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Abstract. Unsigned Distance Fields (UDFs) can be used to represent
non-watertight surfaces. However, current approaches to converting them
into explicit meshes tend to either be expensive or to degrade the accu-
racy. Here, we extend the marching cube algorithm to handle UDFs,
both fast and accurately. Moreover, our approach to surface extraction
is di↵erentiable, which is key to using pretrained UDF networks to fit
sparse data.
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Fig. 1: Meshing the UDF of a garment. We present front and top views. (a)
Inflating shapes to turn open surfaces into watertight ones [33,13,16] inherently reduces
accuracy by making the surface thicker, as shown in top view. (b) Triangulating a cloud
of 3D points collapsed on the 0-levelset [11] is time-consuming and tends to produce
rough surfaces. (c) Directly meshing the UDF using our approach is more accurate and
less likely to produce artifacts. In addition, it makes the iso-surface extraction process
di↵erentiable. (d) We mesh the UDF of a shirt and display it on a human body. The
three insets represent the ground truth shirt, the reconstruction with our method, and
the inflation approach, respectively. Our approach—in the upper right inset—produces
fewer artifacts and no penetrations with the body.
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1 Introduction

In recent years, deep implicit surfaces [29,27,8] have emerged as a powerful tool
to represent and manipulate watertight surfaces. Furthermore, for applications
that require an explicit 3D mesh, such as sophisticated rendering including com-
plex physical properties [28] or optimizing physical performance [4], they can
be used to parameterize explicit 3D meshes whose topology can change while
preserving di↵erentiability [1,31,16]. However, these approaches can only handle
watertight surfaces. Because common 3D datasets such as ShapeNet [7] con-
tain non-watertight meshes, one needs to preprocess them to create a watertight
outer shell [29,34]. This is time consuming and ignores potentially useful inner
components, such as seats in a car. An alternative is to rely on network initial-
ization or regularization techniques to directly learn from raw data [2,3] but this
significantly slows down the training procedure.

This therefore leaves open the problem of modeling non-watertight surfaces
implictly. It has been shown in [11,35,33,13] that occupancy fields and signed
distance functions (SDFs) could be replaced by unsigned ones (UDFs) for this
purpose. However, unlike for SDFs, there are no fast algorithms to directly mesh
UDFs. Hence, these methods rely on a two-step process that first extracts a dense
point cloud that can then be triangulated using slow standard techniques [5].
Alternatively, non-watertight surfaces can be represented as watertight thin ones
surrounding them [13,16,33]. This amounts to meshing the ✏ iso-surface of an
UDF using marching cubes [26], for ✏ being a small strictly positive scalar.
Unfortunately, that degrades reconstruction accuracy because the thin surfaces
cannot be infinitely so, as ✏ cannot be arbitrarily small. Furthermore, some
applications such as draping simulation [21,32,17] require surfaces to be single-
faced and cannot be used in conjunction with this approach.

In this paper, we first show that marching cubes can be extended to UDFs
by reasoning on their gradients. When neighboring gradients face in opposite
directions, this is evidence that a surface element should be inserted between
them. We rely on this to replace the sign flips on which the traditional marching
cube algorithm depends and introduce a new approach that exploits the gradi-
ents instead. This yields vertices and facets. When the UDF is parameterized
by latent vectors, we then show that the 3D position of these vertices can be
di↵erentiated with respect to the latent vectors. This enables us to fit the output
of pre-trained networks to sparse observations, such as 3D points on the surface
of a target object or silhouettes of that object.

In short, our contribution is a new approach to meshing UDFs and pa-
rameterizing 3D meshes to model non-watertight surfaces whose topology can
change while preserving di↵erentiability, which is something that had only been
achieved for watertight surfaces before. We use it in conjunction with a learned
shape prior to optimize fitting to partial observations via gradient descent.
We demonstrate it achieves better reconstruction accuracy than current deep-
learning based approaches to handling non-watertight surfaces, in a fraction of
the computation time, as illustrated by Fig. 1. Our code is publicly available at
https://github.com/cvlab-epfl/MeshUDF/ .

https://github.com/cvlab-epfl/MeshUDF/
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2 Related Work

Deep implicit surfaces [29,27,8] have proved extremely useful to model watertight
surfaces using occupancy grids and SDFs, while non-watertight surfaces can be
handled either using UDFs or inflating an SDF around them. As meshing al-
most always involves using a version of the classic marching cube algorithm [26],
we discuss these first. We then review recent approaches to representing non-
watertight surfaces using implicit surfaces.

