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Fig. 1: Our system synthesizes novel 3D shapes by assembling them from parts. Internally, it
represents shapes as a graph of the regions where parts connect to one another (which we call
slots). It generates such a graph by retrieving part subgraphs from different shapes in a dataset.
Once a full graph has been generated, the system then optimizes for affine part transformations
to produce a final output shape.

Abstract. We present the Shape Part Slot Machine, a new method for assembling
novel 3D shapes from existing parts by performing contact-based reasoning. Our
method represents each shape as a graph of “slots,” where each slot is a region
of contact between two shape parts. Based on this representation, we design a
graph-neural-network-based model for generating new slot graphs and retriev-
ing compatible parts, as well as a gradient-descent-based optimization scheme
for assembling the retrieved parts into a complete shape that respects the gener-
ated slot graph. This approach does not require any semantic part labels; inter-
estingly, it also does not require complete part geometries—reasoning about the
slots proves sufficient to generate novel, high-quality 3D shapes. We demonstrate
that our method generates shapes that outperform existing modeling-by-assembly
approaches regarding quality, diversity, and structural complexity.

1 Introduction

There is increasing demand for high-quality 3D object models across multiple fields:
gaming and virtual reality; advertising and e-commerce; synthetic training data for com-
puter vision and robotics; and more. The traditional practice of manual 3D modeling is
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time-consuming and labor-intensive and is not well-suited to scaling to this demand.
Thus, visual computing researchers have pursued data-driven methods which can aug-
ment human creative capabilities and accelerate the modeling process.

One promising technology in this space are generative models of 3D shapes. Such
generative models could suggest new, never-before seen shapes, freeing users from te-
dious and time-consuming low-level geometric manipulations to focus on high-level
creative decisions. Recent work in this space has focused on deep generative models
of shapes in the form of volumetric occupancy grids, point clouds, or implicit fields.
While these methods demonstrate impressive abilities to synthesize the bulk shape of
novel objects, the local geometry they produce often exhibits noticeable artifacts: over-
smoothing, bumpiness, extraneous holes, etc. At present, none of these generative
models has achieved geometric output quality resembling the shapes they are trained
on. An alternative approach would be to avoid synthesizing novel geometry altogether
and instead learn how to re-combine existing high-quality geometries created by skilled
modeling artists. This paradigm is known in the computer graphics literature as model-
ing by assembly, where it once received considerable attention. Since the deep learning
revolution, however, the focus of most shape generation research has shifted to novel
geometry synthesis. The few post-deep-learning methods for modeling by assembly
have shown promise but have not quite lived up to it: handling only coarse-grained as-
semblies of large parts, as well as placing parts by directly predicting their world-space
poses (leading to ‘floating part’ artifacts).

In this paper, we present a new generative model for shape synthesis by part as-
sembly which addresses these issues. Our key idea is to use a representation which
focuses on the connectivity structure of parts. This choice is inspired by several recent
models for novel geometry synthesis which achieve better structural coherence in their
outputs by adopting a part-connectivity-based representation [15, 10, 25]. In our model,
the first-class entities are the regions where one part connects to another. We call these
regions slots and our model the Shape Part Slot Machine.

In our model, a shape is represented by a graph in which slots are nodes and edges
denote connections between them. We define shape synthesis as iteratively construct-
ing such a graph by retrieving parts and connecting their slots together. We propose
an autoregressive generative framework for solving this problem, composed of several
neural network modules tasked with retrieving compatible parts and determining their
slot connections. Throughout the iterative assembly process, the partial shape is repre-
sented only by its slot graph: it is not necessary to assemble the retrieved parts together
until the process is complete, at which point we use a gradient-descent-based optimiza-
tion scheme to find poses and scales for the retrieved parts which are consistent with
the generated slot graph.

We compare the Shape Part Slot Machine to other modeling-by-assembly and part-
connectivity-based generative models. We find that our approach consistently outper-
forms the alternatives in its ability to generate visually and physically plausible shapes.

In summary, our contributions are:

— The Slot graph representation for reasoning about part structure of shapes.
— An autoregressive generative model for slot graphs by iterative part retrieval and
assembly.
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— A demonstration that local part connectivity structure is enough to synthesize globally-
plausible shapes: neither full part geometries nor their poses are required.

