they require training data with the same mesh parameterization and are
sensitive to noise. Moreover, most current techniques treat shape and motion
independently, with devoted techniques for either shape or motion in isolation.

Kurtek et al. [22] and Tumpach et al. [36] propose the quotient of the space
of embeddings of a fixed surface S into R3 by the action of the orientation-
preserving diffeomorphisms of S and the group of Euclidean transformations,
and provide this quotient with the structure of an infinite-dimensional manifold.
The shapes are compared using a Riemannian metric on a pre-shape space F
consisting of embeddings or immersions of a model manifold into the 3D Eu-
clidean space R3. Two embeddings correspond to the same shape in R3 if and
only if they differ by an element of a shape-preserving transformation group.
However the use of these approaches on human shape analysis assume a spher-
ical parameterization of the surfaces. Pierson et al. [28] propose a Riemannian
approach for human shape analysis. This approach provides encouraging results,
but it requires the meshes to be registered to a template. Recently, the framework
of varifolds have been presented for application to shape matching. Charon et
al. [12] generalize the framework of currents, which defines a restricted type of
geometric measure on surfaces, by the varifolds framework representing surfaces
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Human motion
in human shape space

(H, ⟨., .⟩V )
Gram matrix
relative to ⟨., .⟩V

Embedding in Mr(R)
with Gram-Hankel matrix

Fig. 2: Overview of our method. We embed the human shape space H in an
infinite dimensional Hilbert space with inner product from a positive definite
kernel ⟨., .⟩V inspired by varifold framework. Using this kernel product we are
able to compute Gram matrix relative to a motion. Each of this Gram matrix is
transformed to Gram Hankel matrix of size r. The Frobenius distance in Mr(R)
is used to retrieve similar 3D sequences.

as a measure on R3×S2. The proposed varifolds representation is parameteriza-
tion invariant, and does not need additional information on raw scans. Inspired
by these recent results, we will demonstrate the first use of this mathematical
theory in 3D human shape comparison.

2.2 3D Human Sequence Comparison

A general approach adopted when comparing 3D sequences is the extension of
static shape descriptors such as 3D shape distribution, Spin Image, and spher-
ical harmonics to include temporal motion information [17,38,29]. While these
approaches require the extraction of shape descriptors, our approach does not
need a 3D shape feature extraction. It is based on the comparison of surface
varifolds within a sequence. In addition, the comparison of 3D sequences require
an alignment of the sequences. The Dynamic Time Warping (DTW) algorithm
was defined to match temporally distorted time series, by finding an optimal
warping path between time series. It has been used for several computer vi-
sion applications [8,20] and alignment of 3D human sequences [38,29]. However,
DTW does not define a proper distance (no triangle inequality). In addition, a
temporal filtering is often required for the alignment of noisy meshes [31]. Our
approach enables the comparison of sequences of different temporal duration,
does not need any alignment of sequences and is robust to noisy data. We model
a sequence of 3D mesh as a dynamical system. The parameters of the dynamical
system are embedded in our Hankel matrix-based representation. Hankel matri-
ces have already been adopted successfully for skeleton action recognition in [40].
As we do not have finite dimensional features to build such matrix numerically,
we define a novel Gram-Hankel matrix, based on the kernel product defined from
surface varifold. This matrix is able to model the temporal dynamics of the 3D
meshes.
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3 Proposed Method

3.1 Comparing 3D Shapes using Geometric Measures

The varifolds framework is a geometry theory used to solve famous differen-
tial geometry problems such as the Plateau’s Problem. We invite the interested
reader to read an introduction of the theory in [2]. We focus here on the work
of Charon et al. [12], followed by Kaltenmark et al. [21] who proposed to use
the varifolds framework for discretized curves and surfaces. They designed a fi-
delity metric using the varifold representation. This fidelity metric is proposed
for 2D artificial contour retrieval, and used in 3D diffeomorphic registration in
the Large deformation diffeomorphic metric mapping (LDDMM) framework. To
our knowledge our work is the first use of such representation for the analysis of
human shape. As far as the authors are aware, our work is the first use of such
representation for the analysis of human shape. It is also the first use of the space
of varifolds purely for itself, as an efficient way to perform direct computations
on shapes.

