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Abstract. Transformer-based methods have recently achieved great ad-
vancement on 2D image-based vision tasks. For 3D video-based tasks
such as action recognition, however, directly applying spatiotemporal
transformers on video data will bring heavy computation and memory
burdens due to the largely increased number of patches and the quadratic
complexity of self-attention computation. How to efficiently and effec-
tively model the 3D self-attention of video data has been a great chal-
lenge for transformers. In this paper, we propose a Temporal Patch Shift
(TPS) method for efficient 3D self-attention modeling in transformers for
video-based action recognition. TPS shifts part of patches with a specific
mosaic pattern in the temporal dimension, thus converting a vanilla spa-
tial self-attention operation to a spatiotemporal one with little additional
cost. As a result, we can compute 3D self-attention using nearly the same
computation and memory cost as 2D self-attention. TPS is a plug-and-
play module and can be inserted into existing 2D transformer models to
enhance spatiotemporal feature learning. The proposed method achieves
competitive performance with state-of-the-arts on Something-something
V1 & V2, Diving-48, and Kinetics400 while being much more efficient on
computation and memory cost. The source code of TPS can be found at
https://github.com/MartinXM/TPS.
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1 Introduction

Significant progresses have been achieved for video based action recognition in
recent years [4, 31, 13, 39, 22], largely driven by the development of 3D Con-
volutional Neural Networks (3D-CNN) and their factorized versions, including
I3D [4], Slowfast [13], P3D [31], TSM [22]. With the recent success of transformer-
based methods on image based tasks such as image classification, segmenta-
tion and detection [8, 23, 43, 16, 35, 5], researchers have been trying to duplicate
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(a) Frames before patch shift (b) Hightlight patches for patch shift (c) Frame after patch shift
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Fig. 1. An example of temporal patch shift for three adjacent frames.

the success of transformers on image based tasks to video based tasks [2, 1, 24].
Specifically, videos are tokenized as 3D patches, then multi-head Self-Attention
(SA) and Feed-Forward Networks (FFN) are utilized for spatiotemporal feature
learning. However, the extra temporal dimension of video data largely increases
the number of patches, which leads to an exponential explosion in computation
and memory cost as the calculation of multi-head SA has a quadratic complexity.

Previous efforts to reduce the computational burden of spatiotemporal multi-
head SA are mainly focused on how to factorize it into spatial and temporal
domains and compute them separately [2, 1]. For example, Timesformer [2] first
applies spatial-only SA and then temporal-only SA in a transformer encoder.
ViViT [1] adds a few temporal-only transformer encoders after spatial-only en-
coders. However, these factorization methods will introduce additional parame-
ters and computation for temporal SA calculation comparing to a spatial-only
transformer network.

With the above discussions, one interesting question is: Can we endow 2D
transformers the capability of temporal SA modeling without additional param-
eters and computational cost? To answer this question, we propose a Temporal
Patch Shift (TPS) method for efficient spatiotemporal SA feature learning. In
TPS, specific mosaic patterns are designed for patch shifting along the temporal
dimension. The TPS operation is placed before the SA layer. For each frame,
part of its patches are replaced by patches from neighboring frames. Therefore,
the current frame could contain information from patches in temporal domain,
and the vanilla spatial SA module can be extended to a spatiotemporal one.
It is worth noting that, although the spatiotemporal self-attention computed
by TPS is sparse, the spatiotemporal receptive field can be naturally expanded
as the TPS layers are stacked. A special case of TPS, where the patches from
neighboring frames are shifted using a “Bayer filter”, is shown in the first row
of Fig. 1. We highlight the patches that are being shifted. It can be seen that,
by replacing half of the patches in the current frame with patches from previous
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and next frames, the vanilla spatial SA is upgraded to spatiotemporal SA with
a temporal receptive filed of 3. In the second row of Fig. 1, we show two exam-
ples of visualization for consecutive frames after patch shift, which indicate the
motion of actions can be well presented within a single frame. The contributions
of this work are summarized as follows:

– We propose a Temporal Patch Shift (TPS) operator for efficient spatiotem-
poral SA modeling. TPS is a plug-and-play module and can be easily em-
bedded into many existing 2D transformers without additional parameters
and computation costs.

– We present a Patch Shift Transformer (PST) for action recognition by plac-
ing TPS before the multi-head SA layer of transformers. The resulted PST
is highly cost-effective in both computation and memory.