2 Related Work

Modeling by Part Assembly: The Modeling By Example system pioneered the paradigm
of modeling-by-assembly with interactive system for replacing parts of an object by
searching in database [4]. The Shuffler system added semantic part labels, enabling
automatic ‘shuffling’ of corresponding parts [13]. Later work handled more complex
shapes by taking symmetry and hierarchy into account [9]. Other modes of user inter-
action include guiding exploration via sketches [23] or abstract shape templates [1],
searching for parts by semantic attributes [2], or having the user play the role of fit-
ness function in an evolutionary algorithm [24]. Probabilistic graphical models have
been effective for suggesting parts [3] or synthesizing entire shapes automatically [12].
Part-based assembly has also been used for reconstructing shapes from images [18].
Our work is most closely related to ComplementMe, which trains deep networks to
suggest and place unlabeled parts to extend a partial shape [19]. Our model is different
in that we use a novel, part-contacts-only representation of shapes, which we show
enables handling of more structurally complex shapes.
Deep Generative Models of Part-based Shapes: Our work is also related to deep gen-
erative models which synthesize part-based shapes. One option is to make voxel-grid
generative models part-aware [20, 22]. Many models have been proposed which gener-
ate sets of cuboids representing shape parts [27]; some fill the cuboids with generated
geometry in the form of voxel grids [14] or point clouds [15, 10, 11]. Other part-based
generative models skip cuboid proxies and generate part geometries directly, as point
clouds [17], implicit fields [21], or deformed genus zero meshes [5,25]. All of these
models synthesize part geometry. In contrast, our model synthesizes shapes by retriev-
ing and assembling existing high-quality part meshes.
Estimating Poses for 3D Parts: Many part-based shape generative models must pose
the generated parts. Some prior work looks at this problem on its own: given a set of
parts, how to assemble them together? One method predicts a 6DOF pose for each part
such that they become assembled [8]; another predicts per-part translations and scales
and also synthesizes geometry to make the transformed parts connect seamlessly [26].
Rather than predict part poses directly, we solve for per-part poses and scales that sat-
isfies contact constraints encoded in a slot graph. This approach has its root in early
work in modeling by assembly [12] but without the need for part labels and separate
steps computing how parts should attach. It is also similar in spirit to that of Sha-
peAssembly [10], working with part meshes rather than cuboid abstractions.

3 Overview

Assembling novel shapes from parts requires solving two sub-problems: finding a set
of compatible parts, and computing the proper transforms to assemble the parts. These
tasks depend on each other, e.g. replacing a small chair seat with a large one will shift
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Fig.2: A slot graph. Nodes are part-to-part contact regions called slots and describe the contact
geometry with bounding boxes. Contact edges connect two slots on two adjacent parts, while
part edges connect all slots of the same part.
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the chair legs further away from the center. Instead of solving these sub-problems sep-
arately, we propose a system for solving them jointly. Specifically, our system synthe-
sizes shapes by iteratively constructing a representation of the contacts between parts.
The assembly transformations for each part can then be computed directly from this
representation.

In our system, a shape is represented as a slot graph: each node corresponds to a
“slot” (part-to-part contact region) on a part; each edge is either a part edge connecting
slots of the same part or a contact edge connecting slots on two touching parts. Section 4
defines this graph structure and describes how we extract them from available data.

This reduces the task of assembling novel shapes to a graph generation problem:
retrieving sub-graphs representing parts from different shapes and combining them into
new graphs. We solve this problem autoregressively, assembling part sub-graphs one-
by-one into a complete slot graph. At each iteration, given a partial slot graph, our
system inserts a new part using three neural network modules: the first determines where
a part be should connect to the current partial graph, the second decides what part to
connect, and third determines how to connect the part. We describe this generation
process in Section 5.

Finally, given a complete contact graph, the system runs a gradient-based optimiza-
tion process that assembles parts into shapes by solving for poses and scales of the
individual parts such that the contacts implied by the generated slot graph are satisfied.
We describe the process in Section 6.

4 Representing Shapes with Slot Graphs

In this section, we define slot graphs, describe how we extract them from segmented
shapes, and how we encode them with neural networks.

