
18 B. Guillard et al.

Supplementary Material

In Sec. 5.1 we describe the procedure used to train the UDF network �✓ on MGN
garments. In Sec. 5.2 we explain the metrics used in the experiment section.
In Sec. 5.3 we explain in more details the gradients introduced in the main
paper. In Sec. 5.4 we show experimental evidence that artifacts appearing at
high resolution are caused by the UDF field being approximated. In Sec. 5.5 we
demonstrate the benefits of the voting scheme for establishing pseudo-signs. In
Sec. 5.6, we show the fitting to sparse pointclouds of Sec. 4.3 can be initialized
from random latent codes.

5.1 Network Training

We train one auto-decoder [32] network �✓ to approximate the UDF field of a
garment collection. We use the dataset from MGN [6] consisting of 328 meshes
from which we keep 300 instances for training and 28 for testing.

To generate UDF supervision sample points and values, meshes are scaled to
fit a sphere of radius 0.8, and for each mesh i we generate N training samples
(pi,j , di,j) 2 R3 ⇥R+ where di,j is the minimum between dmax and the distance
from 3D point pi,j to the i-th shape. We clamp UDF values at dmax = 0.1 to
avoid wasting the network’s capacity on learning a precise field away from the
surface as in [32,11]. We pick N = 30000 and sample 6000 points uniformly on
the surface, 12000 within a distance 0.05, 8000 within a distance 0.3 and 4000
within the bounding box of side length 2. As opposed to SDF values, unsigned
distances di,j can be computed directly from raw triangle soups with standard
software [14], and do not require any pre-processing of the meshes.

�✓ is implemented by a 9-layer MLP with 512 hidden dimensions and ReLU
activation functions. It uses Fourier positional encoding of fifth order on the
3D coordinate inputs [35]. We jointly optimize the network’s weights ✓ with one
latent vector embedding zi 2 R128 per training shape i by minimizing the L1 loss
between the predicted and target UDF values, with a regularization of strength
� = 10�4 on the norm of the latent codes. With T as the training set, the full
loss is

L =
1

|T | ·N
X

i2T

2

4
NX

j=1

|�✓(zi,pi,j) � di,j | + � kzik2

3

5

and is minimized using Adam [22] for 2000 epochs.

5.2 Metrics

Given a reconstructed mesh fM and a set A of points on its surface, along with
a ground-truth mesh M and a set B of points on its surface, we

MeshUDF: Fast and Di↵erentiable Meshing of UDF networks 19

– Chamfer distance. We take it to be

CHD(fM,M) =
1
|A|

X

a2A

min
b2B

ka� bk2 (12)

+
1
|B|

X

b2B

min
a2A

ka� bk2 ,

the sum of the average distance of each point in A to B and the average
distance of each point in B to A.

– Image consistency. Let K be a set of 8 cameras located at the vertices of a
cuboid encompassing the garments looking at its centroid. For each k 2 K we
render the corresponding binary silhouette Sk 2 {0, 1}256⇥256 (respectively
eSk) and normal map Nk 2 R256⇥256⇥3 (resp. eNk) of mesh M (resp. fM).

Then we define the image consistency between fM and M as

IC(fM,M) = 1
|K|

X

k2K

IoU(eSk, Sk) ⇤ COS(eNk, Nk) , (13)

where IoU is the intersection-over-union of two binary silhouettes and COS is
the average cosine-similarity between two normal maps. Both can be written
as

IoU(eS, S) =
HX

u=1

WX

v=1

eSu,vSu,v (14)

·
"

HX

u=1

WX

v=1

max(eSu,v + Su,v, 1)

#�1

, (15)

COS(eN,N) = 1
HW

HX

u=1

WX

v=1

eNu,v·Nu,v

k eNu,vkkNu,vk ,

with H and W the image height and width, Su,v 2 {0, 1} the binary pixel
value at coordinate (u, v) of S and Nu,v 2 R3 the color pixel value at coor-
dinate (u, v) of N .