Triangulating an Implicit Field. Marching cubes was originally proposed in [26]
and refined in [10,25,22] to triangulate the 0-isosurface of a 3D scalar field. It
marches sequentially across cubic grid cells and if field values at neighboring cor-
ners have opposing signs, triangular facets are created according to a manually
defined lookup table. Vertices of these triangle facets are adjusted by linear in-
terpolation over the field values. Since then, newer methods have been developed
such as dual methods [19]. They are better at triangulating surfaces with sharp
edges at the expense of increased complexity and requiring a richer input. Hence,
due to its simplicity and flexibility, along with the availability of e�cient imple-
mentations, the original algorithm of [22] remains in wide use [27,29,30,18,34].
More recently, [9] proposed a data driven approach at improving sharp features
reconstructed by marching cubes. Even though marching cubes is not di↵eren-
tiable, it has been shown that gradients can be estimated for surface points,
thus allowing backpropagation [1,31]. However, this approach requires surface
normals whose orientation is unambiguous, which makes it impractical when
dealing with non-watertight surfaces.

Triangulating Implicit Non-Watertight Surfaces. Unfortunately, neither the orig-
inal marching cubes algorithm nor any of its recent improvements are designed
to handle non-watertight surfaces. One way around this is to surround the tar-
get surface with a thin watertight one [13,16,33], as shown in Fig. 1(a). One can
think of the process as inflating a watertight surface around the original one.
Marching cubes can then be used to triangulate the inflated surface, but the
result will be some distance away from the target surface, resulting in a loss
of accuracy. Another approach is to sample the minimum level set of an UDF
field, as in NDF [11] and AnchorUDF [35]. This is done by projecting randomly
initialized points on the surface using gradient descent. To ensure full coverage,
points are re-sampled and perturbed during the process. This produces a cloud,
but not a triangulated mesh with information about the connectivity of neigh-
boring points. Then the ball-pivoting method [5], which connects neighboring
points one triplet at a time, is used to mesh the cloud, as shown in Fig. 1(b). It
is slow and inherently sequential.

3 Method

We now present our core contribution, a fast and di↵erentiable approach to
extracting triangulated isosurfaces from unsigned distance fields produced by a
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neural network. Let us consider a network that implements a function

� : RC ⇥ R3 ! R+ , (1)

z,x 7! s ,

where z 2 RC is a parameter vector; x is a 3D point; s is the Euclidean distance
to a surface. Depending on the application, z can either represent only a latent
code that parameterizes the surface or be the concatenation of such a code
and the network parameters. In Sec. 3.1, we propose an approach to creating a
triangulated mesh M = (V, F ) with vertices V and facets F from the 0-levelset
of the scalar field �(z, ·). Note that it could also apply to non-learned UDFs,
as shown in the supplementary material. In Sec. 3.2, we show how to make the
vertex coordinates di↵erentiable with respect to z. This allows refinement of
shape codes or network parameters with losses directly defined on the mesh.

3.1 From UDF to Triangulated Mesh

Surface Detection within Cells As in standard marching cubes [26], we first
sample a discrete regular grid G in the region of interest, typically [�1, 1]3. At
each location xi 2 G we compute

ui = �(z,xi) , gi = rx�(z,xi) ,

where ui is the unsigned distance to the implicit surface at location xi, and
gi 2 R3 is the gradient computed using backpropagation. Given a cubic cell and
its 8 corners, let (u1, ..., u8), (x1, ...,x8), and (g1, ...,g8) be the above values in
each one. Since all ui are positive, a surface traversing a cell does not produce
a sign flip as it does when using an SDF. However, when corners xi and xj lie
on opposite sides of the 0-levelset surface, their corresponding vectors gi and
gj should have opposite orientations, provided the surface is su�ciently smooth
within the cell. Hence, we define a pseudo-signed distance