Extensive experiments on action recognition datasets show that TPS achieves
58.3%, 69.8%, 82.5% and 86.0% top-1 accuracy on Something-something V1 &
V2, Kinetics400 and Diving48, which are comparable to or better than the best
Transformer models but with less computation and memory cost.

2 Related works

Action recognition is a challenging and cornerstone problem in vision. Many deep
learning based methods have been proposed recently [36, 14, 33, 32, 36, 42, 30, 6,
28, 46, 45, 20, 13, 39, 38, 4, 31, 22]. Based on the employed network architecture,
they can be categorized into CNN-based ones and transformer-based ones.

CNN-based methods. CNN based methods typically use 3D convolu-
tion [36, 4, 13] or 2D-CNN with temporal modeling [38, 31, 22] to construct effec-
tive backbones for action recognition. For example, C3D [36] trains a VGG model
with 3D-CNN to learn spatiotemporal features from a video sequence. I3D [4]
inflates all the 2D convolution filters of an Inception V1 model [34] into 3D convo-
lutions so that ImageNet pre-trained weights can be exploited for initialization.
Slowfast [13] employs a two-stream 3D-CNN model to process frames at differ-
ent sampling rates and resolutions. Due to the heavy computational burden of
3D-CNN, many works attempt to enhance 2D-CNN with temporal modules [38,
31, 22, 26, 20, 37]. P3D [31] factorizes 3D convolution to 1D temporal convolu-
tion and 2D spatial convolution. TSM [22] presents an efficient shift module,
which utilizes left and right shifts of sub-channels to substitute a group-wise
weight-fixed 1D temporal convolution. TEA [20] employs motion excitation and
multiple temporal aggregation to capture motion information and increase tem-
poral receptive field. TEINet [26] uses motion enhanced module and depth-wise
1D convolution for efficient temporal modeling. However, CNN-based methods
cannot effectively model long-range dependencies within or cross the frames,
which limits their performances.

Transformer-based methods. Recently, with the advancement of trans-
formers in 2D vision tasks [8, 23, 43, 16, 35, 5], many works have been done to
apply transformers on video action recognition [2, 1, 24, 44]. Different from the
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temporal modeling for CNN, which is mainly implemented by 3D convolution
or its factorized versions, in transformers the spatiotemporal SA is naturally
introduced to explore the spatiotemporal video correlations. Intuitively, one can
use all the spatiotemporal patches to directly compute the SA. However, this
operation is very computation and memory expensive. Many works are then
proposed to reduce the computation burdens of joint spatiotemporal SA mod-
eling. Timesformer [2] adopts divided space-time SA, which adds temporal SA
after each spatial SA. ViViT [1] increases the temporal modeling capability by
adding several temporal transformer encoders on the top of spatial encoders.
Video swin transformer [24] reduces both spatial and temporal dimension by
using spatiotemporal local windows. Inspired by the temporal modeling meth-
ods in CNN, TokenShift [44] enhances ViT for temporal modeling by applying
partial channel shifting on class tokens.

The success of temporal modules in 2D-CNN [31, 22, 26, 20, 37] motivates us
to develop TPS to enhance a spatial transformer with spatiotemporal feature
learning capability. Our work shares the spirits with TokenShift [44] in terms
of enhancing the temporal modeling ability of transformers without extra pa-
rameters and computation cost. However, our TPS is essentially different from
TokenShift. TPS models spatiotemporal SA, while TokenShift is a direct appli-
cation of TSM in transformer framework, which is in the nature spatial SA with
“temporal mixed token”. In addition, TPS does not rely on class token (not
exists in many recent transformer models [23]) and operates directly on patches,
which makes it applicable to most recent transformer models.

3 Methodology

In this section, we present in detail the proposed Temporal Patch Shift (TPS)
method, which aims to turn a spatial-only transformer model into a model with
spatiotemporal modeling capability. TPS is a plug-and-play operation that can
be inserted into transformer with no extra parameters and little computation
cost. In the following, we first describe how to build a visual transformer for
videos, and then introduce the design of TPS for action recognition.