– Normal consistency. We take it to be

NC(fM,M)= 1
|A|

X

a2A

����cos[en(a),n(argmin
b2B

ka� bk2)]
����

+ 1
|B|

X

b2B

����cos[n(b), en(argmin
a2A

ka� bk2)]
���� , (16)

the average unsigned cosine-similarity between the normals of pairs of closest
point in A and B, where en(x) denotes the normal at point x.

5.3 Di↵erentiating through Iso-Surface Extraction

In Sec. 3.2, we derived gradients for surface points with respect to the latent
code z. We here expand on the underlying assumptions and justify our choices.

20 B. Guillard et al.

n
v+

v

v�

↵
S↵

S

Fig. 10: Iso-surface di↵erentiation: S is the minimum-levelset of UDF �(z, ·)
and S↵ its ↵-levelset (↵ > 0). By using already established di↵erentiability
results on v+ 2 S↵ and v� 2 S↵, we derive new derivatives for v 2 S.

Using the ↵-isolevel. Let ↵ > 0 be a small scalar and z 2 RC a latent code
parametrizing the UDF field �(z, ·). We consider v 2 R3, a surface point lying
within a facet of the mesh Mz, and n its surface normal –defined up to its
orientation. v lies on the 0-levelset of the field, and we choose to formulate it as
the following linear combination

v = 1
2 (v� + v+) , (17)

where

v+ = v + ↵n and v� = v � ↵n .

The arrangement of v, v+ and v� is depicted in Fig. 10.
Both v+ and v� are at a distance ↵ from v. Assuming such points to belong

to the ↵-levelset, the outwards pointing normal of v+ on the ↵-levelset is n, and
the one of v� is �n, and we can use [1,34] to write

@v+

@z
= �n

@�

@z
(z,v+) and

@v�
@z

= n
@�

@z
(z,v�) . (18)

and di↵erentiating the mapping of Eq. 17 –which we consider as fixed– yields

@v

@z
=

n

2


@�

@z
(z,v � ↵n) � @�

@z
(z,v + ↵n)

�
. (19)

Approximate gradients. In practice however, v+ and v� are not guaranteed to
lie on the ↵-levelset, but can be on a �-levelset with � < ↵, in which case
their normals di↵er from n and �n. For our assumption to hold, v needs to
be the closest point to v+ on the 0-levelset, and similarly for v�, which is true
when ↵ is small compared to the surface curvature. We thus use Eqs. 18, 19 as
approximations only.

Eq. 19 is only flawed for points with high curvature, and still holds true
for most of the points lying on unwrinkled regions of the surface. Since gradi-
ents backpropagated to the latent code are averaged over the entire surface (as
in [30]), a minority of them being noisy is not an issue. Sec. 4.3 empirically shows
that using ↵ = 0.01 works in practice for a wide range of shapes.

MeshUDF: Fast and Di↵erentiable Meshing of UDF networks 21

o
v vo

↵
S

S↵

Fig. 11: Iso-surface di↵erentiation at borders: S is the minimum-levelset of
UDF �(z, ·) and S↵ its ↵-levelset (↵ > 0). By using already established di↵eren-
tiability results on vo 2 S↵, we derive a new derivative for v 2 S.

Uniqueness of the mapping. Eq. 17 is an arbitrary choice of a mapping. It is not
unique, and one could instead pair v to other points on the ↵-levelset, leading to
a di↵erent result in Eq. 19. We deliberately chose the 2 closest points to naturally
surround v with its closest neighbors.
Minimizing a downstream loss. Eq. 19 can be used to minimize downstream loss
functions directly defined on mesh vertices with gradient descent. Given such a
loss function L, we use the chain rule to write

@L
@z

=
X

(v,n)2Mz

@L
@v

n

2


@�

@z
(z,v � ↵n) � @�

@z
(z,v + ↵n)

�
.