si = sgn(g1 · gi)ui , (2)

where x1 is one of the cell corners that we refer to as the anchor. x1 is assigned
a positive pseudo-signed distance and corners where the gradient direction is
opposite to that at x1 a negative one. When there is at least one negative si, we
use marching cubes’ disjunction cases and vertex interpolation to reconstruct a
triangulated surface in the cell. Computing pseudo-signs in this way is simple
but has two shortcomings. First, it treats each cell independently, which may
cause inconsistencies in the reconstructed facets orientations. Second, especially
when using learned UDF fields that can be noisy [33], the above smoothness
assumption may not hold within the cells. This typically results in holes in the
reconstructed meshes.

To mitigate the first problem, our algorithm starts by exploring the 3D grid
until it finds a cell with at least one negative pseudo-sign. It then uses it as the
starting point for a breadth-first exploration of the surface. Values computed at
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Fig. 2: Voting. (a) Corner xi of cell c has
3 neighbors that already have a pseudo-sign
and vote. (b) The projections of gi and gk1

on the edge connecting the two neighbors face
each other. Thus xk1 votes for xi having the
same sign as itself (-). The other two neigh-
bors vote for � as well given the result of
computing Eq. 3.

(a) (b)

Fig. 3: Removing artifacts. (a)
Given the blue 0-level surface, the red
cell has gradients in opposing direc-
tions and yields an undesirable face.
We prune these by evaluating the
UDF on reconstructed faces. (b) Ini-
tially reconstructed borders are uneven
(top). We smooth them during post-
processing (bottom).

any cell corner are stored and never recomputed, which ensures that the normal
directions and interpolated vertices are consistent in adjacent cells. The process
is repeated to find other non-connected surfaces, if any. To mitigate the second
problem we developed a more sophisticated method to assign a sign to each cell
corner. We do so as described above for the root cell of our breadth-first search,
but we use the voting scheme depicted by Fig. 2 for the subsequent ones. Voting
is used to aggregate information from neighboring nodes to estimate pseudo-sign
more robustly. Each corner xi of a cell under consideration receives votes from
all adjacent grid points xk that have already been assigned a pseudo-sign, based
on the relative directions of their gradients and the pseudo-sign of xk. Since
gradients locally point towards the greatest ascent direction, if the projections
of gi and gk along the edge connecting xi and xk face each other, there is no
surface between them and the vote is in favor of them having the same sign:
vik = sgn(sk). Otherwise, the vote depends on gradient directions and we take
it to be

vik = (gi · gk)sgn(sk) (3)

because the more the gradients are aligned, the more confident we are about the
two points being on the same side of the surface or not, depending on the sign
of the dot product. The sign of the sum of the votes is assigned to the corner.

If one of the xk is zero-valued its vote does not contribute to the scheme, but
it means that there is a clear surface crossing. This can happen when meshing
learned UDF fields at higher resolutions, because their 0-level set can have a non-
negligible volume. Thus, the first non-zero grid point along its direction takes its
place in the voting scheme, provided that it has already been explored. To further
increase the reliability of these estimates, grid points with many disagreeing votes
are put into a lower priority queue to be considered later, when more nearby grid
points have been evaluated and can help produce a more consistent sign estimate.
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In practice we only perform these computations within cells whose average UDF
values of (u1, ..., u8) are small. Others can be ignored, thus saving computation
time and filtering bad cell candidates which have opposing gradients but lie far
from the surface.

Global Surface Triangulation The facets that the above approach yields are
experimentally consistent almost everywhere, except for a small number of them,
which we describe below and can easily remove in a post-processing stage. Note
that the gradients we derive in Sec. 3.2 do not require backpropagation through
the iso-surface extraction. Hence, this post-processing step does not compromise
di↵erentiability.

Removing Spurious Facets and Smoothing Borders. As shown in Fig. 3 (a), facets
that do not correspond to any part of the surfaces can be created in cells with
gradients pointing in opposite directions without intersecting the 0-levelset. This
typically happens near surface borders because our approach tends to slightly
extend them, or around areas with poorly approximated gradients far from the
surface in the case of learned UDF fields. Such facets can be detected by re-
evaluating the distance field on all vertices. If the distance field for one vertex
of a face is greater than half the side-length of a cubic cell, it is then eliminated.
Moreover, since marching cubes was designed to reconstruct watertight surfaces,
it cannot handle surface borders. As a result, they appear slightly jagged on
initial reconstructions. To mitigate this, we apply Laplacian smoothing on the
edges belonging to a single triangle. This smoothes borders and qualitatively
improves reconstructions, as shown in Fig. 3 (b).

