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Abstract. In this paper, we propose a novel deep architecture tailored
for 3D point cloud applications, named as SPE-Net. The embedded “Se-
lective Position Encoding (SPE)” procedure relies on an attention mech-
anism that can effectively attend to the underlying rotation condition of
the input. Such encoded rotation condition then determines which part of
the network parameters to be focused on, and is shown to efficiently help
reduce the degree of freedom of the optimization during training. This
mechanism henceforth can better leverage the rotation augmentations
through reduced training difficulties, making SPE-Net robust against
rotated data both during training and testing. The new findings in our
paper also urge us to rethink the relationship between the extracted
rotation information and the actual test accuracy. Intriguingly, we re-
veal evidences that by locally encoding the rotation information through
SPE-Net, the rotation-invariant features are still of critical importance
in benefiting the test samples without any actual global rotation. We
empirically demonstrate the merits of the SPE-Net and the associated
hypothesis on four benchmarks, showing evident improvements on both
rotated and unrotated test data over SOTA methods. Source code is
available at https://github.com/ZhaofanQiu/SPE-Net.

1 Introduction

Pioneering efforts on 3D cloud point analysis have paid much attention on deal-
ing with rotated data. The challenge here is that existing 3D training architec-
ture usually lacks the ability to generalize well against rotated data. A natural
solution could have been introducing rotation augmentations. However, obser-
vations show that existing architectures failed to benefit much from augmen-
tations owing to the optimization difficulty and limited capacity of the net-
work. Even worse, training with augmented data also introduces adversary ef-
fect that hurts the inference performance when test data is not rotated. Many
works [3, 9, 10, 13, 25, 29, 49, 50] attempted to address this issue through con-
structing rotation-invariant frameworks and features. Nevertheless, it is shown
that rotation invariant features can still suffer evident performance drop when
test data is inherently not rotated.
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Fig. 1: Illustration of three different rotation conditions that SPE-Net models.

It therefore forms our main motivation to seek a training strategy that can
capture the rotation information and adaptively adjust the parameter optimiza-
tion based on such rotation condition. We illustrate the different types of rotation
conditions considered in this paper. Fig. 1. (a) top is an object without rota-
tion; Fig. 1. (a) middle illustrates an object that only exhibits Z-axis rotation;
Fig. 1 (a) bottom demonstrates the general scenario where an object is rotated
arbitrarily along all X-Y-Z axes. Why knowing the rotation information can be
critical? A loose analogy perhaps can be the modeling through some conditional
distribution p(θ|r) versus the marginal distribution p(θ), where the uncertainty
of variable θ always satisfies E[Var(θ|r)] ≤ Var(θ) for any random variables θ and
r. That being said, expected value of uncertainty on θ given observed evidence
on r would be guaranteed to reduce in comparison to total variance. If we view θ
as deep parameters, r as rotation condition, the optimization on θ can hopefully
be restricted and eased given prior knowledge r.

The design of SPE-Net in this paper devotes to the motivation described
above. SPE-Net aims to learn a compatibility function that can attend to the
actual rotation condition of the input. The training then enjoys a reduced de-
gree of freedom of the optimization based on such compatibility function, where
the rotation condition serves as useful prior knowledge, such as the r variable.
SPE-Net can henceforth flexibly benefit from stronger rotation training varia-
tions, without sacrificing much extra network capacity on encoding such global
variations. In the meanwhile, SPE-Net effectively spares the learning to focus on
finer local geometry structures, leading to better discriminative ability.

Essentially, the core SPE training unit consists of a critical attention mech-
anism and the special construction of “position encoding features”. In order to
abstract useful rotation conditions without exposure to rotation annotations,
SPE-Net jointly incorporates those three types of features that are sensitive to
different positions: rotation non-invariant features (CD), azimuthal rotation in-
variant features (Z-RI), and the general rotation-invariant features (A-RI). This
logic is briefly illustrated in Fig. 1 (b). As the training proceeds in fitting the
ground truths, the attention block gradually learns to capture the compatibility
response between a point and each of those three types of features, i.e., CD, Z-RI
or A-RI. Such learned attention then translates into the desired rotation infor-
mation that SPE-Net can later leverage on. SPE-MLP, i.e., the critical building
component of SPE-Net, is then enabled to adaptively discriminate and to attend
to the relevant rotation condition, using this prior knowledge to focus on finer
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local geometry structures learning. This would potentially relieve the overall op-
timization difficulties, as the training is effectively constrained with restricted
parameterization. Fig. 2 illustrates the overview of the SPE-Net architecture.