A varifold is a measure µ on R3×S2. The integral of a function f : R3×S2 →
R with respect to such a measure is denoted

∫
R3×S2 fdµ. Given S a smooth

compact surface with outer normal unit vector field x 7→ n(x), the core idea
of [12] is to represent S as a varifold. This is done in practice through the
formula

∫
R3×S2 fdS =

∫
S
f(x, n(x))dA(x), with dA(x) the surface area measure

of S at x. Now, given a triangulated surface M of a 3D human shape with
triangle faces T1, ..., Tm, when the triangles are sufficiently small, each triangular
face Ti is represented as an atomic measure aiδci,ni where ci is the barycenter
of the triangulated face, ni the oriented normal of the face, ai its area, and δ
representing the dirac mass. The varifold representation of the total shape M is
simply given by the sum of all these measures: M =

∑m
i=1 aiδci,ni

. To illustrate,
integrating a function f on R3 × S2, with respect to M yields

∫
R3×S2 fdM =∑m

i=1 aif(ci, ni).
A varifold µ can be converted into a function Φµ on R3 × S2 using a re-

producing kernel that comes from the product of two positive definite kernels:
kpos : R3 × R3 → R, and kor : S2 × S2 → R. We just define Φµ(x, v) =∫
R3×S2 kpos(y, x)kor(w, v)dµ(y, w). For a triangulated surfaceM , we get ΦM (x, v) =∑m
i=1 aikpos(ci, x)kor(ni, v).
One obtains a Hilbert product between any two varifolds µ, ν as follows :

⟨µ, ν⟩V = ⟨Φµ, Φν⟩V =
∫
Φµdν =

∫
Φνdµ, so that

⟨µ, ν⟩V =

∫∫
kpos(x, y)kor(v, w)dµ(x, v)dν(y, w).

We deduce the explicit expression for that product between two triangulated 3D
shapes M and N :

⟨M,N⟩V = ⟨ΦM , ΦN ⟩V =

m∑
i=1

n∑
j=1

aMi aNj kpos(c
M
i , cNj )kor(n

M
i , nN

j ) (1)
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Where m,n are the number of faces of M and N . The continuous version of this
product presented in [12] is parametrization invariant.

An important part of such a product is that it can be made equivariant to
rigid transformation by carefully choosing the kernels. First we define how to
apply such a deformation on a varifold. Given a rotation R ∈ SO(3) of R3 and a
vector T ∈ R3, the rigid transformation ϕ : x 7→ Rx+T yields the push-forward
transformation µ 7→ ϕ#µ through

∫
fdϕ#µ =

∫
f(Rx+T,Rv)dµ on the space of

varifolds. For a triangulated surface M , ϕ#M is just ϕ(M), the surface obtained
by applying the rigid motion ϕ to the surface M itself. We have the following
important result :

Theorem 1. If we define the positive definite kernels as following:

kpos(x, y) = ρ(||x− y||), x, y ∈ R3,
kor(v, w) = γ(v.w), v, w ∈ S2,

then for any two varifolds µ, ν, and any rigid motion ϕ on R3, we have

⟨ϕ#µ, ϕ#ν⟩V = ⟨µ, ν⟩V .

This result means that given a rigid motion ϕ, ⟨ϕ(M), ϕ(N)⟩V = ⟨M,N⟩V .
The kernel kpos is usually chosen as the Gaussian kernel kpos = e−

||x−y||2

σ2 ,
with the scale parameter σ needed to be tuned for each application.