3.2 Di↵erentiating through Iso-Surface Extraction

Let v 2 R3 be a point on a facet reconstructed using the method of Sec. 3.1. Even
though di↵erentiating v directly through marching cubes is not possible [23,31],
it was shown that if � were an SDF instead of an UDF, derivatives could be
obtained by reasoning about surface inflation and deflation [1,31]. Unfortunately,
for an UDF, there is no ”in” or ”out” and its derivative is undefined on the surface
itself. Hence, this method does not directly apply. Here we extend it so that it
does, first for points strictly within the surface, and then for points along its
boundary.

Derivatives within the Surface. Let us assume that v 2 R3 lies within a facet
where the surface normal n is unambiguously defined up to its orientation. Let
us pick a small scalar value ↵ > 0 and consider

v+ = v + ↵n and v� = v � ↵n ,

the two closest points to v on the ↵-levelset on both sides of the 0-levelset. For
↵ small enough, the outward oriented normals at these two points are close to
being n and �n. We can therefore use the formulation of [1,31] to write

@v+

@z
⇡ �n

@�

@z
(z,v+) and

@v�
@z

⇡ n
@�

@z
(z,v�) . (4)
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Fig. 4: Iso-surface deformation: (a)
v on the 0-levelset, v+ and v� at dis-
tance ↵ ; (b) v moves to v0 if the UDF
decreases at v+ and increases at v�.
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Fig. 5: Iso-surface shrinkage or ex-
tension: (a) with v on the border of
the 0-levelset, we place vo at a distance
↵ in the direction of o ; (b) If the UDF
increases at vo, v moves to v0.

Since v = 1
2 (v� + v+), Eq. 4, yields

@v

@z
⇡ n

2


@�

@z
(z,v � ↵n) � @�

@z
(z,v + ↵n)

�
. (5)

We provide a more formal proof and discuss the validity of the approximation
in appendix. Note that using n0 = �n instead of n yields the same result.
Intuitively, this amounts to surrounding the 0-levelset with ↵-margins where
UDF values can be increased on one side and decreased on the other, which
allows local deformations perpendicular to the surface. Fig. 4 (a) depicts the
arrangement of v, v+ and v� around the surface. The derivative of Eq. 5 implies
that infinitesimally increasing the UDF value at v� and decreasing it at v+

would push v in the direction of n, as shown in Fig. 4 (b), and conversely. In
practice, we use ↵ = 10�2 in all our experiments.

Derivatives at the Surface Boundaries. Let us now assume that v sits on the
edge of a boundary facet. Mapping it to v+ and v� and using the derivatives of
Eq. 5 would mean that all deformations are perpendicular to that facet. Thus, it
does not permit shrinking or expanding of the surface during shape optimization.
In this setting, there is a whole family of closest points to v in the ↵-levelset;
they lay on a semicircle with radius ↵. To allow for shrinkage and expansion,
we map v to the semicircle point along o, a vector perpendicular to the edge,
pointing outwards, and within the plane defined by the facet. Hence, we consider
the point vo which is the closest to v on the ↵-levelset in the direction of o:

vo = v + ↵o (6)

For ↵ small enough, the outward oriented normal at vo is o and we again use
the formulation of [1,31] and Eq. 6 to write

@vo

@z
= �o

@�

@z
(z,vo) and

@v

@z
= �o

@�

@z
(z,v + ↵o) , (7)

which we use for all points v on border edges. As shown in Fig. 5, this implies
that increasing the UDF value at vo would push v inwards and make the surface
shrink. Conversely, decreasing it extends the surface in the direction of o.