4.1 Slot-based Graph Representation of Shapes

A good shape representation that models how parts connect allows the generative model
to reason independently about part connectivity and part geometry. Given a shape S and
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its part decomposition { P; ... Py }, we call regions where parts connect “slots”, and use
them as nodes in a graph G = (V, E,, E,), as illustrated in Figure 2. Each pair of parts
may be connected with multiple slots, and each slot u;; € V' on part P; that connects
to P; has a corresponding slot u;; on part P; that connects back to ;. Each node uy;
stores the following properties:
— The axis-aligned bounding box (AABB) of the slot, in a coordinate frame centered
on P;.
— The same AABB, but normalized such that the bounding box of the entire part is a
unit cube. This provides a scale-invariant view of how parts connect.
A slot graph G has two types of edges: contact edges €f; € E. connect every pair of
contacting slots u;;, u;; and part edges e’ ik € E, connect every pair of slots u;;, u;y
in the same part P;.

This representation encodes neither the geometry nor the pose of each part. Omitting
this information encourages generalization: the choice of parts will be based only on the
compatibility of their attachment regions and connectivity structure; it will not be biased
by a part’s world-space position in its original shape nor its complete geometry.

This representation also does not encode part symmetries; nevertheless, we demon-
strate in Section 7 that our model often generates appropriately symmetrical shapes. We
can also optionally include logic that enforces symmetries at test time (see Section 5).

4.2 Extracting Slot Graphs from Data

Given a set of part-segmented shapes, we follow StructureNet [15] to extract part ad-
jacencies and symmetries. We use adjacencies to define slots, and define connecting
regions as points within distance 7 of the adjacent part. Additionally, we ensure that
symmetrical parts have symmetrical slots and prune excess slots where multiple parts
overlap at the same region. See supplemental for details.

4.3 Encoding Slots Graphs with Neural Networks

We encode a slot graph into a graph feature hg and per-slot features h,, using messaging
passing networks [6].

Initializing Node Embeddings: We initialize slot features h,, using a learned encoding
of the slot properties x,, (two six-dimensional AABBs) with a three-layer MLP fi;:
hﬂ = fuit(xu). As we discuss later, some of our generative model’s modules also
include an additional one-hot feature which is set to one for particular nodes that are
relevant to their task (effectively ‘highlighting’ them for the network).

Graph Encoder: The node embeddings are then updated with our message passing
network using an even number of message passing rounds. In each round, node embed-
dings are updated by gathering messages from adjacent nodes. We alternate the edge
sets &/ during each round, using only part edges £ = E,, for odd rounds (t = 1,3,5...)
and only contact edges Y = E,. for even rounds (t = 2,4,6...):

he = Fapane (B0 D2 FhugBl RS 10 1))

uveklk
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Fig. 3: Our slot graph generative model uses three neural network modules to build a graph step
by step. Where to Attach?: Predicts which slots on the current partial shape the next-retrieved
part should be attached to. What to Attach?: Learns an embedding space for part slot graphs and
predicts a probability distribution over this space in which parts which are compatible with the
highlighted slots have high probability. How to attach?: Determines which slots on the retrieved
part should connect to which slots on the current partial shape.

where fi, is a multi-layer perceptron (MLP) that computes a message for each pair of
adjacent nodes, and fypdac is @ MLP that updates the node embedding from the summed
messages. We also include skip connections to the initial node embeddings AY. All
MLPs have separate weights for each round of message passing.

Gathering Information from the Graph: To obtain the final node features h,, we
concatenate its initial embedding with as its embeddings after every even round of mes-
sage passing (i.e. those using contact edges) and feed them into an MLP foqe:

hu = faode(RS, B2 .. RL)

To obtain the feature hg of an entire graph, we first perform a graph readout over the
embeddings at round ¢:

B = > (forjear () - Foare())

ucV

where fproject Projects node features into the latent space of graph features and foae
assigns a weight for each of the mapped features. We then compute the final graph
feature hg similar to the way we compute the node features:

hg = foaph(hg, hg ... hE)

In cases where we need a feature for a subset of nodes V/ C V in the graph, we simply
perform the readout over V' instead of V.

5 Generating Slot Graphs

Our system casts shape synthesis by part assembly as a problem of generating novel
slot graphs. To do so, we first extract a graph representation of each part: for every
shape S in a dataset of shapes, and for every part P; € S represented by a slot graph
G = (V,E,., E,), we create a part clique C'p, C G representing this part by taking all
the slots u;; € V associated with this part, as well as all the part edges e;;;, € L. We
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remove the all contact edges e;; € E. that connects P; to other parts in the shape. Our
goal, then, is find a set of part cliques C that can be connected together into a novel slot
graph G’ = (V', E[, E},), where V' = {u € C}, E, = {e € C}, and E, is the set
of contact edges that need to be added to make all the slots attached i.e. connected to
exactly one other slot via a contact edge.