Kaltenmark et al. [21] proposed several function for the γ function of the
spherical kernel. In this paper we retained the following functions: γ(u) = u –

currents, γ(u) = e2u/σ
2
o – oriented varifolds, and we propose γ(u) = |u| – absolute

varifolds. For such kernels, two surface varifolds M,N with “similar” support
(for example, if M is a reparametrization of N , or if they represent two human
shapes with the same pose but different body types) will have relatively small
distance in the space of varifolds, so that ⟨M,N⟩2V ≃ ⟨M,M⟩V ⟨N,N⟩V , that is,
they are almost co-linear. On the other hand, surface varifolds with very distant
support will be almost orthogonal (⟨M,N⟩V ≃ 0) because of the Gaussian term
in kpos. Obviously, shapes that have some parts that almost overlap while others
are far away will be in-between. Combined with its rotational invariance, this
leads us to believe that the kernel product can be used to differentiate between
poses and motions independently of body types.

3.2 Comparing 3D Human Sequences

We need a way to compare sequences of 3D shapes M1, ...,MT , with T possi-
bly differing between sequences. For this, we use the kernel product ⟨., .⟩V as a
similarity metric. Thanks to the reproducing property of positive definite ker-
nels [5], it defines a reproducing kernel Hilbert space H (RKHS) which is an
(infinite dimensional) Euclidean space endowed with an inner product corre-
sponding to the kernel product, as described in the previous section. Any shape
M has a corresponding representative ΦM : R3×S2 → R in this space, such that
⟨ΦM , ΦN ⟩V = ⟨M,N⟩V (Figure 3).
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Surface M

Varifolds framework

Discrete varifolds
representation of M

Kernel product < ., . >V

Representative
ΦM in RKHS H

Fig. 3: An overview of varifolds framework. First, a mesh M is transformed into its
corresponding varifold representation. Then, the kernel product defined in Equa-
tion (1), transforms it into a representant ΦM living in the Hilbert space H of
this varifold.

Modeling dynamics of temporal sequences. Thanks to the varifolds representation
and the kernel product ⟨., .⟩, the temporal sequence M1, ...,Mt corresponding
to a motion in the human shape space can be seen as a temporal sequence
ΦM1 , ..., ΦMT

in the RKHS H. Plus, since the varifold kernel is equivariant to
rigid transformations, the product of two shapes within a sequence is invariant
to any rigid transformation applied to the full motion. The Gram matrix Jij =
⟨ΦMi

, ΦMj
⟩, which is a rigid transformation invariant matrix, would be a natural

representant of the motion. However, its size vary with the length T of the
sequence. Inspired by Auto-Regressive (AR) models of complexity k defined

by ΦMt
=

∑k
i=1 αiΦMt−i

, several representations [32,37] have been proposed
for dynamical systems modeling. Hankel matrices [23] are one of the possible
representations. The Hankel matrix of size r, s corresponding to our time series
ΦM1

, ..., ΦMT
is defined as:

Hr,s
t =


ΦM1

ΦM2
ΦM3

... ΦMs

ΦM2 ΦM3 ΦM4 ... ΦMs+1

... ... ... ... ...
ΦMr

ΦMr+1
ΦMr+2

... ΦMr+s

 (2)

The rank of such matrix is usually, under certain conditions, the complexity k
of the dynamical system of the sequence. The comparison of two time series
therefore become a comparison of high dimensional matrices.

It is not straightforward to use those matrices since our shape representatives
live in infinite dimensional space. A first idea would be to think about the Nys-
trom reduction method [39] to build an explicit finite dimensional representation
for ΦM , but this would involve intensive computations. Another possibility is to
think about the Gram matrix HHT derived from the Hankel matrix H [40,23].
We cannot directly derive the same kind of matrices since our representatives
live in an infinite dimensional space. The Gram matrix of the motion, J , how-
ever, preserves the linear relationships of the AR model. We therefore derive the
following matrix:
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Definition 1. The Gram-Hankel matrix of size r, G ∈ Mr(R) of the sequence
ΦM1

, ..., ΦMT
is defined as:

Gij =

T−r∑
k=1

⟨ΦMi+k
, ΦMj+k

⟩ =
T−r∑
k=1

⟨Mi+k,Mj+k⟩V (3)