8 B. Guillard et al.

4 Experiments

We demonstrate our ability to mesh UDFs created by deep neural networks. To
this end, we first train a deep network to map latent vectors to UDFs representing
di↵erent garments, that is, complex open surfaces with many di↵erent topologies.
We then show that, given this network, our approach can be used to e↵ectively
triangulate these garments and to model previously unseen ones. Next, we plug
our triangulation scheme into existing UDF networks and show that it is a
straightforward operation. Finally, the benefit of the border gradients of Sec. 3.2
is evaluated. The voting scheme proposed in Sec. 3.1 is ablated in appendix,
where more qualitative results are also shown.

4.1 Network and Metrics

Our approach is designed to triangulate the output of networks that have been
trained to produce UDF fields. To demonstrate this, we use an auto-encoding
approach [29] with direct supervision on UDF samples on the MGN dataset [6]
to train a network �✓ that maps latent vectors of dimension 128 to UDFs that
represent garments. These UDFs can in turn be triangulated using our algorithm
to produce meshes such as those of Fig. 1. We provide details of this training pro-
cedure in the supplementary material. The MGN dataset comprises 328 meshes.
We use 300 to train �✓ and the remaining 28 for testing. For comparison pur-
poses, we also use the publicly available pre-trained network of NDF [11] that
regresses UDF from sparse input point clouds. It was trained on raw ShapeNet [7]
meshes, without pre-processing to remove inner components make them water-
tight or consistently orient facets.

To compare the meshes we obtain to the ground-truth ones, we evaluate the
following three metrics (details in the supplementary material):

– The Chamfer distance (CHD) measures the proximity of 3D points sam-
pled from the surfaces, the lower the better.

– The Image consistency (IC) is the product of IoU and cosine similarity of
2D renderings of normal maps from 8 viewpoints, the higher the better.

– The Normal consistency (NC) quantifies the agreement of surface normals
in 3D space, the higher the better.

4.2 Mesh Quality and Triangulation Speed

Fig. 1 was created by triangulating a UDF produced by �✓ using either our
meshing procedure (Ours) or one of two baselines:

– BP. It applies the ball-pivoting method [5] implemented in [12] on a dense
surface sampling of 900k points, as originally proposed in [11] and also used
in [35]. Surface points are obtained by gradient descent on the UDF field.

– Inflation [16,33,13]. It uses standard marching cubes to mesh the ✏-isolevel
of the field, with ✏ > 0.
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Table 1: Comparing UDF meshing methods. Average Chamfer (CHD), image
consistency (IC), normal consistency (NC) and processing time for 300 garments (left)
and 300 ShapeNet cars (right). We use a single UDF network in each case and only
change the meshing procedure. For BP, we decompose the time into sampling and
meshing times.

Garments, �✓ network Cars, NDF network [11]
BP Inflation Ours BP Inflation Ours

CHD (#) 1.62 3.00 1.51 6.84 11.24 6.63
IC (%, ") 92.51 88.48 92.80 90.50 87.09 90.87
NC (%, ") 89.50 94.16 95.50 61.50 73.19 70.38
Time (#) 16.5s + 3000s 1.0 sec. 1.2 sec. 24.7s + 8400s 4.8 sec. 7.1 sec.

In Tab. 1 (left), we report metrics on the 300 UDF fields �✓(zi, ·) for which we
have latent codes resulting from the above-mentioned training. Inflation and
Ours both use a grid size of 1283 over the [�1, 1]3 bounding box, and we set
Inflation’s ✏ to be 55% of marching cubes’ step size. In Tab. 1 (right) we also
report metrics for the pretrained NDF network [11] tested on 300 ShapeNet cars,
in which case we increase Inflation and Ours resolution to 1923 to account for
more detailed shapes. An example is shown in Fig. 9 The experiments were run
on a NVidia V100 GPU with an Intel Xeon 6240 CPU.