In brief summary, our contribution in this paper includes:
(1) We establish a new 3D point cloud training architecture, named SPE-

Net. The proposed SPE-Net is a novel paradigm that can efficiently encode the
rotation information of the input. This new architecture thus exhibits strong
robustness against rotated input both during training and testing.

(2) Further inspection into the SPE-Net reveals intriguing insights: We found
it beneficial to always incorporate the rotation-invariant features properly dur-
ing training, i.e., even if the test data does not exhibit any inherent global ro-
tation. We envision that rotation can take place in local regions. SPE-Net thus
exclusively benefits from a finer abstraction of both local and global rotation
information, leading to superior robustness against variations.

(3) We demonstrate the strong empirical advantage of SPE-Net over SOTA
methods. On challenging benchmarks such as ShapeNet, PartNet and S3DIS,
SPE-Net achieve more than 1% improvement, justifying the benefit through
enhanced robustness against rotation.

2 Related Work

Deep learning for point cloud analysis. The research in this direction has
proceeded along two different dimensions: projecting the point cloud or using
the original point cloud. For the first dimension, the original point clouds are
projected to intermedia voxels [22,32,54] or images [12,48], translating the chal-
lenging 3D analysis into the well-explored 2D problem. These works avoid the
direct process of irregular and unordered point cloud data, and show great ef-
ficiency benefited from the highly optimized implementation of convolutions.
Nevertheless, Yang et al. [47] highlight the drawback of the projection step that
loses the detailed information in point cloud, which limits the performances
of the subsequent deep models. To overcome this limitation, the works along
the second dimension utilize deep neural network to process the original point
cloud. The pioneering work PointNet [26] proposes to model unodered point
data through shared MLPs, and then is extended to PointNet++ [27] by learn-
ing hierarchical representations through point cloud down-sampling and up-
sampling. There are variants of approaches arisen from this methodology, which
mainly focus on improving the capture of local geometry. For example, convo-
lutions [8, 11, 14, 34, 37, 41, 45, 46, 51], graph models [16, 19, 31, 39, 52] and trans-
formers [6, 53] are utilized to model local relation between neighboring points.
Rotation-robust networks. To improve the robustness of the network for
rotation, a series innovations have been proposed to build rotation-equivariant
networks or rotation-invariant networks. The rotation-invariant networks [4, 17,
29, 30, 40] are required to produces the output features that are rotated corre-
spondingly with the input. For example, Spherical CNN [4] proposes to project
the point cloud into spherical space and introduces a spherical convolution equiv-
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ariant to input rotation. 3D steerable CNN [40] transfers the features into unit
quaternions, which naturally satisfied the rotation-equivariant property. Another
direction to enhance rotation-robustness is to learn rotation-invariant representa-
tions in networks. To achieve this, the rotation-invariant networks are derived by
using kernelized convolutions [25,29], PCA normalization [9,10,49] and rotation-
invariant position encoding [3, 13,50].

Our work also falls into the category of rotation-robust architecture for point
cloud analysis. Unlike the aforementioned methods that are required to guar-
antee the rotation-equivariant or rotation-invariant property, SPE-Net predicts
the rotation condition based on the training data and adaptively chooses the op-
timal position encoding function. Therefore, this design, on one hand, improves
the rotation robustness when the training data is manually rotated, and on the
other, keeps the high learning capacity when rotation invariance is not required.

3 SPE-Net

We elaborate our core proposal: the Selective Position Encoding Networks (SPE-
Net) in this section. The basic motivation is, if we have the knowledge of an-
other random variable, i.e., the rotation condition r of the input, we can use this
knowledge to potentially reduce the expected uncertainty of the parameteriza-
tion. This is because Var(θ) = E(Var(θ|r)) + Var(E(θ|r)) for arbitrary θ and r.
Note E[θ|r] is a function of r by definition. If the three constructed features CD,
Z-RI, and A-RI measurements can respond drastically different to the actual ro-
tation condition r of the input, showing different prediction behaviors, then the
value Var(E(θ|r)) would likely to be non-zero in our 3D context. This then leads
to reduced uncertainty on the parameter estimation θ, i.e., Var(θ) ≥ E(Var(θ|r)).
That forms a principled incentive of our SPE-Net to ease the optimization and
to improve the prediction given prior knowledge on rotation condition r.