We normalize G relatively to the Frobenius norm, following recommended prac-
tices [40]. This matrix is the sum of the diagonal blocks Br

l of size r of the Gram
matrix of the sequence pairwise inner products. A possible way of interpret-
ing what encodes a single block Br

l of size r when r ≥ k is to follow the idea
of [20] the polar decomposition of the coordinate matrix of ΦMl

, ...ΦMr+l
. This

coordinate matrix exists in the space span(ΦM0
, ...ΦMk

) under to the AR model
hypothesis (any ΦMj is a linear combination of the first k ΦMi), and can be fac-
torized into the product UlRl, where Ul is an orthonormal r× k matrix, and Rl

an SPD matrix of size k. The matrix Rl is the covariance (multiplied by r2) of
ΦMl

, ...ΦMr+l
in span(ΦM0

, ...ΦMk
), and it encodes in some way its shape in this

space. An illustration of such encoding is given in Figure 4. For three motions
from CVSSP3D dataset, we compute the varifold distances Equation (1) between
all samples of the motion. We then used Multidimensional Scaling (MDS) [14] to
visualize them in a 2D space. We display the ellipse associated to the covariance
of each motion. We see that the one associated to jump in place (blue) motion
is distinguishable from the ones associated to walk motions (red and green).

Fig. 4: MDS illustration of three motions of CVSSP3D dataset, along with ellipse
associated to their covariance.

The Gram matrix block Br
l is written as Br

l = UlR
2
lU

T
l and contains such

information. Searching for the complexity k of the AR model would be sensitive
to errors, and computing the associated Rl for comparisons with an SPD metric
would be time consuming in our case. We thus preferred the rather simpler
Gram-Hankel matrix, that cancels possible noise in single blocks when summing
them. Finally, using the Frobenius distance d(Gi,Gj) = ||Gi −Gj||F where Gi

and Gj are two Gram-Hankel matrices, to compare two motions lead us to rather
good results. The blocks of size r are expressive enough when r ≥ k, and taking
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their sum will ensure us to cancel possible noise added to a single block. The
degenerate nature of G, does not allow for efficient use of SPD metrics such
as the Log-Euclidean Riemannian Metric (LERM) on the Gi (more details are
available in the supplementary material). With this approach, the comparison of
two human motions is formulated as the comparison of two symmetric positive
semi-definite matrices.

Proposition 1. The Gram-Hankel matrix G associated to a motion M1, ...,MT

defined by Equation (3) has the following properties:

1. It is invariant to parameterization (property of the kernel product).
2. It is invariant to rigid transformation applied to a motion.

Normalizations As the definition of the kernel shows the method is not invariant
to scale, we normalize the inner products as following:

〈
Mi

||Mi||V ,
Mj

||Mj ||V

〉
V
.

While our method is translation invariant, the use of the Gaussian kernel
implies that the product will be near 0 when the human shapes are at long
range. To avoid this, we translate the surface M with triangles T1, ..., Tm by its

centroid cM =
∑m

i=1 aici∑m
i=1 ai

, where ci and ai correspond to the center and area of

triangle Ti. We apply M 7→ M − cM before computing the products.

4 Experiments

Computing varifold kernel products can often be time consuming, due to the
quadratic cost in memory and time in terms of vertex number for computing
⟨M,N⟩V . However, the recent library Keops [11], designed specifically for kernel
operations proposes efficient implementations with no memory overflow, reduc-
ing time computation by two orders of magnitudes. We used those implemen-
tations with the Pytorch backend on a computer setup with Intel(R) Xeon(R)
Bronze 3204 CPU @ 1.90GHz, and a Nvidia Quadro RTX 4000 8GB GPU.

4.1 Evaluation setup

In order to measure the performance in motion retrieval, we use the classical
performance metrics used in retrieval: Nearest neighbor (NN), First-tier (FT)
and Second-tier (ST) criteria. For each experiment, we take r values ranging
from 1 to Tmin where Tmin is the minimal sequence length in the dataset. We
also take 10 σ values for the Gaussian kernel ranging from 0.001 to 10 in log
scale. The score displayed is the best score among all r and σ values. For oriented
varifolds, the σo of the gamma function is fixed to 0.5 as in [21].