There can be thousands of parts in available shape datasets, each containing mul-
tiple slots that can be attached in different ways. Thus, it is infeasible to search this
combinatorial space exhaustively. Instead, we learn how to build novel slot graphs
autoregressively, attaching one part clique at a time to a partial slot graph, until it is
complete (i.e. all slots are attached). We learn this autoregressive process with teacher
forcing: for every training sample, we take a random, connected partial slot graph G’
consisting of one or more part cliques from a graph G = (V, E., Ep) extracted from a
dataset shape S. We then select a random part clique C' P; |P; € S (referred to as Clarget
in the following sections) that is attached to G’ on one or more slots Vaarget = {ui; |
u;; € G',uy; € Cp, } via set of contact edges Erager = {e;?j | W;; € Viarget }- The goal
of a single generation step, then, is to maximize

p(‘/;a.rgeh Ctargel» Etarget | g/)

Rather than learn this complex joint distribution directly, we instead factor it into three
steps using the chain rule:

— Where to attach: maximizing p(Viareet | )

— What to attach: maximizing p(Clarget | G', Viarget)

— How to attach: maximizing p(Eurget | G, Viarget, Ctarget)
In the remainder of this section, we detail the formulation for the networks we use for
each of the three steps, as well as how we use them during test time. Figure 3 visually
illustrates these steps.
Where to Attach?: Given a partial slot graph G’, we first identify the slots Viarget t0
which the next-retrieved part clique should attach. We predict each element of Vigree
autoregressively (in any order), where each step 4 takes as input G’ and the already-
sampled slots Vtgrget = {Viarget,0 - - - Viarget,i—1} (highlighted in G’ with a one-hot node
feature). We first use a MLP fioninue to predict the probability peontinye that another slot
should be added (pcontinue = 0 if Vtgrget = Viarger and 1 otherwise). If more slots should
be included, then we use an MLP f,x to predict a logit for each of the unattached slots
V in G’ that are not already in Vlérget. These logits are then fed into a softmax to obtain
a probability distribution over possible slots:

H/u\rgell
p(vtarget|g/) = H pzont 'p;ext[vlafgehi]

=1
pi _ pcontinue(hg’ \Vtérge[) i < |‘/target|
con 1 — Peontinue (hrgr |Vtzlirget) i = [Viarget|

pflext = softmax [fneXl(hu“/t;rget)‘u € V/W;rgetjl)

What to Attach?: Having selected the slots Vigge to attach to, we then retrieve part
cliques compatible with the partial graph G’ and the selected slots. Similar to prior
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Fig. 4: Example outputs of the What to Attach? module. We visualize the input partial slot graph
within the parts that contain them (grey) and the center of the selected slots (red), as well as the
ground truth part (green, 2nd column). The parts and slots are in their ground truth world-space
pose, which is not available to the neural network. We then visualize, individually, the ground
truth part and the retrieved candidates ranked 1st, 2nd, 5th, 25th, and at the 50th percentile,
respectively, along with all of their slots (red).

work [19], we take a contrastive learning approach to this problem: the probability of
the ground truth part clique should be greater than that of randomly sampled other part
cliques (i.e. negative examples) by some margin m:

p(Ctarget ‘ gla ‘/target) > p(Cnegative | gla V;arget) +m

We use two neural networks to enforce this property. The first maps part cliques C' into
an embedding space Repp.
X C = f emb (hC)

where femp is the embedding MLP and h¢ is the graph feature computed from C alone.
The second network is a mixture density network (MDN) that outputs a probability
distribution over this embedding space:

P(X|G', Viarget, X € Remp) = MDN(hgr, hg(mga)
Where Viarge: are highlighted in the input node features and hg{mgcl is obtained by com-
puting graph features using Viuge only.

We visualize the behavior of this module trained on Chair in Figure 4. When the
input demands a very specific type of structure (first 2 rows), our module can retrieve
the part cliques that match such structure. When the input has fewer constraints (3rd
row), our module retrieves a wide variety of partial cliques that can be attached. In the
4th row, our module retrieves chair legs that are structurally compatible. The legs are
not necessarily geometrically compatible, as geometry information is not available to
the module.