As shown on the left of Table. 1, Ours is slightly more accurate than NDF in
terms of all three metrics, while being orders of magnitude faster. Inflation is
even faster—this reflects the overhead our modified marching cube algorithm
imposes—but far less accurate. To show that this result is not specific to gar-
ments, we repeated the same experiment on 300 cars from the ShapeNet dataset
and report the results on the right side of Table. 1. The pattern is the same
except for NC, which is slightly better for Inflation. We conjecture this to be
a byproduct of the smoothing provided by Inflation, which is clearly visible in
Fig. 1(a,c). To demonstrate that these results do not depend on the specific
marching cube grid resolution we chose, we repeated the experiment for grid
resolutions ranging from 64 to 512 and plot the average CHD as a function of
resolution in Fig. 6. It remains stable over the whole range. For comparison pur-
poses, we also repeated the experiment with Inflation. Each time we increase
the resolution, we take the ✏ value that defines the iso-surface to be triangu-
lated to be 10% greater than half the grid-size, as shown in Fig. 7. At very high
resolution, the accuracy of Inflation approaches Ours but that also comes at a
high-computational cost because operating on 512 ⇥ 512 ⇥ 512 cubes instead of
128⇥128⇥128 ones is much slower, even when using multi-resolution techniques.

4.3 Using Di↵erentiability to Fit Sparse Data

Given the trained network �✓ and latent codes for training shapes from Sec. 4.2,
we now turn to recovering latent codes for the remaining 28 test garments. For
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2.00 1.76

Ours
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Fig. 6: CHD as a function of grid
resolution. between reconstructed and
ground truth meshes, averaged over the
300 training garments of MGN. Ours

yields constantly accurate meshes, Infla-
tion deforms the shapes at low resolutions.

s
2✏ 2✏

Fig. 7: Choosing ✏ for Inflation . when
meshing a UDF’s ✏ iso-level with standard
marching cubes, the value of ✏ is lower
bounded by half the step size s. Left:
2✏ < s yields many large holes. Right:
2✏ � s yields a watertight mesh.

Table 2: Fitting to sparse point clouds. The table shows average Chamfer (CHD),
image consistency (IC), and normal consistency (NC) wrt. ground truth test garments.
We report metrics for un-optimized latent codes (Init.), after optimizing (LPC,mesh)

using our method, and optimizing either LPC,UDF or eLPC,UDF in the implicit domain.
(a) A sparsely sampled ground truth mesh. (b) Mesh reconstructed by mimimizing

LPC,mesh, (c) LPC,UDF , (d) eLPC,UDF .

Init. LPC,mesh LPC,UDF
eLPC,UDF

CHD (#) 20.45 3.54 4.54 4.69
IC (%,") 69.54 84.84 82.80 82.31
NC (%,") 74.54 86.85 80.68 86.35

(a) (b) (c) (d)

each test garment Gj , given the UDF representing it, this would be a simple
matter of minimizing the mean square error between it and the field �✓(z, ·)
with respect to z, which does not require triangulating. We therefore consider
the more challenging and more realistic cases where we are only given eiter small
set of 3D points Pj—in practice we use 200 points—or silhouettes and have to
find a latent vector that generates the UDF that best approximates them.

Fitting to 3D points. One way to do this is to remain in the implicit domain
and to minimize one of the two loss functions

LPC,UDF (Pj , z) = 1
|Pj |

X

p2Pj

|�✓(z, p)| , (8)

eLPC,UDF (Pj , z) = LPC,UDF (Pj , z) + 1
|A|

X

a2A

|�✓(z, a) � min
p2Pj

ka� pk2 | ,
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Table 3: Fitting to silhouettes. Average Chamfer (CHD), image consistency (IC),
and normal consistency (NC) wrt. ground truth test garments. We report metrics for
un-optimized latent codes (Init.), using our method to minimize (Lsilh,mesh), and by
minimizing (Lsilh,UDF ) in the implicit domain. (a) Mesh reconstructed by minimizing
Lsilh,mesh. (b,c) Superposition of a target silhouette (light gray) and of the recon-
structions (dark gray) by minimizing Lsilh,UDF or Lsilh,mesh. Black denotes perfect
alignment and shows that the Lsilh,UDF mesh is much better aligned.