3.1 Overall Architecture Flow

The upper part of Fig. 2 illustrates an overview of the SPE-Net. The basic archi-
tecture construction follows the philosophy of CNNs [7, 33], where the channel
dimension increases while the point number reduces and the layer goes deeper.

Points embedding. The 3D point cloud input is of size 3 × N , where N
denotes the number of input points. SPE-Net firstly takes the input and embeds
each query point with the information from its K-nearest neighboring points. In
detail, the 3-dimensional coordinate of each point is firstly mapped into a feature
fi of higher dimension C1 > 3 by using a shared linear embedding layer. An SPE-
MLP operation then applies on the input fi feature to further encapsulate the
context feature from its neighboring points. Such point embedding module finally
outputs features with a shape of C1 ×N .

Multi-stage architecture. After the point embedding, several subsequent
SPE-Blocks operate on the embedding out of the SPE-MLP layer. The overall
structure can be grouped into five sequential stages, as illustrated in Fig. 2. In
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Fig. 2: An overview of our proposed Selective Position Encoding Networks (SPE-
Net). It mainly consists of five stages of each stacks several SPE-Blocks. The
first SPE-Block in each stage, called strided SPE-Block, increases the channel
dimension while reduces the number of points. The size of output feature map
is given as num of channels× num of points for each stage.

each stage, the building block named Strided SPE-Block increases the number
of channels and down-samples the points. The feature resolutions are preserved
in the following SPE-Blocks within the same stage. The number of SPE-Blocks
{N1∼5} and channel dimensions {C1∼5} are considered as predefined hyperpa-
rameters that can be tailored for different point cloud analysis of different scales.

Residual block. Each residual block is composed of a shared fully-connected
layer, an SPE-MLP operation and another shared fully-connected layer. The
two fully-connected layers are utilized to respectively reduce and to recover the
channel dimension, which behave similarly to the bottleneck structure in ResNet.
Batch normalization is applied after each fully-connected layer.

3.2 SPE-MLP

Here we introduce the Selective Position Encoding MLP (SPE-MLP), our core
learning unit. SPE-MLP builds upon traditional “point-wise MLP” structure
while it provides further unique advantage in optimization from more restricted
region of parameterisation. SPE-MLP can effectively predict the rotation con-
dition r of the input, and using this knowledge to both ease the training and
improve the test accuracy.

Position feature encoding. SPE-MLP operates by computing a compati-
bility function between each query and a couple of constructed position encoding
functions applied on the query. The hypothesis here is that each constructed po-
sition feature encoding function can respond discriminatively towards different
rotation conditions of training data, thus effectively revealing a point’s depen-
dency with certain types of rotation condition. While the training proceeds, the
compatibility function gradually learns to attend to the relevant position en-
coding functions according to how well such attention r can reduce the total
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Fig. 3: An illustration of three position encoding functions including CD position
encoding (a), Z-RI position encoding (b,c) and A-RI position encoding (d, e, f).
The blue, orange and green points are the query, neighboring and support
points, respectively.

training risks. The attention information would then efficiently convert to the
potential rotation condition r of the input. We define three such position encod-
ing functions that is practically suitable for our hypothesis, shown as in Fig.3.
These constructed position encoding functions are described as following.

(a) Coordinate difference (CD) encoding. In the PointNet-style networks,
the function called “coordinate difference” is usually exploited as the position
encoding function. Formally, given the coordinate of query point pi and its
neighborhood pj , the CD position encoding is calculated by

PCD(pi,pj) = pj − pi = [∆xi,j , ∆yi,j , ∆zi,j ]. (1)

CD position encoding is straightforward and shows promising performances
in [20, 26, 27, 39]. However, such encoding strategy generalizes poorly against
rotation variations, since the feature construction is non-invariant against rota-
tion variations. The phenomenon is also reported in recent works [3,10,13,44,50].
Nevertheless, this phenomenon forms basic evidence that supports our hypoth-
esis: the objects having actual rotations indeed would inherently show much
weaker response on CD features during training.

