
Supplemental Materials for The Shape Part Slot
Machine: Contact-based Reasoning for Generating 3D

Shapes from Parts

Kai Wang1, Paul Guerrero2, Vladimir Kim2, Siddhartha Chaudhuri2,
Minhyuk Sung2,3, and Daniel Ritchie1

1 Brown University
2 Adobe Research

3 KAIST

1 Data Preparation

We use the PartNet [5] dataset for all our experiments, following the train/validation/test
split provided in the original paper.

1.1 Obtaining Part Level Geometry

Each shape in the PartNet data comes with a semantic hierarchy that decomposes the
shape into parts in a coarse-to-fine manner. We use the finest-grained level of parts in
this hierarchy. We filter the data using the following criteria:

– We remove shapes that contain only 1 part or more than 30 parts.
– We detect inconsistent shapes with parts that do not equal the union of their chil-

dren. For the chairs and tables dataset, we reject these inconsistent shapes. The
furniture and lamps dataset are smaller, so in these datasets, we keep the inconsis-
tent parts, but discard their children.

– We remove shapes with parts that contain floating geometry due to annotation
errors. We detect such cases by first clustering the part’s point cloud with DB-
SCAN [1]. If there exist any cluster that is significantly smaller than other clusters,
we reject the entire shape. (We cannot reject all parts that consist of multiple dis-
connected clusters, because some parts contain multiple symmetric disconnected
components).

– We remove shapes that are disconnected based on the adjacency edges we detect.

Table 1 summarizes the size of the dataset before and after filtering.

1.2 Extracting Relationships Between Parts

After obtaining the geometry of individual parts, we sample the surface of each part
uniformly to obtain a 3000-point representation. We then detect relationships between
parts based on the protocol of StructureNet [4]:
Detecting Symmetry: We detect symmetry based on the methods proposed by Wang
et al. [7]. We restrict the symmetry types to translational symmetry, reflectional symme-
try about planes parallel to the three coordinate planes, and 4-way rotational symmetry

2 K. Wang et al.

Table 1: Dataset statistics before and after our filtering process

Category Split Before After

Chair
Train 4489 3315
Val 617 438
Test 1217 886

Table
Train 5707 4254
Val 843 637
Test 1668 1257

Storage
Train 1588 1123
Val 230 152
Test 451 290

Lamp
Train 1554 1187
Val 234 181
Test 419 321

about the y(up)-axis. We create an undirected graph for each of the symmetry type,
where every edge is a detected symmetry between a pair of parts. We treat each con-
nected component in these graphs as a symmetry group.
Pruning Symmetry: We then prune the detected symmetries by enforcing that each
part belongs to at most one symmetry groups. We prioritize larger groups. If two groups
are of the same size, then we favor the simpler explanation: translational > rotational
> reflectional.
Detecting Adjacency: We regard two parts, A and B, as adjacent if the smallest dis-
tance between their respective points clouds is less than τ = θr, where r is the average
bounding sphere radius of the two parts. We first detect symmetries using θ = 0.05 i.e.
the orignal setting of StructureNet. We then do a second pass of adjacency detection
for parts involved in symmetry groups in order to recover any undetected adjancies to a
common neighbor: We set θ = 0.1 if A belongs to a symmetry group (before pruning)
and B is adjacent (using θ = 0.05) to any other parts in the same symmetry group, vice
versa; we further increase θ to 0.3 if the involved symmetry group has more than 3 parts
and at least 3 other parts are adjacent to B, vice versa. We use the same threshold τ for
computing the points for each slot (Section 4.2).
Pruning Adjacency: We then attempt to identify the set of adjancency relationships
that best describe the part structure. Note that this might not be necessary for a dataset
where the connections between parts are more clearly defined. We prune the adjacency
edges using the following set of heuristics, applied in order. All heuristics are only
applied if removing the edge does not disconnect the adjacency graph:

We first remove any edges between parts in the same symmetry group, prior to
symmetry pruning.

We then identify all triplet of parts A,B,C that overlap at the same area, and thus
pairwise adjacent. For each triplet, we check if there’s an edge that we can prune, using
the following heuristics, without loss of generality, applied in order:

Supplementary Materials for The Shape Part Slot Machine 3

– If B and C shares a common parent in the PartNet hierarchy and A has a different
parent, then we store either AB or AC for deletion if we can break ties between
them: we store the edge for the part that is either significantly farther from A,
smaller in surface area, or with less adjacent parts. We do not store any edges if the
ties between B and C cannot be broken.