4.2 Datasets

CVSSP3D synthetic dataset [33]. A synthetic model (1290 vertices and 2108
faces) is animated thanks to real motion skeleton data. Fourteen individuals
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executed 28 different motions: sneak, walk (slow, fast, turn left/right, circle
left/right, cool, cowboy, elderly, tired, macho, march, mickey, sexy, dainty), run
(slow, fast, turn right/left, circle left/right), sprint, vogue, faint, rock n’roll,
shoot. An example of human motion from this dataset is presented in Figure 5.
The frequency of samples is set to 25Hz, with 100 samples per sequences. The
maximum computation time of Gram-Hankel matrix is 0.89s.
CVSSP3D real dataset [15]. This dataset contains reconstructions of multi
view performances. 8 individuals performed 12 different motions: walk, run,
jump, bend, hand wave (interaction between two models), jump in place, sit
and stand up, run and fall, walk and sit, run then jump and walk, handshake
(interaction between two models), pull. The number of vertices vary between
35000 and 70000. The frequency of samples is also set to 25Hz, and sequence
length vary from 50 to 150 (average 109). We keep the 10 individual motions
following [38]. An example motion of the dataset is displayed in Figure 5(b).
The maximum computation time of Gram-Hankel matrix is 6m30s. The sensi-

(a) (b) (c)

Fig. 5: Example motions from the datasets: (a) Slow walking motion from
CVSSP3D synthetic dataset, (b) Walking motion from the CVSSP3D real
dataset, (c) Knees motion from the Dyna dataset.

tivity of the reconstruction pipeline to the clothes is illustrated by the presence
of noise as illustrated in Figure 1. This noise makes this dataset challenging for
3D shape human shape comparison and for 3D human motion retrieval.

Dyna dataset [30]. This dataset is created from 4D human scans. A human
template (6890 vertices) is registered to human body scans sampled at 60 Hz, and
sequence length vary from 150 to 1200 (average 323). 10 individuals performed
at most 14 different treadmill motions (hips, knees, light hopping stiff, light
hopping loose, jiggle on toes, one leg loose, shake arms, chicken wings, punching,
shake shoulders, shake hips, jumping jacks, one leg jump, running on spot),
which means that the individual only move along the height axis. An example
of human motion from Dyna dataset is presented in Figure 5(c). The maximum
computation time of Gram-Hankel matrix is 2m30s.
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4.3 Motion Retrieval on CVSSP3D Dataset

Comparison with state-of-the-art. We compare our motion retrieval ap-
proach to the best features presented in [38,29] and deep learning descriptors: (1)
The 3D harmonics descriptor [27][38] is a descriptor based on point cloud repar-
tition in space, (2) Breadths spectrum Q-breadths and Q-shape invariant [29]
are presented as 2 fully invariant descriptors derived from convex shape analysis,
(3) Aumentado-Armstrong et al. [6] propose a human pose latent vector in their
Geometrically Disentangled Variational AutoEncoder (GDVAE), (4) Zhou et
al. [41] propose a human pose latent vector derived from the Neural3DMM [10]
mesh autoencoder architecture, and (5) Cosmo et al. [13] propose a human pose
latent vector in a similar approach as GDVAE, called Latent Interpolation with
Metric Priors (LIMP). For the artificial dataset, the optimal σ were fixed to 0.17
for current, 0.17 for absolute varifolds, and 0.02 for oriented varifolds. The opti-
mal r were 97.92 and 90 for current, absolute and oriented varifolds respectively.

We observe the results on the CVSSP3D artificial dataset in Table 1. Only
our approach are able to get 100% in all performance metrics. We also observe
that it is the only approach able to outperform the LIMP learned approach.

For the real dataset, the optimal σ were fixed to 0.06 for current, 0.17 for
absolute varifolds and oriented varifolds. The optimal r were 48, 43 and 46 for
current, absolute and oriented varifolds respectively.