3.1 Video-based Vision Transformer

The video based transformer can be built by extending the image based ViT [8].
A video clip X ∈ RF×H×W×C can be divided into s × k × k non-overlapped
patches. The 3D patches are flattened into vectors x(t,p) ∈ R3sk2

with t =
1, . . . , T denoting the temporal index with T = F/s, and p = 1, . . . , N denoting
the spatial index with N = HW/k2. The video patches are then mapped to
visual tokens with a linear embedding layer

z
(t,p)
0 = Ex(t,p) + e(t,p)pos (1)
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where E ∈ RD×3sk2

is the weight of a linear layer, e
(t,p)
pos is learnable spatiotem-

poral positional embedding, z
(t,p)
0 represents an input spatiotemporal patch at

location (t, p) for transformer. We represent the whole input sequence as Z0.
Suppose that a visual transformer contains L encoders, each consisting of

multi-head SA, Layer-Norm (LN) and FFN. The transformer encoder could be
represented as follows:

Ẑl = SA(LN(Zl−1)) + Zl−1,

Zl = FFN(LN(Ẑl)) + Ẑl,
(2)

where Ẑl and Zl denote the output features of the SA module and the FFN
module for block l, respectively. The multi-head SA is computed as follows (LN
is neglected for convenience):

Ql,Kl, Vl = WQ
l Zl−1,W

K
l Zl−1,W

V
l Zl−1

Ẑl = SoftMax(QlK
T
l /

√
d)Vl,

(3)

where Ql,Kl,Vl represent the query, key and value matrices for block l and
WQ

l ,WK
l ,WV

l are weights for linear mapping, respectively. d is the scaling factor
that equals to query/key dimension.

Following transformer encoders, temporal and spatial averaging (or temporal
averaging only if using class tokens) can be performed to obtain a single feature,
which is then fed into a linear classifier. The major computation burden of trans-
formers comes from the SA computation. Note that when full spatiotemporal SA
is applied, the complexity of attention operation is O(N2T 2), while spatial-only
attention costs O(N2T ) in total. Next, we show how to turn a spatial-only SA
operator to a spatiotemporal one with TPS.

3.2 Temporal Patch Shift

Generic shift operation. We first define a generic temporal shift operation in
transformers as follows:

Zt = [z0, z1, . . . , zN ],

A = [a0,a1, . . . ,aN ],

Ẑt = A⊙ Zt′ + (1−A)⊙ Zt,

(4)

where Zt,Zt′ ∈ RD×N represent the patch features for current frame t and
another frame t′, respectively. N is the number of patches, and A represents the
matrix of shift channels, with ai ∈ RD represents the vector of channel shifts for
patch i, each element of which is equal to 0 or 1. Ẑt is the output image patches
after shift operation.

TSM [22] uses space-invariant channel shift for temporal redundancy mod-
eling, which is a special case of our proposed patch shift operation by shifting
α percent of channels (with α percent of elements in ai equal to 1), where α is
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Fig. 2. Examples of patch shift patterns
when patch number is 3× 3.

Table 1. Comparison of the complexities
of different SA models.

Attention SA-Complexity

Joint O(N2T 2)
Divide O(N2T + T 2N)

Sparse/Local O(αN2T 2)
PatchShift O(N2T )

a constant for all patches. In our case, we mainly explore temporal spatial mix-
ing and shift patches in a space-variant manner, where ai = 0 or 1. To reduce
the mixing space, shift pattern p is introduced, which is applied repeatedly in
a sliding window manner to cover all patches. For example, p = {0, 1} means
shifting one patch for every two patches, therefore A = [0,1,0,1, . . . ] in Eq. 4.
In practice, 2D shift patterns are designed for video data, which will be discussed
in detail in the section below.

Patch shift SA. By using the proposed patch shift operation, we can turn
spatial-only SA into spatiotemporal SA. Given video patches Z ∈ RD×T×N , the
PatchShift function shifts the patches of each frame along the temporal dimen-
sion with pattern p. As only part of patches are shifted in each frame, patches
from different frames could be presented in the current frame, therefore, spatial-
only SA naturally turns into a sparse spatiotemporal SA. After SA, patches
from different frames are shifted back to their original locations. We follow [23]
to add a relative position bias with an extension to 3D position. To keep the
track of shifted patches, the 3D positions are shifted alongside. With PatchShift,
the multi-head SA is computed as:

{i′,Z
′

l−1} = PatchShift(p, i,Zl−1),

Ql,Kl, Vl = WQ
l Z

′

l−1,W
K
l Z

′

l−1,W
V
l Z

′

l−1,

Ẑ = ShiftBack(SoftMax(QlK
T
l /

√
d+B(i′))Vl),

(5)

where {i,Zl−1} and {i′,Z′

l−1} represent relative position bias indices and patches
before and after PatchShift; B is the bias matrix.