– We store AC for deletion if the y(up)-coordinate of the centroid of B is between
those of A and C, and is of at least a distance of 0.05 away from each.

– We store BC for deletion if the surface area of both part B and C is signifcantly
smaller than that of part A, or if B and C has roughly the same area but A does not.

We then sort all the candidate edges for deletion, prioritizing on those detected with
heuristics mentioned earlier, and then those belonging to parts with smaller surface
areas.

After finding all the candidates edges, we iterate over them and delete edges, while
respecting the detected symmetries. For each candidate AB, we check if A and/or B
belongs to any symmetry groups. If A is in a symmetry group, then we include all other
adjacency edges from any parts in that symmetry group to B. We do the same for B.
We proceed to remove all these edges if the following conditions are met:

– Removing these edges does not disconnect the graph.
– Removing these edges does not disconnect a symmetry group from its most fre-

quent neighbor i.e. the part that has the highest number of adjacency edges to parts
in the symmetry group. If multiple such neighbors exist, we prefer to keep the edges
to the neighbor that is not in any symmetry groups. If there are still multiple such
neighbors, we keep only 1 of them, and allow deleting edges to the rest. A spe-
cial case occurs when every neighbor to a symmetry group is adjacent to exactly
one part in the group. This often occurs when a group of symmetrical parts are
decomposed further into subparts (e.g. four symmetrical legs are decomposed into
four legs and for leg wheels). In such cases, we regard every part in the adjacent
symmetry group as a most frequent neighbor.

– Either A and B are still both connected to C in the original triplet, or if there exists
other parts in the region where A, B and C overlaps and a path can be found from
A to B via those parts or vice versa.

2 More Details on the “What” Module

We provide additional details on the What to Attach? module (Section 5) here.
Given the graph features hG′ , hG′

target
, the mixture density network (MDN) represents

the conditional probability distribution P (X|G′, Vtarget, X ∈ Remb) as a mixture of N
gaussians, with mixing coefficients π1 . . . πN , means µ1 . . . µN and standard deviations
σ1 . . . σN respectively. The probability of any embedding XC , then, can be expressed
as

p(XC) =

N∑
k=1

πk · N (XC | µk, σ
2
k)

4 K. Wang et al.

Input Input + GT GT Best 2nd 5th 25th 50%

Fig. 1: Additional outputs of the What to Attach? module. We visualize the input partial slot
graph within the parts that contain them (grey) and the center of the selected slots (red), as well
as the ground truth part (green, 2nd column). The parts and slots are in their ground truth world-
space pose, which is not available to the neural network. We then visualize, individually, the
ground truth part and the retrieved candidates ranked 1st, 2nd, 5th, 25th, and at the 50th per-
centile, respectively, along with all of their slots (red).

We omit the conditions (G′, Vtarget) for simplicity of notation. In practice, we use nega-
tive log likelihood to setup the triplet loss:

ℓ(XC) = − log

N∑
k=1

πk · N (XC | µk, σ
2
k)

Given a positive example Ctarget and a negative example Cnegative, we then obtain the
final triplet loss as

L(XCtarget , XCnegative) = max{m+ ℓ(XCtarget)− ℓ(XCnegative), 0}

Where m is a constant margin. We select the negative examples Cnegative at training time
by computing the triplet loss between the positive example and a set of randomly sam-
pled negative examples, and choose one that gives a non-zero loss, whenever possible
(i.e. using only semi-hard triplets).

In Figure 1, we provide additional examples of the learned module on chairs (see
also Figure 4 in the main paper). The first row shows another example of query that
demands a very specific type of structure. The second row shows another example of a
query that asks for chair legs. We show failure cases of our module in the last 2 rows,
where it fails to reason about the exact spatial structure of shapes and retrieves parts
that are oriented incorrectly.

3 Generating New Slot Graphs at Test Time

Although trained on all shapes with less than or equal to 30 parts, less than 5 percent
of the training shapes have more than 20 parts, and each of those shapes have rather
unique structures. Therefore, when generating new slot graphs, we only use parts from

Supplementary Materials for The Shape Part Slot Machine 5

shapes with less than 20 parts. We start each shape by randomly selecting a part from
the candidate parts. We then iteratively query the three neural network modules, until
the slot graph is complete (when all slots are attached). During this generation process,
we use the output of the three neural modules to detect and reject partial slot graphs that
are outliers:

– If the Where module gives a probability pcontinue of less than 0.5 when there are no
slots selected.