How to Attach?: The last module learns to connect the retrieved part clique Crarget
to the partial slot graph G’. It predicts a probability for every pair of slots u;; €
Viarget, Wji € Clarger that could be connected via a contact edge:

p(efj | g7 V;arget; Clarget) = fedge(huij ) h;ﬂ)
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Fig.5: Typical structural outliers detected at test time. From left to right: redundant compo-
nent (chair back), repetition of structures, inability to resolve local connections (chair base), not
enough slots to finish structure.

Where Viaree: are highlighted in input node features, feqge is @ MLP and hy,; and h{l]
are computed with two neural networks, one over G’ and one over Cyarger. p(eg’j) =1if
efj € Elarger and 0 otherwise. If both Vigrger and Ciarger contain one slot, then these slots
must be connected, and this module can be skipped. To encourage the networks to learn
more general representations, we augment Vi,ge; With random unattached slots in G !
Generating New Slot Graphs at Test Time: At test time, we generate new slot graphs
by iteratively querying the three modules defined above. Although the modules we learn
are probabilistic and support random sampling, we find MAP inference sufficient to
produce a diverse range of shapes. We terminate the generation process when the slot
graph is complete i.e. when all slots in the graph are attached to exactly one slot from a
different part.

This stopping criterion, while simple, is not robust to errors: a random set of part
cliques can occasionally form a complete slot graph by chance. To combat these errors,
we reject any partial shapes for which the “how” module assigns low probabilities to
all candidate slot pairs. We also use one-class Support Vector Machines to reject other
structural outliers (see Figure 5 for examples).

Finally, we also include logic to enforce part symmetries. When retrieving a part
to connect with slots that were part of a symmetry group in their original shape, we
alter the rank order of parts returned by our “what” module to prioritize (a) parts that
occurred in symmetry groups in the dataset, followed by (b) parts that are approximately
symmetrical according to chamfer distance. See the supplemental for more details about
these test-time sampling strategies.

6 Assembling Shapes From Slot Graphs

A generated slot graph defines connectivity between shape parts but does not explicitly
give part poses. Thus, our system has an additional step to find world-space poses for
all the retrieved parts. In this section, we describe a simple gradient-descent-based op-
timization procedure for doing so, which takes a generated slot graph G = (V, E,, E,)
that describes IV parts P; ... Py, and predicts an affine transformation matrix 7; for
each part P;.

Objective Function: To assemble a shape from its slot graph, we want each slot to be
connected in the same way as it was in its original shape, which we approximate by
enforcing that the distance from any point on a slot to the contacting slot should stay
the same in the assembled shape. Formally, for each slot u;; € V, we select the set
of points S;; that the slot contains (from the point sample of P; from Section 4). For
each point p € S;;, we compute its distance d,(p) to the closest point on the slot that
was originally connected to u;; in the dataset. We then optimize for 77 ... T via the
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Fig. 6: Optimizing part affine transformations to satisfy a slot graph. We show the output of the
initial translation-only phase of optimization & the final output with both translation and scale.

following objective: for every slot u;; € V, every point sample p € S;; should have
the same distance to the connecting slot u;; as the original distance d,(p):

fT. Ty = > > (( min d(Tip, Tjq)) — do(P))2

€Sji
u;; €V peS;; Eatk

Optimization Process: We minimize this objective using gradient descent. Rather than
full affine transformations, we optimize only translation and anisotropic scale. This pre-
vents certain part re-uses from happening (e.g. re-using a horizontal crossbar as a ver-
tical crossbar), but we find that the space of possible outputs is nonetheless expressive.
To minimize unnecessary distortion, we prefer translation over scaling whenever pos-
sible: we optimize for translation only for the first 1000 iterations, and then alternate
between translation and scaling every 50 iterations for the next 500 iterations. Optimiz-
ing for scales is essential in cases where translation alone cannot satisfy the slot graph.
We show one such example in Figure 6, where the shelf layers are scaled horizontally
to match the V shape of the frame.