We rely on the field being an UDF and move its zero level set. This is in
practice enforced by freezing the network weights, which is thus acting as a
strong prior on the field, and only optimize the latent code.
The case of border points. Border do not only have 2 closest neighbors on the
↵-levelset, but an entire semi-circle as depicted in blue on Fig. 11. In this case,
we pair v with the outmost point on the ↵-level set with

v = vo � ↵o , (20)

and follow the same reasoning as above. We consider o as a mapping direction,
and thus locally fixed.
Constructing the o vectors. Fig. 12 depicts the outwards pointing vectors o for
one reconstructed garment. They are computed as follows. Let v be a vertex
lying on the border, n be the normal vector of the facet it belongs to, and e be
the border edge it is on. We take o to be

o = !
n⇥ e

kn⇥ ek with ! = ±1 , (21)

the unit vector colinear to the cross product of n and e. This way, o is both in
the tangent plane of the surface and perpendicular to the border. We choose the
sign ! to orient o outwards. We write

! = argmax
{�1,1}

u(v + !
n⇥ e

kn⇥ ek) , (22)

that is, we evaluate the UDF in both directions and pick the one that yields the
highest value.

22 B. Guillard et al.

Fig. 12: Outwards pointing vectors: for border vertices we define outwards
pointing vectors o to construct derivatives allowing the surface to shrink or
extend along them.

(a) (b) (c)
Fig. 13: Meshing UDFs: (a) Ground truth mesh; (b) Our meshing procedure
applied to a shallow UDF neural network yields staircase artifacts at a very
high resolution (512); (c) Our method applied to the exact UDF at the same
resolution reconstructs a smooth surface.

5.4 Meshing approximate or real UDFs

In Sec. 4.6 and Fig. 6 of the main paper, we mention artifacts of our meshing
procedure when applied to approximate UDFs and at a high resolution. This is
depicted in Fig. 13(b), where meshing a UDF represented by a shallow network
(4 layers) with a grid resolution of 512 yields a mesh that is not smooth.

We hypothesized that this is due to the 0-levelset of the field being slightly
inflated into a volume, with many grid locations evaluating to a 0 distance near
the surface. This impedes Marching Cube’s interpolation step and produces this
staircase artifact. To validate this hypothesis, in Fig. 13(c) we apply our meshing
procedure to the exact UDF grid, numerically computed from the ground truth
mesh of Fig. 13(a). This results in a smooth surface, thus indicating that the
staircase artifact is indeed a consequence of meshing approximate UDFs.

MeshUDF: Fast and Di↵erentiable Meshing of UDF networks 23

u1g1
u2 g2

u3
g3u4g4

s1=u1

s2=-u2

s3=-u3

s4=u4

s1
s1�s2

(a) (b) (c)
Fig. 14: Detecting surface crossings: (a) all corners of the grid’s cell are
annotated with unsigned distance values ui and gradients gi ; (b) we locally ap-
proximate signed distances with si=sgn(g1 ·gi)ui ; (c) marching cubes processes
these pseudo-signed distances and produces a surface element accordingly.

5.5 Ablation study: pseudo-sign and breadth-first exploration

In Sec. 3 we described a way to locally compute the pseudo-signed distance
using gradient orientations (PSD), that is described in more details in Fig. 14.
The PSD method has two shortcomings. First, the choice of the anchor corner
implies that the anchor will have a positive pseudo-sign, and thus choosing a
di↵erent anchor might invert all the signs of the cell. Since the choice is arbitrary,
adjacent cells might have opposing sign choices: they will produce meaningful
facets, but with opposing orientations. This can be partially fixed in a post-
processing step that scans the mesh trying to consistently reorient the facets,
but this proved to be a time-consuming operation and it does not always find
a consistent orientation. Second, if the surface in the cell or in the immediate
proximity is not smooth enough, the gradients of the field can have ambiguous
orientations (i.e. they do not clearly oppose each other, for example at a 45�

angle). In this setting, two di↵erent anchors can produce di↵erent pseudo-signs
for the corners of the cell, and thus nearby cells that use a di↵erent anchor can
assign di↵erent pseudo-signs to the same corner. This inconsistency creates an
unwanted hole in the mesh and happens especially with learned UDF fields,
which have noisy gradients.

The breadth-first exploration (BFE) method with a voting scheme that we
propose has the purpose of improving these shortcomings: produce consistent
normal orientations in adjacent facets and increase the robustness of the method
on learned UDF fields with noisy gradients. The first objective is reached thanks
to the breadth-first exploration itself, which is implemented using queues: follow-
ing the surface makes it possible to store values of previously computed pseudo-
signs, ensuring that corners have the same pseudo-sign in adjacent cells. This
also reduces the number of dot products required to complete the meshing proce-
dure, since corners are only computed once instead of being recomputed in every
cell. However, simply plugging the pseudo-signed distance computation in this
breadth-first exploration can cause even more artifacts due to anchor choice, as
they can propagate in nearby cells since the cells are not treated independently
anymore.