(b) Z-axis rotation-invariant (Z-RI) encoding. The second feature encoding
function must be complementary to the above CD feature function so that the
desired attention mechanism is discriminative. We firstly adopt the most simple
heuristic that 3D objects usually merely exhibit rotation around the Z-axis (az-
imuthal rotation). In Eq.(1), only the coordinate difference ∆zi,j along Z-axis
is Z-axis rotation-invariant. In order to better encode the relative position in-
formation along the other two axes, we further project the query point and its
neighboring points to X-Y 2D plane, and utilize the distances between projected
query p′i, neighboring point p′i,j and origin point, along with the angle θ′i,j as the
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encoded representation. Specifically, the Z-RI position encoding is formulated as

PZ-RI(pi,pj) = [∆zi,j , r
′
i,j , r

′
i, r

′
j , θ

′
i,j ]. (2)

The construction of the Z-RI position feature encoding is intended to show best
compatibility response with the training data having azimuthal rotation, while
showing weaker response towards alternative rotation conditions.

(c) Arbitrary rotation-invariant (A-RI) encoding. The most general yet com-
plex scenario is when arbitrary rotation takes place in 3D space. Compared to
Z-axis rotation (azimuthal rotation), arbitrary rotation naturally incurs more
complexity in parameterization using θ. It is also challenging to construct arbi-
trary rotation-invariant representation with only query point and its neighboring
points. Therefore, by following [13], we additionally include two support points,
i.e., the center point of neighborhoods mi and the intersection si between the
query ball and line extended from origin to query point. The center point is
defined as the neighboring point having the minimum averaged distance from
the other neighboring points. Eventually, A-RI position encoding consists of the
distances among query, support and neighboring points, and the angle from
si − pi −mi plane to si − pi − pi,j plane:

PA-RI(pi,pj) = [ri, rms,i, rps,i, rpm,i, rsp,i,j , rmp,i,j , rpp,i,j , θmp,i,j ]. (3)

The construction of the arbitrary rotation-invariant (A-RI) encoding is expected
to exhibit the strongest dependency on arbitrarily rotated training data.

Encoding Selection. SPE-Net can dynamically attend to the relevant po-
sition encoding functions for each point pi. This is realized through the con-
struction of compatibility function as follows. For every stage of the SPE-Net,
we firstly equally slice its input feature fi into three partitions along channel

dimension as f
(1)
i , f

(2)
i , f

(3)
i ∈ RC/3. Three MLP mapping functions F1, F2 and

F3 are respectively applied to the features obtained via Eq. (1), (2), (3). Since
the features Eq. (1), (2), (3) intrinsically appear to exhibit different responses
to an object’s rotation condition, related to how well each option can reduce
the actual training risk, the three MLP mapping functions F1, F2 and F3 are
expected to learn to abstract such preference during the training. The output of
encoded local feature by using different position encoding is defined as:

g
(1)
i,j = F1([f

(1)
i , ∆f

(1)
i,j , PCD(pi,pj)]),

g
(2)
i,j = F2([f

(2)
i , ∆f

(2)
i,j , PZ-RI(pi,pj)]),

g
(3)
i,j = F3([f

(3)
i , ∆f

(3)
i,j , PA-RI(pi,pj)]).

(4)

We calculate the weighted concatenation of the three encoded features followed
by a max pooling layer:

[α
(1)
i , α

(2)
i , α

(3)
i ] = Sigmoid(FC(fi)), (5)

gi = Max
j

([g
(1)
i,j ⊙ α

(1)
i ,g

(2)
i,j ⊙ α

(2)
i ,g

(3)
i,j ⊙ α

(3)
i ]). (6)
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Here, the Max operation serves as a maxing pooling. It outputs a vector that
collects the entry-wise maximum value across all input vectors indexed by j.
Symbol ⊙ denotes element-wise product between two vectors that preserves the

dimension of vectors. Weights α
(1)
i , α

(2)
i , α

(3)
i ∈ RC/3 are learnable channel-wise

attention vectors produced by an FC layer. These weights can learn to align with
the respective F1, F2 and F3 functions. Therefore, the training can be steered
to focus on the relevant position encoding functions of each input, under the
specific recognition task. All the weights are normalized to 0 ∼ 1 by the sigmoid
function. The whole process is analogous to softly selecting rotation conditions
r prior to the actual inference, so we call this procedure “Encoding Selection”.