7 Results & Evaluation

In this section, we evaluate our method’s ability to synthesize novel shapes. We use
the PartNet [16] dataset, segmenting shapes with the finest-grained PartNet hierarchy
level and filtering out shapes with inconsistent segmentations and/or disconnected parts.
More implementation details are in the supplemental.

Novel Shape Synthesis: Figure 7 shows examples of shapes our method is capable of
assembling. Our model learns to generate shapes with complex structures specific to
each shape categories. Though it does not use global part position information during
graph generation, the resulting slot graphs lead to consistent global positions for the
individual parts once optimized. Although we choose not to encode full geometries, our
model is still able to generate shapes with interesting variations both structurally and
geometrically. We further quantitatively compare the results generated by our model
against against these alternatives:

— ComplementMe [19] is the previous state-of-art for modeling by part assembly. It
retrieves compatible parts and places them together by predicting per-part transla-
tion vectors. ComplementMe also does not implement a stopping criteria for gen-
eration, so we train a network that takes a partial shape point cloud as input and
predicts whether generation should stop. We also stop the generation early if the
output of the part retrieval network does not change from one step to the next.
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Fig.7: Examples of range of shapes our method is able to generate. Each part has a different
color that correlates with the order they are inserted. The blue part is used for initialization. See
the supplementary material for more details about the color palette.

SENRE N EER
(b) h?%mﬂw %z‘!

L ENEEYREE N
MMM.;:

Fig. 8: (a): Chairs in the first row of Figure 7, where parts coming from the same source shape now
have the same color. (b): Geometric nearest neighbor of the the same chairs in the training set.
(c): Chairs generated without enforcing part symmetries. (d): Chairs generated with the explicit
rule that no parts coming from the same source shape can be attached together. Our method uses
parts from different shapes to generate novel shapes. It can generate approximately symmetric
shapes without explicit rules, and can connect parts from different shapes together plausibly.

s
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Table 1: Comparing our system to baselines and ablations on generating visually and physically
plausible shapes.

Category Method Root1 Stab? Foolf FD] Parts
Ours 98.1 70.1 64 611 7.8
ComplementMe 90.2 411 6.6 83.0 5.7
StructureNet 81.0 61.3 4.0 375 121

. Oracle 945 834 258 133 —

Chair
ComplementMe (w/sym) 88.3 79.1 21.9 21.6 4.3
Ground Truth 100.0 100.0 — - 111
Ours (no symmetry) 98.2 68.0 81 589 7.8
Ours (no duplicate) 975 674 138 61.2 7.7
Ours 98.2 82.8 106 61.6 6.8

Table ComplementMe 90.2 62.0 7.7 935 4.7
StructureNet 82.8 785 23 852 78
ComplementMe (w/sym) 87.1 84.0 35.8 18.7 3.3
Ground Truth 100.0 100.0 — - 93
Ours 994 90.8 15.5 42.6 6.9

Storage  ComplementMe 914 724 89 898 34
StructureNet 89.6 822 6.8 105.5 8.3
ComplementMe (w/sym) 85.3 70.6 11.5 71.4 3.3
Ground Truth 100.0 99.4 — — 136
Ours 89.6 — 21.5 424 34

Lamp ComplementMe 62.0 — 35.8 26.0 34
Ground Truth 92.6 - - - 4.2

Finally, ComplementMe relies on a part discovery process where most groups of
symmetrical parts are treated as a single part (e.g. four chair legs). We notice that,
when trained on our data, ComplementMe suffers from a significant performance
decrease on Chair and Table, and struggles to generate more complex Storage, as
is evident from the average number of parts (See Table 1). Therefore, for these cat-
egories, we also include results where parts are grouped by symmetry (w/sym) for
reference. We stress that, under this condition, both retrieving and assembling parts
are significantly easier, thus the results are not directly comparable.

— StructureNet [15] is an end-to-end generative model outputs a hierarchical shape
structure, where each leaf node contains a latent code that can either be decoded
into a cuboid or a point cloud. We modify it to output meshes by, for each leaf
node, retrieving the part in the dataset whose StructureNet latent code is closest to
the leaf node’s latent code and then transforming the part to fit the cuboid for that
leaf node.