To solve this problem and at the same time address the second objective,
we use the voting scheme described in Sec. 3. This voting scheme has been
experimentally inferred by looking at artifacts of the previous procedure, and
has three motivations. First, it avoids an explicit and arbirary anchor choice,

24 B. Guillard et al.

(a) 64 (b) 128 (c) 256 (d) 512

Fig. 15: Comparing qualitative results of PSD and BFE. Each of the 4 columns
corresponds to a meshing resolution, as indicated in the labels. In each column, top
row left is the result of PSD, top row right is the result of BFE. Center and bottom
rows show an above view of the same mesh, with holes colored in black. The two bigger
holes correspond to the legs. Center row is PSD, bottom row is BFE.

which is the main cause of inconsistencies, and it increases the robustness by
making multiple neighbours vote for a single corner. Second, it prevents votes
to be computed along diagonals in a cell, because the underlying interpolation
algorithm of marching cubes does not create vertices along cell diagonals. Third,
it prevents gradients facing each other along an edge to vote for having an
opposing sign –when they indicate a local maximum of the field instead.

Moreover, we notice that in corners with possible ambiguities the absolute
value of the sum of received votes will be low. Some neighbours will vote posi-
tively and some others negatively, and the weight itself of the votes can be low
when gradients are not clearly facing or opposing each other. We detect these
cases that get a sum of votes below a threshold, fixed to cos(⇡/4), and we put
them into a separate queue with a lower priority, to be re-evaluated later. The
threshold has been set by noticing that, in a single-vote scenario, gradients at a
[45�, 135�] angle have a high ambiguity, since a 45� variation in the angle would
flip the sign of their dot product. This queue is explored when the main ex-
ploration is over, thus increasing the number of neighbours that can vote and
making the sign decision more robust. We also employ a third queue, which is
explored with the lowest priority, that contains cells with multiple non-adjacent
facets. These cells can potentially start the exploration of a non-contiguous sur-
face, and are thus explored at the very end.

MeshUDF: Fast and Di↵erentiable Meshing of UDF networks 25

Table 5: Comparing UDF meshing methods: pseudo sign (PSD) versus
breadth-first exploration with voting strategy (BFE). Average Chamfer dis-
tance (CHD), average number of excess holes (EH) and average processing time on 300
garments. We use a single UDF network and only change the meshing procedure.

Resolution 64 128 256 512
Meshing procedure PSD BFE PSD BFE PSD BFE PSD BFE

CHD (#) 1.63 1.66 1.51 1.51 1.52 1.51 1.61 1.53
EH (#) 21 1.6 153 7.8 1566 38 11526 478
Time (#) 0.35s 0.24s 1.4s 1.2s 10.0s 9.1s 105s 69s

To validate this algorithm, we compare BFE with the simple application of
PSD using the same garment network and dataset described in Sec. 4.2 (and
Tab. 1 left), at di↵erent resolutions. The post-processing steps (Fig. 3) applied
to the two methods are the same except for the parameters used. Since PSD

produces slightly less precise borders, we apply a coarser filtering of spurious
facets and remove those whose UDF value is larger than 1/6 of the side-length
of a cubic cell instead of half. In PSD we also apply 5 steps of laplacian smoothing
on the borders instead of 1 for BFE.

In Fig 15 we see that BFE produces consistent facets orientations, while PSD
does not. Moreover, one can notice small holes in the garments reconstructed
with PSD (center row), which tend to increase in number and decrease in di-
mension as the resolution increases, whereas BFE is able to close most of them
(bottom row), proving to be more robust. Tab. 5 shows that the BFE method
produces meshes with a slightly lower Chamfer distance, except at resolution 64.
Since the size of the holes produced by PSD is very small, they do not signi-
ficatively impact the CHD of this method. They however produce artifacts that
are detrimental to the quality of the reconstructed mesh. To have a quantitative
measure of this, given a ground-truth mesh M and a reconstructed mesh fM , we
define the number of excess holes as:

EH(fM,M) = || eH|� |H|| , (23)

where H and eH are the sets of holes of M and fM , computed as closed loops of
edges that belong to a single triangle. This amounts to computing the number
of holes in excess that are in fM compared to M , or viceversa.