Eq. (4) is inspired from the Point-wise MLP structure, which was originally
proposed in PointNet/PointNet++ [26,27]. A conventional Point-wise MLP ap-
plies several point-wise fully-connected (FC) layers on a concatenation of “rela-
tive position” and point feature to encode the context from neighboring points:

Max
j

(F ([fi, ∆fi,j , P (pi,pj)])), (7)

The max pooling operation across the K-nearest neighbors after the FC layer
aggregates the feature of the query point, where P (·, ·) denotes the relatively
position encoding between query point and neighboring point, F (·) is a point-
wise mapping function (i.e., MLPs). The point-wise MLPs after concatenation
operation can approximate any continuous function about the relative coordi-
nates and context feature [27]. They also utilize the ball radius method [27] to
achieve K neighboring points {pj , fj}, which is critical to achieve balanced sam-
ple density. Eq. (4) borrow all of these merits from Point-wise MLP, while Eq.
(4) exclusively incorporates the rotation information to achieve our goal.

Apart from the learnable weights, good initialization can help further improve
the rotation robustness of SPE-Net. Particularly, we can mask out the CD and
Z-RI position encoding in Eq(4) during the first T epochs. In this way, the
networks are forced to only use rotation-invariant features (A-RI) to represent
the 3D object, at the earlier training stage. After T epochs, the network starts to
incorporate the information from the other two position encodings (CD and Z-
RI). The mask-out epochs T here is a trade-off hyperparameter. A much higher
T will increase the rotation robustness of networks whereas it might hurt the
performance due to the lack of training flexibility. We conduct ablation study
against T in the experiments.

4 Experiments

4.1 Datasets

We empirically evaluate our SPE-Net on four challenging point cloud analysis
datasets: ModelNet40 [42] for 3D classification, ShapeNet [2], PartNet [23] for
part segmentation and S3DIS [1] for scene segmentation. The first three datasets
are generated from 3D CAD models, and the last one is captured in real scenes.
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ModelNet40 is one of the standard benchmarks for 3D classification. The
dataset contains 12.3K meshed CAD models from 40 classes. The CAD models
are officially divided into 9.8K and 2.5K for training and testing, respectively.

ShapeNet is a standard part segmentation benchmark, covering 16 cate-
gories and 50 labeled parts. It consists of 12.1K training models, 1.9K validation
models and 2.9K test models. We train our model on the union of training set
and validation set, and report the performances on the test set.

PartNet is a more challenging benchmark for large-scale fine-grained part
segmentation. It consists of pre-sampled point clouds of 26.7K 3D objects from
24 categories, annotated with 18 parts on average. We follow the official data
splitting scheme, which partitions the objects into 70% training set, 10% vali-
dation set and 20% test set. We train our model on the training set and report
the performances on validation set and test set, respectively.

S3DIS is an indoor scene segmentation dataset captured in 6 large-scale real
indoor areas from 3 different buildings. There are 273M points in total labeled
with 13 categories. Following [36], we use Area-5 as the test scene and the others
as training scenes. Considering that each scene contains a large amount of points
exceeding the processing capacity of GPU device, for each forward, we segment
sub-clouds in spheres with radius of 2m. Such sub-clouds are randomly selected
in scenes during training, and evenly sampled for testing.

4.2 Implementation Details

Backbone network architectures. As described in Sec. 3.1, the complexity of
SPE-Net is determined by the settings of free parameters. We fix the repeat num-
ber asNt = 1|1⩽t⩽5, which means each stage contains one SPE-Blocks. The num-
ber of MLP layers in SPE-MLP block is set as 1. The number of output channels
Ct is tuned to build a family of SPE-Net with various model complexities. For
small-scale ModelNet40 and ShapeNet, we set {Ct} = {72, 144, 288, 576, 1152},
which are then expanded by 2× for large-scale PartNet and S3DIS.
Head network architectures.We attach a head network on top of SPE-Net to
train for different tasks. For the classification head, the output features of SPE-
Net are aggregated together by a max-pooling layer, followed by a three-layer
MLP with output channels 576-288-c to perform c-class prediction. For the task
of segmentation, we follow the architecture in [27] that progressively upsamples
the output features from the backbone network and reuses the features from the
earlier layers by the skip connections.
Training and inference strategy. Our proposal is implemented on PyTorch
[24] framework, and SGD (for ModelNet40 and S3DIS) or AdamW (for ShapeNet
and PartNet) algorithm is employed to optimize the model with random initial-
ization. Considering that training deep models usually requires extensive data
augmentation [15,20,21,28,38], we exploit dropout, drop path, label smoothing,
anisotropic random scaling and gaussian noise to reduce the over-fitting effect.
In the inference stage, we follow the common test-time augmentation of voting
scheme [20,27,37] and augment each model 10 times using the same augmenta-
tion strategy in training stage.
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Table 1: Ablation study for each design in SPE-MLP on ModelNet40 dataset.
The backbone network is SPE-Net-S.