Patch shift patterns. As mentioned before, in order to reduce the design
space, our strategy is to employ repeated shift patterns, as it can scale up to
different input sizes and is easy to implement. We adopt the following pattern
design principles: a) Even spatial distribution. For each pattern, we uniformly
sample the patches from the same frame to ensure they are evenly distributed.
b) Reasonably large temporal receptive field. The temporal receptive field is
set large enough to aggregate more temporal information. c) Adequate shift
percentage. A higher percentage of shifted patches could encourage more inter-
frame information communication. Various spatiotemporal SA models can be
implemented with different patch shift patterns. We show several instantiations
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Fig. 3. An example of patch shift and channel shift for consecutive frames.

of p in Fig. 2. The numbers represent the indices of the frames that the patches
are from, where “0”, “-” and “+” indicate current, previous and next frames,
respectively. Pattern (a) shifts a single patch from next frame to the center of
current frame. Pattern (b) shifts patches with a “Bayer filter” like pattern from
previous and next frames. Pattern (c) shifts patches with a temporal field of 9,
with patch from current frame in the center and patches from previous and next
4 frames around it. For window size larger than the pattern size, we spatially
repeat the pattern to cover all patches. We use cyclic padding in [23] for patches
that exceed the temporal boundary. In the experiment section, we will discuss
the design of shift patterns by extensive ablation studies.

Patch shift is an efficient spatiotemporal SA modeling method for transform-
ers as it only costs O(N2T ) complexity in both computation and memory, which
is much less than “Joint” space-temporal SA, where N and T are the spatial
and temporal dimension of patches. Patch shift is also more efficient than other
factorized attention methods such as “Divide” [2, 1] (apply spatial-only and then
temporal-only SA) and “Sparse/Local” [2, 24] (subsample in space or temporal
dimension). The complexity comparison of different SA models are in Table 1.

Discussions on patch and channel shifts. Patch shift and channel shift
are two zero parameter and low-cost temporal modeling methods. Patch shift
is space-wise sparse and channel-wise dense, while channel shift is opposite. We
show an example by applying patch shift and channel shift on three consecutive
frames in Fig. 3. Here the shift operations are applied directly on RGB images
for visualization, while in practice we apply shift operations on feature maps. In
the output image of patch shifting, 1/4, 1/2 and 1/4 patches are from frames
t0 − 1, t0 and t0 + 1, respectively. For channel shift, the red, green and blue
colors represent frames t0 − 1, t0 and t0 + 1, respectively. The output of shift
operation for frame t0 is represented as t′0 in the last column. As we can see
from the figure, both patch shift and channel shift can capture the motion of
action. Patch shift is spatially sparse while keeping the global channel informa-
tion for each patch. In contrast, channel shift uses partial channel information
in exchange for temporal information from other frames. Previous studies on
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Fig. 4. An overview of building blocks and variants of PST.

vision transformer [5] have shown that feature channels encode activation of dif-
ferent patterns or objects. Therefore, replacing partial feature channels of the
current frame with other frames could potentially lose important information of
patterns/objects of interest. In comparison, patch shift contains full information
of channels of patches. When patch shift is employed for SA modeling, it builds
a sparse spatiotemporal SA with 3D relations among patches. In comparison,
channel shift can be viewed as a “mix-patch” operation, by which temporal in-
formation is fused in each patch with shared 2D SA weights. Patch shift and
channel shift perform shifting operations in orthogonal directions and they are
complementary in nature.

3.3 Patch Shift Transformer

Based on the proposed TPS, we can build Patch Shift Transformers (PST) for
efficient and effective spatiotemporal feature learning. A PST can be built by in-
serting TPS into the SA module of off-the-shelf 2D transformer blocks. Therefore,
our model could directly benefit from the pre-trained models on 2D recognition
tasks. The details of Temporal Patch Shift blocks (TPS block for short) can be
seen in Fig. 4. TPS turns spatial-only SA to spatiotemporal SA by aggregating
information of patches from other temporal frames. However, it gathers infor-
mation in a sparse manner and sacrifices SA within frames. To alleviate this
problem, we insert one TPS block for every two SA modules (alternative shift
in short) so that spatial-only SA and spatiotemporal SA could work in turns to
approximate full spatiotemporal SA.