Tab. 5 shows that BFE has a consistent advantage over PSD in this metric
across all tested resolutions. In both methods, the EH tends to increase with
resolution, as the limits of the learned field are approached and the gradients
become noisier. The same experiment with a network trained on only 4 garments
yields better results on such garments, with the BFE producing no excess holes
at all 64-512 resolutions, and PSD producing a similar amount to that shown in
the table.

Finally, the BFE method is also slightly faster than PSD. This is mainly
due to the reduced number of dot products computed. In PSD we compute
8 dot products per cell –which amounts to an average of 4 dot products per
corner, since every corner belongs to 4 di↵erent cells. In BFE each corner receives

26 B. Guillard et al.

Table 6: Fitting to sparse point clouds, with di↵erent latent code initial-
izations: either from a code of the same garment type (left), or from a random code
(right). The table shows average Chamfer (CHD), image consistency (IC), and normal
consistency (NC) wrt. ground truth test garments. We report metrics for un-optimized
latent codes (Init.), after optimizing (LPC,mesh) using our method, and optimizing

either LPC,UDF or eLPC,UDF in the implicit domain.

Initialization: same class Initialization: random

Init. LPC,mesh LPC,UDF
eLPC,UDF Init. LPC,mesh LPC,UDF

eLPC,UDF

CHD (#) 20.45 3.54 4.54 4.69 129.51 3.64 4.59 4.60
IC (%,") 69.54 84.84 82.80 82.31 49.08 84.70 83.22 82.94
NC (%,") 74.54 86.85 80.68 86.35 56.74 86.96 84.20 86.62

votes from a maximum of 6 neighbours with existing pseudo-signs. Since the
exploration starts from one cell and proceeds breadth-first, for the vast majority
of corners only a smaller number of neighbours will actually vote, decreasing the
total number of dot products.

5.6 Optimization from random initial latent codes

In Tab. 6 we reproduce the experiment from Sec. 4.3 and fit latent codes using
sparse point clouds, but start from random latent codes instead of codes from
a similar semantic class. This shows that the latter is not even a requirement
because, despite starting from much worse initializations, our approach still suc-
ceeds better than direct supervision on the UDF values. Starting with latent
codes of the same object category remains a plausible scenario because such
codes could be provided by a regressor.

5.7 Additional results

Comparison of UDF meshing methods: In light grey are our open surface recon-
structions ; In dark grey we display the ✏-inflated baseline that yields wrongly
inflated meshes.

In Fig. 16 we show additional results of our method applied to mesh the
UDF regressed from NDF [11] from sparse input point clouds. In Fig. 17, we
mesh the UDF predicted by AnchorUDF [39] from input images. In Fig. 18,
we compare our meshing method to the ✏-inflation baseline for other garment
samples reconstructed by an auto-decoder network.

MeshUDF: Fast and Di↵erentiable Meshing of UDF networks 27

Fig. 16: Using our approach to triangulate the outputs of NDF [11]. For 8
examples we display the input to the network (a sparse point cloud), a mesh of the
predicted UDF mesh reconstructed by the ball pivoting method in more than 2 hours,
and a triangulation of the UDF generated using our method in less than 10 seconds.

Fig. 17: Using our approach to triangulate the outputs of AnchorUDF [39],
For 4 examples we display the input to the network (a color image), a point cloud of
the predicted UDF as originally provided by this network, and a triangulation of the
UDF generated using our method.

28 B. Guillard et al.

Fig. 18: Comparison of UDF meshing methods: Comparison of UDF meshing
methods: In light grey are our open surface reconstructions ; In dark grey we display
the ✏-inflated baseline that yields wrongly inflated meshes.

	MeshUDF: Fast and Differentiable Meshing of Unsigned Distance Field Networks