Method CD Z-RI A-RI Sel param N/N Z/Z Z/SO3 SO3/SO3

Single type
✓ 1.6M 93.6 92.0 22.3 90.8

✓ 1.6M 92.9 92.3 19.9 91.0
✓ 1.6M 90.6 91.4 91.4 91.3

Multiple types
✓ ✓ ✓ 1.3M 93.5 92.1 26.0 90.7
✓ ✓ ✓ ✓ 1.5M 93.9 92.6 88.4 91.5

4.3 Ablation Study on SPE-MLP

We firstly study how each particular design in SPE-MLP influences the over-
all performances. The basic strategy is to utilize only a single type of position
encoding from either CD, Z-RI or A-RI encoding functions and compare with
our attention based learning. To test these variants, we do not slice the input
channels, and instead, we concatenate the full input channels with the certain
single type of position encoding. For those relevant architecture variants that
involve multiple types of position encoding, the three position encoding func-
tions are either simply combined or fused by the proposed encoding selection
(abbreviated as Sel). We compare the models under consideration on four dif-
ferent rotation conditions: (1) The original training and testing sets without
any rotation: N/N. (2) Both training and testing sets are rotated around the
Z-axis: Z/Z. (3) Training set is rotated around the Z-axis and testing set is ran-
domly rotated: Z/SO3. (4) Both training and testing sets are randomly rotated:
SO3/SO3. Table 1 evaluates the performances of different variants of SPE-MLP
on ModelNet40 dataset. The ablation study aims to justify our basic hypothe-
ses. For rapid comparisons, we exploit a lightweight version of SPE-Net, called
SPE-Net-S, with output channels as {Ct} = {36, 72, 144, 288, 576}.

The first observation is intuitive and forms our basic motivation. When a
single type of position encoding, i.e., one out of CD, Z-RI, or A-RI encoding
is applied in the network, such selected encoding strategy would perform the
best when the training data intrinsically exhibit such type of rotation. Take for
instance, CD performs the best when both the training and test data shows no
rotation. A-RI significantly outperforms other encoding schemes when the train-
ing data is rotated around the Z-axis while the test data is arbitrary rotaed. In
the meanwhile, it is also apparent that when the position encoding scheme does
not model certain type of invariance assumption, the training fails drastically
in learning that type of rotation condition, such as the CD and Z-RI features
against the arbitrary rotation observed in test data. However, it is also noted
that even if we train the network with arbitrarily rotated invariance features
(A-RI), such training can hardly outperform tailored feature encoding schemes,
for example, the CD feature under N/N setup or Z-RI under the Z/Z setup.

One step further is to rigidly fuse all types of position condition with equal
weights without attention based adaptation. In this way, the network are at least
encouraged to make the predication based on all possible rotation conditions. We
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Fig. 4: (a) Effect of mask-out epochs. (b) Loss curves on ModelNet40 without
rotation. (c) Loss curves on ModelNet40 with SO3 rotation.

notice that such rigid combination of position encoding features indeed shows
evident performance boost when training data and test data shows consistent
rotation conditions. However, such encoding scheme performs poorly whenever
the the training and test data differs in their rotation type, owing to poor gen-
eralization of such encoding scheme.

In comparison, the proposed position encoding selection (the Sel.column
in Table 1) based on the constructed attention scheme shows best robustness
against rotation conditions both during training and testing. This is because
SPE-net can adaptively learn to use the learned rotation condition as important
prior information to make the prediction. Among all the compared counterparts
when the training data and test data of the same rotation conditions, Sel. (im-
plemented via SPE-MLP) performs consistently the best. The Sel. scheme also
only incurs very limited performance drop when training and testing data are of
different rotation types, justifying the advantage of the SPE attention operation
and the good generalization ability. The only exception is that Sel. performs
relatively worse than the A-RI scheme under Z/SO3 setup. However, recall that
the A-RI can hardly outperform tailored feature encoding schemes whenever
training data rotation matches the particularly encoding invaraince assumption.
A-RI feature also performs worse than Sel under all other training scenarios.