– Not all part cliques retrieved by the What module are good candidates. We reject a
retrieved candidate Ctarget if |Vtarget| > |Ctarget|, or if one of the edge predicted by
the Where module has a probability less than 1/(max(|Vtarget|+1, |Ctarget|)+0.5).
If all candidates within a margin of 60 (100 for parts invovled in symmetry) from
the highest scoring candidate are rejected, we reject the partial slot graph.

We also reject the generated slot graph if any of the following conditions are met:
– The slot graph contains more than 20 parts.
– The slot graph is detected as an outlier. We perform outlier detection using one-

class Support Vector Machines (OCSVM). We fit one OCSVM for all graphs in the
training set with the same number of parts. For each OCSVM that fits graphs with
N nodes, we use a feature size of 3(N − 1), with the following features:
• Number of parts with an (adjacency) degree of 1 . . . N − 1.
• Number of parts where 1 . . . N − 1 other parts are within a distance of 2.
• Number of parts where the furthest part has a distance of 1 . . . N − 1.

Other commonly used graph summary statistics, such as clustering coefficient,
number of n-cycles, etc. are also possible candidates here, but we found the set
of features we use to be sufficient for our purposes.

4 Implementation Details

We set the rounds of message passing, T , to 10 for all our graph neural networks (GNN)
operating on partial slot graphs. We set T = 4 for GNNs operating on part cliques.
Since no adjacency edges exists, this effectively leads to 2 rounds of message passing.
We set the dimension of node embeddings to 64 and the dimension of graph embeddings
to 128. All MLP we use have 2 hidden layers and uses leaky ReLU as the activation
function. We use a mixture of 10 gaussians for the MDN and a margin m = 20 for the
triplet loss. We train all neural networks with the Adam [3] optimizer, and with a batch
size of 32. We select the negative examples for the What module from 32 randomly
selected slot graphs as well, for each training step.

5 Details on Baselines

We provide additional details on how we implemented the baselines.
ComplementMe: We re-implemented ComplentMe [6] in PyTorch. We mostly used
the original settings of ComplementMe, with the following exceptions:

– We set the maximum threshold for the standard deviation of the Gaussian Mix-
ture model to 50 instead of 0.05, since we found that the standard deviation of all
Gaussians saturate at the original threshold very quickly.

6 K. Wang et al.

– ComplementMe sampled random triplets originally, we instead sample only the
semi-hard triplets i.e. triplets that give a non-zero training loss.

– In the paper, ComplementMe suggests that the placement networks do not share
weights with the retrieval/embedding networks. This is not the case in their official
implementation. We followed the description in the paper.

– We removed all BatchNorm layers from the PointNet backbone since we observed
that including them hurts the evaluation performance.

We train ComplementMe until convergence.

StructureNet: We use the pre-trained models provided by StructureNet [4], which are
trained on the same split as what we use in the paper. Do note that StructureNet uses
a different data filtering strategy than ours, so the training set will differ slightly. We
encode every part in the test set using the pre-trained part encoder, with each part cen-
tered and normalized in the same way as they would be if used to train StructureNet. We
then use the provided evaluation script to randomly sample outputs. Instead of decoding
child-level latent code to point clouds, we directly retrieve the test set part that is the
closest in the latent space, and then apply the predicted transformations to the retrived
part.

6 More Results

We show random samples of our method and the baselines on all four categories in
Figure 2, 3, 4 and 5.

For the methods that are autoregressive (ours and ComplementMe), the color of the
parts correlate with the order in which they are inserted. We use the Tableu 10 color
palette4 for the first 10 parts, and add the remaining 10 colors in the Tableu 20 color
palette for shapes more than 10 parts: the blue part is used for initialization, and the
subsequent parts inserted are colored orange, green, red, purple, etc. respectively.

Overall, the quality and physical plausibility of the generated shapes correlate well
with the quantitative metrics. ComplementMe benefits considerably from grouping parts
by symmetry, as it simplifies the task of predicting global poses of shapes significantly.
When parts are not grouped by symmetry, it often fails to predict the right pose of parts,
and sometimes is not able to complete a shape at all. It also produces a lot of incorrect
and incomplete storages, even with the help of symmetry.