— We also include an Oracle as an upper bound on retrieval-based shape genera-
tion. The oracle is an autoregressive model that takes as input at each step (a) the
bounding boxes for all parts in a ground-truth shape and (b) point clouds for parts
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retrieved so far. Retrieved parts are scaled so that they fit exactly to the bounding
box to which they are assigned.
See supplemental for more details about these baselines. We use an evaluation proto-
col similar to ShapeAssembly [10] which evaluates both the physical plausibility and
quality of generated shapes:

— Rootedness 1 (Root) measures the percentage of shapes for which there is a con-
nected path between the ground to all parts;

— Stability 1 (Stable) measures the percentage of shapes that remains upright under
gravity and a small force in physical simulation, we do not report this for lamps
because lamps such as chandeliers do not need to be stable;

— Realism 1 (Fool) is the percentage of test set shapes classified as “generated” by a
PointNet trained to distinguish between dataset and generated shapes;

— Freschet Distance | (FD) [7] measures distributional similarity between generated
and dataset shapes in the feature space of a pre-trained PointNet classifier.

— Parts is the mean number of parts in generated shapes.

Table 1 summarizes the results. By using a contact-based representation, our model is
able to generate shapes that are more physically plausible (rooted and stable) than the
baselines. while being comparable in terms of the overall shape quality, measured by
Frechet distance and classifier fool percentage. Our model performs particularly well
for storage furniture; we hypothesize rich connectivity information of this shape cate-
gory allows our model to pick parts that match particularly well. Our model fares less
well on lamps, where connectivity structure is simple and the geometric variability of
parts (which out model does not encode) is highly variable. ComplementMe works well
on lamps, thanks to its focus on part geometry. Its performance drops significantly on
all other categories with more complicated shape structures. We provide more details,
as well as random samples for all methods, in the supplementary material.
Generalization Capacity: It is important that a generative model that follows the mod-
eling by assembly paradigm learns to recombine parts from different sources into novel
shapes. We demonstrate our model’s capacity for this in Figure 8: it is able to assem-
ble parts from multiple source shapes together into novel shapes different from those
seen during training, with or without explicit restrictions whether parts from the same
source shape can be connected to each other. We also see that while including symme-
try reasoning improves geometric quality, our method is able to generate shapes that are
roughly symmetrical without it. This is also reflected in Table 1: removing symmetry
or prohibiting using multiple parts from the same source shape has minimal impact on
our metrics. We provide more analysis of generalization in the supplemental.
Performance of Individual Modules: Finally, we evaluate each individual model
module, using the following metrics:

— Attach Acc: How often the “where” module correctly selects the slots to attach,
given the first slot.

— Average Rank: Average percentile rank of ground truth next part according to the
“what” module.

— Edge Acc: How often the “how” module recovers the the ground truth edge pairs.
Table 2 summarizes the results. Modules perform very well, with some lower num-

bers caused by inherent multimodality of the data.
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Table 2: Evaluating our neural network modules in isolation.
Attach Acc Avg Rank Edge Acc

Chair 96.70 99.05 94.79
Table 92.32 99.14 92.82
Storage  87.46 99.08 85.38
Lamp 98.87 91.36 91.89

| S l‘lil %

Fig.9: Typical failure cases of our method. From left to right: a chair with a tiny seat, two
opposite-facing lamps attached together awkwardly, a chair with a implausible back, a chair that
misses seat and legs completely.

Limitations: Even with outlier detection as mentioned in section 5, poor-quality out-
puts can still occur. Figure 9 shows typical examples. Most are caused by our model’s
lack of focus on geometry: chairs with a tiny seat, lamps that face opposite directions,
and chair backs that block the seat completely. Incorporating additional geometric fea-
tures when appropriate could help.

8 Conclusion

We presented the Shape Part Slot machine, a new modeling-by-part-assembly genera-
tive model for 3D shapes. Our model synthesizes new shapes by generating slot graphs
describing the contact structure between parts; it then assembles its retrieved parts by
optimizing per-part affine transforms to be consistent with this structure. The slot graph
encodes surprisingly little information, yet we demonstrated experimentally that our
model outperforms multiple baselines and prior modeling-by-assembly systems on gen-
erating novel shapes from PartNet parts.

There are multiple directions for future work. Parts could be repurposed in more
diverse ways if we had a method to transfer slot graphs between geometrically- and
contextually-similar parts (so e.g. a chair seat that had armrests originally does not have
to have them in all synthesized results). More variety could also be obtained by opti-
mizing for part orientations (so e.g. a vertical slat could be used as a horizontal one).
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