We further improve the temporal modeling ability of spatial-only SA with
channel shift. Specifically, partial channels of each patch are replaced with those
from previous or next frames. We call this block a temporal channel shift (TCS)
block. The final PST consists of both TPS and TCS blocks. We will also imple-
ment a channel-only PST for comparison to unveil the benefits of patch shift.
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4 Experiments

4.1 Dataset

Something-Something V1&V2 [15] are large collections of video clips, con-
taining daily actions interacting with common objects. They focus on object
motion without differentiating manipulated objects. V1 includes 108,499 video
clips, while V2 includes 220,847 video clips. Both V1 and V2 have 174 classes.
Kinetics400 [17] is a large-scale dataset in action recognition, which contains
400 human action classes, with at least 400 video clips for each class. Each clip
is collected from a YouTube video and then trimmed to around 10s. Diving-
48 V2 [21] is a fine-grained video dataset of competitive diving, consisting of
18k trimmed video clips of 48 unambiguous dive sequences. This dataset is a
challenging task for modern action recognition systems as it reduces background
bias and requires modeling of long-term temporal dynamics. We use the man-
ually cleaned V2 annotations of this dataset, which contains 15,027 videos for
training and 1,970 videos for testing.

4.2 Experiment setup

Models. We choose swin transformer [23] as our backbone network and de-
velop PST-T, PST-B with an increase in model size and FLOPs based on swin
transformer Tiny and Base backbones, respectively. In ablation study, we use
Swin-Tiny considering its good trade-off between performance and efficiency.
We adopt 32 frames as input and the tubelet embedding strategy in ViViT [1]
with patch size 2× 4× 4 by default. As PST-T and PST-B are efficient models,
when comparing with SOTA methods, we introduce PST-T† and PST-B†, which
doubles the temporal attention window to 2 with slightly increased computation.

Training. For all the datasets, we first resize the short side of raw images to
256 and then apply center cropping of 224× 224. During training, we follow [24]
and use random flip, AutoAugment [7] for augmentation. We utilize AdamW [27]
with the cosine learning rate schedule for network training. For PST-T, the base
learning rate, warmup epoch, total epoch, stochastic depth rate, weight decay,
batchsize are set to 10−3, 2.5, 30, 0.1, 0.02, 64 respectively. For larger model
PST-B, learning rate, drop path rate and weight decay are set to 3× 10−4, 0.2,
0.05, respectively.

Testing. For fair comparison, we follow the testing strategy in previous state-
of-the-art methods. We report the results of two different sampling strategies. On
Something-something V1&V2 and Diving-48 V2, uniform sampling and center-
crop (or three-crop) testing are adopted. On Kinetics400, we adopt the dense
sampling strategy as in [1] with 4 view, three-crop testing.

4.3 Ablation study

To investigate the design of patch shift patterns and the use of TPS blocks, we
conduct a series of experiments in this section. All the experiments are conducted
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on Something-something V1 with Swin-Tiny as backbone (IN-1K pretrained).
For experiments on design of patch shift we use patch-only PST for clarity.

The number and distribution of shifted patches. We start with a
simple experiment by shifting only one center patch along temporal dimen-
sion within each window. It can be seen from Table 2(a) that this simple shift
pattern (center-one) brings significant improvements (4.7% on top-1) over the
model without shifting operation (none). We then increase the number of shift-
ing patches to 1/2 of the total patches, however, in an uneven distribution (shift
only the left half of patches). This uneven shift pattern does not improve over the
simple “center-one” pattern. However, when the shifted patches are distributed
evenly within the window (even-2), the performance increases by 0.9% on top-1.
This indicates that, the shifted and non-shifted patches should be distributed
evenly. It is also found that a large temporal field is helpful. When we increase the
temporal field to 3 by shifting 1/4 patches to previous frame and 1/4 patches to
next frame (even-3), the performance is improved by 2.4% on top-1 over shifting
patches in one dimension.

Table 2. Ablation studies on TPS. All the experiments are conducted on Something-
something V1 with Swin-Tiny as backbone.