To clarify the effect of the mask-out epochs T (Section 3.2), we illustrate
SPE-Net’s performance curves under Z/Z and Z/SO3 setups on ModelNet40
against different mask-out epochs T in Fig. 4(a). As can be seen, with higher T ,
the accuracy of Z/Z setting slightly drops while the transferring setting Z/SO3 is
improved. We choose a good trade-off and set T = 200 as the default choice. Fig.
4(b) and 4(c) respectively shows the loss curves on ModelNet40 without rotation
or with SO3 rotation, and compares SPE-MLP against three other single-type
position encoding. The losses of SPE-MLP are much lower than others across
different iterations and different rotation conditions, and validate the robustness
of SPE-MLP and the eased training optimization. Moreover, we also visualize
the produced attention weights in Fig. 5. The attention weights of “encoding se-
lection” in the first strided SPE-Block are visualized. Overall, the models trained
without rotation and that with Z-axis rotation prefer to choose Z-RI encoding
condition, while the model trained with SO3 rotation utilizes more A-RI encod-
ing condition. An intriguing observation is that, the same parts of a shape are
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Fig. 5: The visualization of encoding selection on ModelNet40 dataset with dif-
ferent rotation condition. The red, green and blue points represent the points
dominated with CD, Z-RI and A-RI encoding, respectively.

Table 2: Performances on ModelNet40 for 3D classification with different ro-
tation conditions. The last column records the differences between Z/SO3 and
SO3/SO3.

Type Method Inputs Z/Z Z/SO3 SO3/SO3Acc.drop

Rotation-sensitive

PointNet [26] xyz 88.5 16.4 70.5 54.1
PointNet++ [27] xyz 89.3 28.6 85.0 56.4
DGCNN [39] xyz 92.2 20.6 81.1 60.5

PointConv [41] xyz 91.6 - 85.6 -

Rotation-robust

Spherical CNN [4] voxel 88.9 76.9 86.9 10.0
α3SCNN [17] voxel 89.6 87.9 88.7 0.8
RIConv [50] feature 86.5 86.4 86.4 0.0
SRI-Net [35] feature 87.0 87.0 87.0 0.0
SPH-Net [25] xyz 87.7 86.6 87.6 1.0
SFCNN [29] xyz 91.4 84.8 90.1 5.3
PFE [49] xyz+feature 89.2 89.2 89.2 0.0

RI-GCN [9] xyz 89.5 89.5 89.5 0.0
REQNN [30] xyz 83.0 83.0 83.0 0.0

RotPredictor [5] xyz 92.1 - 90.8 -
Triangle-Net [43] feature - - 86.7 -

RIF [13] feature 89.4 89.4 89.3 0.1
DGCNN+PCA [10] xyz 91.6 91.6 91.6 0.0

SPE-Net (ours) xyz 92.7 89.7 91.8 2.1

very likely to attend to the same position encoding condition across different
instances. It somewhat reveals that the proposed encoding selection achieves a
unique fine-grained understanding in different parts of the 3D shape.

4.4 Evaluation on Point Cloud with Rotation

Next, we compare with several state-of-the-art techniques on ModelNet40 and
ShapeNet with different rotation conditions to demonstrate the advantage of the
proposed SPE-Net. The performance comparisons on ModelNet40 for 3D shape
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Table 3: Performances on ShapeNet for part segmentation with different rota-
tion conditions. The last column records the differences between Z/SO3 and
SO3/SO3.

Type Method Inputs Z/SO3 SO3/SO3 mIoU.drop

Rotation-sensitive

PointNet [26] xyz 37.8 74.4 36.6
PointNet++ [27] xyz 48.2 76.7 28.5
PointCNN [14] xyz 34.7 71.4 36.7
DGCNN [39] xyz 37.4 73.3 35.9

Rotation-robust

RIConv [50] feature 75.3 75.5 0.2
SRI-Net [35] feature 80.0 80.0 0.0
RI-GCN [9] xyz 77.2 77.3 0.1