We observe the results on the CVSSP3D real dataset in Table 1. Absolute
varifolds approach outperforms by 2.5% the 3D descriptor in terms of NN metric,
while being less good for FT and ST. In terms of fully invariant methods, we
outperform by 10% the proposed approaches. The absolute varifolds methods is
the best of our approach, but we do not observe significant sensitivity between
different varifolds. We finally observe that the point cloud descriptors of GDVAE
has the lowest performance.

4.4 Motion Retrieval on Dyna Dataset

Comparison with state-of-the-art. No benchmark exists on this dataset,
a little has been made on the registrations provided by Dyna. We applied the
following methods to extract pose descriptors and made pairwise sequences com-
parisons using dynamic time warping, in a similar protocol as [38,29], without
the temporal filtering use for clothes datasets, since the dataset is not noisy. We
compare our approach to descriptor sequences of the following approaches: (1)
Areas and Breadths [29] are parameterization and translation invariants derived
from convex shapes analysis, (2) The pretrained GDVAE on SURREAL is ap-
plied directly on the dataset, (3) the pretrained LIMP VAE on FAUST is applied
directly on the dataset, (4) Zhou et al. [41] provide pretrained weights on the
AMASS dataset [25] for their approach. This dataset shares the same human
body parameterization as Dyna, so we can use the pretrained network on Dyna,
and (5) The Skinned Multi-Person Linear model (SMPL) body model [24] is a
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Representation Γ inv. SO(3)
Artificial dataset Real dataset Dyna dataset
NN FT ST NN FT ST NN FT ST

Shape Dist. [26][38] ✓ ✓ 92.1 88.9 97.2 77.5 51.6 65.5 / / /
Spin Images [19][38] ✓ ✓ 100 87.1 94.1 77.5 51.6 65.5 / / /
3D harmonics [38] ≈ ≈ 100 98.3 99.9 92.5 72.7 86.1 / / /
Breadths spectrum [29] ✓ ✓ 100 99.8 100 / / / / / /
Shape invariant [29] ✓ ✓ 82.1 56.8 68.5 / / / / / /
Q-Breadths spectrum [29] ≈ ✓ / / / 80.0 44.8 59.5 / / /
Q-shape invariant [29] ≈ ✓ / / / 82.5 51.3 68.8 / / /
Areas [29] ✓ ✗ / / / / / / 37.2 24.5 35.8
Breadths [29] ✓ ✗ / / / / / / 50.7 36.2 50.5
Areas & Breadths [29] ✓ ✗ / / / / / / 50.7 37.2 51.7
GDVAE [6] ✓ ✓ 100 97.6 98.8 38.7 31.6 51.6 18.7 19.6 32.2
Zhou et al. [41] ✗ ✗ 100 99.6 99.6 / / / 50.0 40.4 57.0
LIMP [13] ✓ ✗ 100 99.98 99.98 / / / 29.1 20.7 33.9
SMPL pose vector [24] ≈ ✓ / / / / / / 58.2 45.7 63.2

Current ✓ ✓ 100 100 100 92.5 66.0 78.5 59.0 34.1 50.4
Absolute varifolds ✓ ✓ 100 100 100 95.0 66.6 80.7 60.4 40.0 55.9
Oriented varifolds ✓ ✓ 100 100 100 93.8 65.4 78.2 60.4 40.8 55.9

Table 1: Full comparison of motion retrieval approaches. First two columns corre-
spond to group invariance (Γ : reparameterization group, SO(3): rotation group),
telling whether or not the required invariance is fullfilled (✓: fully invariant, ≈
: approximately invariant (normalization, supplementary information, ...), ✗: no
invariance). Remaining columns correspond to retrieval scores, where the ’/’
symbol means that there is no result for the method on the given dataset for
various reasons, such as unavailable implementation or the method not being
adapted for the dataset (for example, in line 470, [41] is based on a given mesh
with vertex correspondences and cannot be applied to CVSSP3D real dataset).
The results are displayed for CVSSP3D artificial and real datasets, and Dyna
datasets. Our method is competitive or better than the approach consisting of
combing DTW with any descriptor, while showing all required invariances.

parameterized human body model. We use the pose vector of the body model,
computed in [9] using additional information.