(a) Patch distribution

Distribution Top-1 Top-5

None 40.6 71.4
Center-one 45.3 75.1
Uneven 45.3 75.5
Even-2 46.2 76.1
Even-3 48.6 77.8

(b) Shift patterns

Pattern Top-1 Top-5

A-3 48.6 77.8
B-4 50.7 79.3
C-9 51.8 80.3
D-16 50.0 79.5

(c) Number of stages with TPS

Stage
Top-1 Top-5

1 2 3 4

✓ 47.3 77.0
✓ ✓ 48.4 77.6
✓ ✓ ✓ 50.4 79.1
✓ ✓ ✓ ✓ 51.8 80.3

(d) Shift back, Alternative shift and shift RPE

Shift back Alternative Shift RPE Top-1 Top-5

✓ ✓ 47.3 77.0
✓ ✓ 46.4 76.6
✓ ✓ 46.1 76.0
✓ ✓ ✓ 51.8 80.3

(e) Comparison of spatiotemporal attentions

FLOPs Memory Top-1 Top-5

Avgpool 72G 3.7G 40.6 71.4
Joint 106G 20.2G 51.5 80.0
Local 88G 11G 49.9 79.2
Sparse 72G 4.0G 42.7 74.0

Channel-only 72G 3.7G 51.2 79.7
Patch-only 72G 3.7G 51.8 80.3

PST 72G 3.7G 52.2 80.3

Patch shift patterns. Based on the experiments in Table 2(a), we design
a few different patch shift patterns with various temporal fields. The patches
of different frames are distributed evenly within the window. Pattern A with
temporal field 3 is shown in Fig. 2(b), which is “Bayer filter” like. Pattern B with
temporal field 4 is implemented by replacing 1/4 of index “0” frame patches in
pattern A as index “2” frame patches. Pattern C is shown in Fig. 2(c). Pattern D
is designed by placing patches from 16 consecutive frames in a 4×4 pattern grid.
More details can be found in the supplementary materials. We can see from the
Table 2(b) that the performance of TPS gradually increases when the temporal
field grows. The best performance is reached at temporal field 9, which achieves
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a good balance between spatial and temporal dimension. We use this pattern for
the rest of our experiments.

The number of stages using TPS blocks. As can be seen in Table 2(c),
by using TPS blocks in more stages of the network, the performance gradually
increases. The model achieves the best performance when all the stages are
equipped with TPS blocks.

Shift back, alternative shift and shift RPE. Shift back operation re-
covers the patches’ locations and keeps the frame structure complete. Alterna-
tive shift is described in Section 3.3 for building connections between patches.
Shift RPE represents whether relative positions are shifted alongside patches.
As shown in Table 2(d), removing each of them would decrease performance by
4.5%, 5.4%, 5.7%, respectively. Therefore, we use all the operations in our model.

Comparison with other temporal modeling methods. In Table 2(e),
we compare PST with other designs of spatiotemporal attention methods in
FLOPs, peak training memory consumption and accuracy. “Avgpool” achieves
only 40.6% Top-1 rate since it cannot distinguish temporal ordering. Joint spa-
tiotemporal SA achieves a good performance at the price of high computation
and memory cost. Local spatiotemporal attention [24] applies SA within a local
window with 3D window size. It reduces the computation and memory cost but
at the price of performance drop comparing to “Joint”. We also implement a
sparse spatiotemporal SA by subsampling spatial patches to half, while keeping
the full temporal dimension. It performs poorly as only part of patches partic-
ipate in SA computation in each layer. We implement channel-only PST with
shift ratio equals 1/4, which is the same in the [22]. This channel-only PST also
achieves strong performance.

Patch-only PST outperforms all other temporal modeling methods without
additional parameters and FLOPs. The best performance comes from combin-
ing channel-only and patch-only PST, which indicates they are complementary
in nature. Specifically, PST exceeds joint spatiotemporal SA with much less
computation and only 1/5 of memory usage. It also outperforms other efficient
spatiotemporal SA models with fewer computation and memory cost.

4.4 Comparison with SOTA

Something V1 & V2. The performance statistics on Something V1 & V2,
including the pretrained dataset, classification results, inference protocols, the
corresponding FLOPs and parameter numbers are shown in Table 3.

The first compartment contains methods based on 3D CNNs or factorized
(2+1)D CNNs. Using efficient inference protocol (16 views and center crop×1
clip), ImageNet1K pretrain, PST-T obtains 52.2% accuracy on V1 and 65.7%
on V2, respectively, which outperforms all the CNN-based methods with similar
FLOPs. Note that TDN [37] uses a different sampling strategy comparing to
other methods, which requires 5 times more frames. Even though, PST-T still
outperforms TDN on larger Something-something V2.

The second compartment contains transformer-based methods. Our small
model PST-T pretrained on Kinetics400 offers competitive performance on Some-
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Table 3. Comparisons with the other methods on Something-something V1 & V2.