Triangle-Net [43] feature - 72.5 -
RIF [13] feature 82.2 82.5 0.3

DGCNN+PCA [10] xyz 83.1 83.1 0.0

SPE-Net (ours) xyz 87.1 87.8 0.7

classification are summarized in Table 2. It is observed that rotation-sensitive
methods such as PointNet and PointNet++ completely failed to generalize when
test data shows different rotation than what it was trained on. The performance
of these models also plummet under the SO3/SO3 setup owing to optimization
difficulty raised by complex rotation augmentations. On the contrary, the SOTA
rotation robust methods show certain robustness against rotations, particularly
under the SO3/SO3 and Z/SO3 setting. But these methods perform generally
worse than other paradigms, especially under the Z/Z setting. This is because the
network parameterization had to trade-off the rotation robustness against the
general prediction performance, under the limited network capacity. Our SPE-
Net is also a kind of rotation robust 3D training scheme. Particularly, as SPE-Net
further incorporates the rotation condition as prior, it can flexibly adapt to the
most relevant position encoding schemes, showing both good robustness against
rotations, as well as the eased optimization difficulties in terms of good general-
ization ability. To see this, SPE-Net reports the best 92.7% accuracy under the
standard Z/Z setup, while it also simultaneously preserves good generalization
ability against rotations changes. In comparison to DGCNN+PCA, SPE-Net
still maintains a 0.2% superiority under the SO3/SO3 setup, proving the unique
advantage of SPE-MLP encoding scheme.

Table 3 summarizes the performance comparisons on ShapeNet for 3D part
segmentation task. For evaluation on ShapeNet, we calculate the mean inter-
section of union (mIoU, %) for each shape and report the mean value over all
instances. Generally speaking, we observe similar behaviors of various methods
on ShapeNet as that in Table 2. Here rotation-sensitive methods still perform
poorly under Z/SO3 and SO3/SO3 setups. We also observe a more significant
performance gap between SPE-Net and DGCNN+PCA than that in Table 2.
The reason might be that for segmentation tasks, different input points may
need drastically different attention to each of the position encoding scheme,
demonstrating a more local response towards the variation of the rotation con-
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Table 4: Performances on ModelNet40, PartNet and S3DIS without test-time
rotation.

Method
ModelNet40 PartNet S3DIS

param acc param val test param mIoU

DensePoint [18] 0.7M 93.2 - - - - -
KPConv [37] 15.2M 92.9 - - - 15.0M 65.7
PointCNN [14] 0.6M 92.5 4.4M - 46.4 4.4M 65.4
point-wise MLP [20] 26.5M 92.8 25.6M 48.1 51.5 25.5M 66.2
pseudo grid [20] 19.5M 93.0 18.5M 50.8 53.0 18.5M 65.9
adapt weights [20] 19.4M 93.0 18.5M 50.1 53.5 18.4M 66.5
PosPool [20] 19.4M 93.2 18.5M 50.6 53.8 18.4M 66.7

SPE-Net (ours) 7.2M 94.0 24.4M 52.6 54.8 24.3M 67.8

ditions. SPE-Net can therefore benefit significantly from its more flexible and
pointwise rotation condition adaptation to reach better segmentation results.

4.5 Evaluation on Point Cloud without Rotation

Finally, we compare with several state-of-the-art techniques on the original train-
ing/testing sets of ModelNet40, PartNet and S3DIS for 3D shape classification,
3D part segmentation, 3D scene segmentation, respectively, to further validate
the effectiveness of SPE-Net as a general backbone. The performances are sum-
marized in Table 4. SPE-Net apparently has achieved the best performance
among all comparisons. Note that the conventional point-wise MLP only takes
into account the CD encoding, thus leading to a much worse performance than
SPE-Net, even if both of the networks have adopted the residual learning struc-
tures. It is also intriguing to see that SPE-Net performs more than 1.1% better
than its best competitor PosPool on the S3DIS dataset. Such phenomenon ver-
ifies that it is always beneficial to incorporate the rotation-invariant features
properly during training, although the data does not exhibit any inherent global
rotation. This is because rotation can take place in local regions. SPE-Net thus
exclusively benefits from a finer abstraction of both local and global rotation
information, showing consistent performance gain in comparison to others.

5 Conclusion

In this paper, we investigate the role of rotation conditions in 3D application’s
performance, and propose a novel deep 3D architecture named SPE-Net. SPE-
Net can learn to infer and to encode various rotation condition present in the
training data through an efficient attention mechanism. Such rotation condition
then can effectively serve as useful prior information in improving the eventual
prediction performance. Extensive empirical results validate our various assump-
tions and well verify the advantage of SPE-Net by leveraging on these priors.
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