Init. Lsilh,mesh Lsilh,UDF

CHD 20.45 9.68 12.74
IC 69.54 79.90 74.46
NC 74.54 81.37 80.70

(a) (b) (c)

where A is a set of randomly sampled points. Minimizing LPC,UDF means that
the given Pj points must be on the zero-level surface of the UDF. Minimizing
eLPC,UDF means that, in addition, the predicted UDF evaluated at points of
A must match the approximated UDF computed from Pj . Since the latter is

sparse, eLPC,UDF only provides an approximate supervision.
An alternative is to use our approach to triangulate the UDFs and minimize

the loss function

LPC,mesh(Pj , z) = 1
|Pj |

X

p2Pj

min
a2Mz

ka� pk2 , (9)

where a 2 Mz means sampling 10k points a on the triangulate surface of Mz.
Minimizing LPC,mesh means that the chamfer distance between the triangulated
surfaces and the sample points should be small. Crucially, the results of Sec. 3.2
guarantee that LPC,mesh is di↵erentiable with respect to z, which makes mini-
mization practical. We tried minimizing the three loss functions defined above.
In each case we started the minimization from a randomly chosen latent vector
for a garment of the same type as the one we are trying to model, which corre-
sponds to a realistic scenario if the initial estimate is provided by an upstream
network. We report our results in Tab. 2. Minimizing LPC,mesh clearly yields
the best results, which highlights the usefulness of being able to triangulate and
to di↵erentiate the result.

Fitting to Silhouettes. We now turn to the problem of fitting garments to ras-
terized binary silhouettes. Each test garment j is rendered into a front-facing
binary silhouette Sj 2 {0, 1}256⇥256. Given Sj only, our goal is to find the latent
code zj that best encodes j. To this end, we minimize

Lsilh,mesh(Sj , z) = L1(rend(Mz), Sj) , (10)

where rend is a di↵erentiable renderer [20] that produces a binary image of the
UDF triangulation Mz and L1(·) is the L1 distance. Once again, the di↵erentia-
bility of Mz with respect to z is key to making this minimization practical.



12 B. Guillard et al.

Table 4: Ablation Study. Average Chamfer (CHD), image consistency (IC), and
normal consistency (NC) for test garments using either our full approach to computing
gradients (normals + border) vs. computing the gradients everywhere using only the
formula of Eq. 5. (normals).

Fitting Metric
Gradients:
normals

Gradients:
normals + border

Point cloud,
LPC,mesh

CHD 3.75 3.54
NC 84.28 84.84
IC 86.71 86.76

Silhouette,
Lsilh,mesh

CHD 10.45 9.68
IC 78.84 79.90
NC 80.86 81.37

In theory, instead of rendering a triangulation, we could have used an UDF
di↵erential renderer. Unfortunately, we are not aware of any. Approaches such as
that of [24] rely on finding sign changes and only work with SDFs. In contrast,
CSP-Net [33] can render UDFs without meshing them but is not di↵erentiable.
To provide a baseline, we re-implemented SMPLicit’s strategy [13] for fitting a
binary silhouette by directly supervising UDF values. We sample a set of points
P ⇢ [�1, 1]3, and project each p 2 P to Sj using the front-facing camera c to
get its projected value sp. If sp = 1, point p falls within the target silhouette,
otherwise it falls into the background. SMPLicit’s authors advocate optimizing
z by summing

Lsilh,UDF (Sj , z) =

(
|�✓(z, p) � dmax| if sp = 0

min
p̄ s.t. c(p̄)=c(p)

|�✓(z, p̄)| if sp = 1 . (11)

on p 2 P . That is, points projecting outside the silhouette (sp = 0) should have
a UDF value equal to the clamping value dmax. For points projecting inside the
silhouette, along a camera ray we only consider p̄, the closest point to the current
garment surface estimate and its predicted UDF value should be close to 0. We
report our results in Tab. 3. Minimizing Lsilh,mesh yields the best results, which
highlights the benefits of pairing our method with a di↵erentiable mesh renderer.

Ablation Study. We re-ran the optimizations without the border derivative
term of Eq. 7, that is, by computing the derivatives everywhere using the expres-
sion of Eq. 5. As can be seen in Tab. 4, this reduces performance and confirms
the importance of allowing for shrinkage and expansion of the garments.