StructureNet is usually able to generate shapes that are plausible, though often with
a few missing parts. However, it has the tendency to generate only a subset of shape
types. This is most apparent for table and storage, when it generates mostly square
tables and storages with open shelves. Large gaps sometimes exist between the indi-
vidual parts, leading to problems with physical plausibility. Note that this problem is
not caused by us retrieving parts directly using the latent code — the box version of
StructureNet has similar issues (see the evaluation of ShapeAssembly [2]).

The behavior of our method is more polarizing: it generates a lot of high quality
shapes; however, some other generated shapes are totally incorrect. The high quality

4 https://public.tableau.com/views/TableauColors/ColorPaletteswithRGBValues

Supplementary Materials for The Shape Part Slot Machine 7

shapes fare better than the baselines in terms of quality, physical plausibility, and diver-
sity to some extent. The incorrect shapes exhibit a wide range of failure mode, which
we hypothesize can be traced back to a few incorrect steps in the autoregressive gener-
ation process. Reducing the chance of these incorrect steps, and identifying them when
they happen, is an important future direction to take in order to further improve the
quality of the generated shapes. Our method also has the tendency to generate simpler
shapes when sampling randomly. This is not caused by the neural networks learning
biased distributions, but caused by the higher failure rate for more complex structure
during autoregressive sampling. We also notice a few repeated shapes, especially for
storages. This can be addressed by sampling the neural network modules randomly, as
opposed to doing MAP inference. In figure 6, we show examples of random sampling:
our method is able to produce multiple output per initialization (blue).

Finally, we show random samples from drawn the test set in Figure 7. We note that
none of the methods are able to generate shapes that are close to the dataset in terms
of quality and diversity. This is especially the case for shapes with unique and complex
structures: they are harder to learn, and there is often not enough training data for them.
Learning these structures correctly and efficiently remains an open problem.

8 K. Wang et al.

O
ur

s
C

om
pl

em
en

tM
e(

w
/s

ym
)

C
om

pl
em

en
tM

e
St

ru
ct

ur
eN

et

Fig. 2: Chair Unconditional Samples

Supplementary Materials for The Shape Part Slot Machine 9

O
ur

s
C

om
pl

em
en

tM
e

(w
/s

ym
)

C
om

pl
em

en
tM

e
St

ru
ct

ur
eN

et

Fig. 3: Table Unconditional Samples

10 K. Wang et al.

O
ur

s
C

om
pl

em
en

tM
e

(w
/s

ym
)

C
om

pl
em

en
tM

e
St

ru
ct

ur
eN

et

Fig. 4: Storage Unconditional Samples

Supplementary Materials for The Shape Part Slot Machine 11

O
ur

s
C

om
pl

em
en

tM
e

Fig. 5: Lamp Unconditional Samples

Fig. 6: Multiple output per initialization, achieved by sampling the neural networks randomly
instead of doing MAP inference. Each row uses a different part as initialization.

12 K. Wang et al.

C
ha

ir
Ta

bl
e

St
or

ag
e

L
am

p

Fig. 7: Dataset Unconditional Samples

Supplementary Materials for The Shape Part Slot Machine 13

References

1. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering
clusters in large spatial databases with noise. In: kdd. vol. 96, pp. 226–231 (1996)

2. Jones, R.K., Barton, T., Xu, X., Wang, K., Jiang, E., Guerrero, P., Mitra, N.J., Ritchie, D.:
Shapeassembly: Learning to generate programs for 3d shape structure synthesis. ACM Trans-
actions on Graphics (TOG), SIGGRAPH Asia 2020 39(6), Article 234 (2020)

3. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. In: ICLR 2015 (2015)
4. Mo, K., Guerrero, P., Yi, L., Su, H., Wonka, P., Mitra, N., Guibas, L.: StructureNet: Hierar-

chical graph networks for 3D shape generation. In: SIGGRAPH Asia (2019)
5. Mo, K., Zhu, S., Chang, A.X., Yi, L., Tripathi, S., Guibas, L.J., Su, H.: Partnet: A large-scale

benchmark for fine-grained and hierarchical part-level 3d object understanding. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 909–918
(2019)

6. Sung, M., Su, H., Kim, V.G., Chaudhuri, S., Guibas, L.: ComplementMe: Weakly-supervised
component suggestions for 3D modeling. ACM Transactions on Graphics (TOG) 36(6), 226
(2017)

7. Wang, Y., Xu, K., Li, J., Zhang, H., Shamir, A., Liu, L., Cheng, Z., Xiong, Y.: Symmetry
hierarchy of man-made objects. In: Computer graphics forum. vol. 30, pp. 287–296. Wiley
Online Library (2011)