For the Dyna dataset, the optimal σ were fixed to 0.02 for current 0.06 for
absolute varifolds, and 0.16 for oriented varifolds. The optimal r were 27, 31 and
72 for current, absolute and oriented varifolds respectively.

As shown in Table 1 the oriented and absolute varifolds is the best by 2 %
in terms of NN metric compare to SMPL, and by more than 10 % to other
approaches, including the parameterization dependant approach of [41]. The FT
and ST performance are however less good than SMPL. This can be explained
by its human specific design, along with the costly fitting method, that use
additional information (gender, texture videos). Finally, we observe that point
cloud neural networks are not suitable for high set of complex motions.
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4.5 Qualitative analysis on Dyna dataset

We display in Figure 6 the Nearest Neighbor score confusion matrices for both
SMPL and Oriented Varifolds. The confusion matrices for the other datasets are
available in the supplementary material. We observe that on Dyna, the difficult
cases were jiggle on toes, shake arms, shake hips and jumping jacks, correspond-
ing to l3, l6, l9 and l10 in confusion matrix. Our approach is able to classify
better these motions than SMPL. In addition, SMPL was not able to retrieve as
a Nearest Neighbor, a similar motion to shake arms or shake hips corresponding
to l6 and l9. This Figure shows also that our approach retrieves perfectly the
knees motion corresponding to l1. The Figure 7 shows some qualitative results
of our approach. It illustrates the first tier of a given query on Dyna dataset.

5 Discussion

Effect of the parameters for oriented varifolds on Dyna dataset. We provide
in Figure 8, the performance relative to the parameters σ and r, for oriented
varifolds on Dyna dataset. We observe that the choice of those parameters is
crucial. We also display the performances of oriented varifolds with the 2 nor-
malizations techniques, showing that they both help to obtain the best results.
More discussion is provided in the supplementary material.

Limitations. Our approach presents two main limitations: (i) To measure dis-
tance between matrices, we have used Euclidean distance, which does not ex-
ploit the geometry of the symmetric positive semi-definite matrices manifold,
(ii) There is no theoretical limitation to apply this framework to the comparison
of other 3D shape sequences (eg. 3D facial expressions, or 3D cortical surfaces
evolutions) other than that between body shape. However, in practice one should
redefine the hyperparameters (r, σ) of the Kernel (Theorem 1).

6 Conclusion

We presented a novel framework to perform comparison of 3D human shape
sequences. We propose a new representation of 3D human shape, equivariant

Fig. 6: Confusion matrix of SMPL (left) and Oriented Varifolds (right) on the
Dyna dataset.
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(a) 50020, running on
spot

(b) 50026, running on
spot

(c) 50009, running on
spot

(d) 50004, running on
spot

(e) 50007, running on
spot

(f) 50002, running on
spot

(g) 50025, running on
spot

(h) 50027, running on
spot

(i) 50026, one leg
jump

(j) 50022, running on
spot

Fig. 7: Qualitative results on Dyna dataset. Given the query corresponding to
running on spot motion (a), the first tier result using oriented varifolds are given
by (b) – (j).

Fig. 8: NN, FT, ST metric relatively to
the σ parameters (left) and to the r
parameter (right) on Dyna dataset for
oriented varifolds.

Centroid Inner NN FT ST

✗ ✗ 51.5 34.6 53.4
✗ ✓ 52.2 33.4 50.5
✓ ✗ 59.7 40.7 55.8
✓ ✓ 60.4 40.8 55.9

Table 2: Retrieval performance
of the normalizations on Dyna
dataset, for oriented varifolds.
Both are useful.

to rotation and invariant to parameterization using the varifolds framework.
We propose also a new way to represent a human motion by embedding the
3D shape sequences in infinite dimensional space using a kernel positive definite
product from varifolds framework. We compared our method to the combination
of dynamic time warping and static human pose descriptors. Our experiments
on 3 datasets showed that our approach gives competitive or better than state-
of-the-art results for 3D human motion retrieval, showing better generalization
ability than popular deep learning approaches.
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