4.4 Di↵erentiable Topology Change

A key feature of all implicit surface representations is that they can represent
surfaces whose topology can change. As shown in Fig. 8, our approach allows us
to take advantage of this while simultaneously creating a mesh whose vertices
have associated spatial derivatives. To create this example, we started from a
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(a) (b) (c)

Fig. 8: Optimization with a change in topology: (a) Starting mesh associated to
the initial latent code z = zstart ; (b) Optimizing z with gradient descent by applying
a 3D Chamfer loss between the reconstructed mesh and a target shape shown in (c).
During optimization, the latent code takes values that do not correspond to valid
garments, hence the tears in our triangulations. Nevertheless, it eventually converges
to the desired shape.

Fig. 9: Using our approach to triangulate the outputs of NDF [11] (left) and
AnchorUDF [35] (right). In both cases, we display the input to the network, a point
cloud in one case and a color image in the other, the dense cloud of points that is the
final output of these methods, and a triangulation of the UDF they compute generated
using our method.

latent code for a pair of pants and optimized with respect to it to create a new
surface that approximates a sweater by minimizing the CHD loss of Eq. 9 over
10k 3D points on that sweater. The topology changes that occur on the mesh
representing the deforming shape do not create any di�culties.

4.5 Generalization to other UDF Networks

To show that our meshing procedure is applicable as-is to other UDF-based
methods, we use it downstream of publicly available pre-trained networks. In
Fig. 9 (bottom) we mesh the outputs of the garment reconstruction network
of AnchorUDF [35]. In Fig. 9 (top) we apply it to the point cloud completion
pipeline of NDF [11]. Both these methods output dense point clouds surface,
which must then be meshed using the time-costly ball pivoting algorithm. In-
stead, our method can directly mesh the UDF and does so in a fraction of the
time while preserving di↵erentiability. That makes the whole algorithm suitable
for inclusion into an end-to-end di↵erentiable pipeline.

4.6 Limitations

Reliance on learned UDF fields. The proposed method can mesh the zero-surface
of an unsigned distance field. In practice however, UDF fields are approximated
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with neural networks, and we find it di�cult to learn a sharp 0-valued surface for
networks with small capacities. It can for example happen that the approximate
UDF field is not reaching zero, or that the zero surface thickens and becomes a
volume, or that the gradients are not approximated well enough. In such cases,
artifacts such as single-cell holes can appear when using our method at a high
resolution. Note that applying our method to a real UDF would not exhibit such
issues. By comparison however, applying marching cubes on an approximate
and poorly learned SDF is more robust since it only requires the field to be
continuous and to have a zero crossing to produce artifact-free surfaces. UDF
networks could be made more accurate by using additional loss terms [15] or
an adaptive training procedure [14], but this research direction is orthogonal to
the method proposed in this paper. Moreover, similarly to [31] for SDFs, since
the proposed gradients rely on the field being an UDF, they cannot be used to
train a neural network from scratch. This would require network initialization
or regularization strategies to ensure it regresses valid UDF fields, a topic we see
as an interesting research direction.

Limitations of marching cubes. After locally detecting surface crossings via
the pseudo-sign computation, we rely on standard marching cubes for meshing
an open surface, which implies the need of a high resolution grid to detect high
frequency details, and cubic scalability over grid resolution. Moreover, marching
cubes was designed to handle watertight surfaces, and as a consequence some
topological cases are missing, for example at surface borders or intersections.
This could be remedied by detecting and handling such new cases with additional
disjunctions. Finally, the breadth-first exploration of the surface makes the ori-
entation of adjacent facets consistent with each other. However, non-orientable
surfaces such as Möbius-strips would intrisically produce juncture points with
inconsistent orientations when two di↵erent branches of the exploration reach
each other. In such points, our method can produce holes. Similarly, marching
cubes has geometric guarantees on the topology of reconstructed meshes, but
this is not true for the proposed method since there is no concept of inside and
outside in UDFs.

5 Conclusion

We have shown that deep-implicit non-watertight surfaces expressed in terms of
unsigned distance functions could be e↵ectively and di↵erentiably triangulated.
This provides an explicit parameterization of such surfaces that can be integrated
in end-to-end di↵erentiable pipelines, while retaining all the strengths of implicit
representations, mainly that a network can accurately represent shapes with
di↵erent topologies (jeans, sweater...) from the same latent space. In future work,
we will explore how it can be used to jointly optimize the pose and clothes of
people wearing loose attire.
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