Model Pretrain Crops × Clips FLOPs Params
Sthv1 Sthv2

Top-1 Top-5 Top-1 Top-5

TSM [22] K400 3× 2 65G 24.3M - - 63.4 88.5
TEINet [26] IN-1K 1× 1 66G 30.4M 49.9 - 62.1 -
TEA [20] IN-1K 1× 1 70G 24.3M 51.9 80.3 - -
TDN [37] IN-1K 1× 1 72G 24.8M 53.9 82.1 65.3 89.5

ACTION-Net [41] IN-1K 1× 1 70G 28.1M - - 64.0 89.3
SlowFast R101, 8x8 [13] K400 3× 1 106G 53.3M - - 63.1 87.6

MSNet [18] IN-1K 1× 1 101G 24.6M 52.1 82.3 64.7 89.4
blVNet [11] IN-1K 1× 1 129G 40.2M - - 65.2 90.3

Timesformer-HR [2] IN-21K 3× 1 1703G 121.4M - - 62.5 -
ViViT-L/16x2 [1] IN-21K 3× 1 903G 352.1M - - 65.9 89.9
MViT-B, 64×3 [9] K400 3× 1 455G 36.6M - - 67.7 90.9
Mformer-L [29] K400 3× 1 1185G 86M - - 68.1 91.2

X-ViT [3] IN-21K 3× 1 283G 92M - - 66.2 90.6
SIFAR-L [10] K400 3× 1 576G 196M - - 64.2 88.4

Video-Swin [25] K400 3× 1 321G 88.1M - - 69.6 92.7

PST-T

IN-1K 1× 1

72G 28.5M

52.2 80.3 65.7 90.2
IN-1K 3× 1 52.8 80.5 66.4 90.2
K400 1× 1 53.2 82.2 66.7 90.6
K400 3× 1 53.6 82.2 67.3 90.5

PST-T† K400 3× 1 74G 54.0 82.3 67.9 90.8

PST-B

IN-21K 1× 1

247G 88.8M

55.3 81.9 66.7 90.7
IN-21K 3× 1 55.6 82.2 67.4 90.9
K400 1× 1 57.4 83.2 68.7 91.3
K400 3× 1 57.7 83.4 69.2 91.9

PST-B† K400 3× 1 252G 58.3 83.9 69.8 93.0

thingV2 comparing to these methods. PST-B is a larger model and pretrained
on ImageNet21K/Kinetics400. PST-B achieves 57.7% and 69.2% on V1 & V2,
outperforming Timesformer-HR [2], ViViT-L [1] and MViT-B [9] at a lower cost
on computation or parameter. PST-B also outperforms Mformer-L [29] and X-
ViT [3], which are recently proposed efficient temporal modeling methods. They
apply trajectory self-attention and local spatiotemporal self-attention, respec-
tively. Our PST-B† achieves 58.3% and 69.8% on V1 & V2, which outperforms
other transformer-based methods. Note that, SIFAR-L [10] uses larger back-
bone network Swin-L, however, its performance is less satisfactory. PST-B† also
outperforms Video-Swin [24], which uses full temporal window on this dataset.
The performances of PST family on Something-something V1&V2 confirms its
remarkable ability for spatiotemporal modeling.

Kinetics400. We report our results on scene-focused Kinetics400 in Ta-
ble 4 and compare them with previous state-of-the-arts. As we can see from Ta-
ble 4, PST-T achieves 78.2% top-1 accuracy and outperforms majority of (2+1D)
CNN-based methods such as TSM [22], TEINet [26], TEA [20], TDN [37] with
less total FLOPs. Our larger model PST-B achieves 81.8% top-1 accuracy, which
outperforms strong 3D-CNN counterparts such as SlowFast [13] and X3D [12].

Comparing to transformer-based methods such as Timesformer [2] and ViViT-
L [1], our PST-B† achieves 82.5% with less computation overheads. Specifically,
PST-B† outperforms SIFAR-L [10] which adopts larger size Swin-L as back-
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bone network. PST-B† also achieves on par performance with recently developed
Video-Swin [25] with less computation cost.

Table 4. Comparisons with the state-of-the-art methods on Kinetics400.

Model Pretrain Crops × Clips FLOPs Params Top-1 Top-5

I3D [4] IN-1K 1× 1 108G 28.0M 72.1 90.3
NL-I3D [40] IN-1K 6× 10 32G 35.3M 77.7 93.3
CoST [19] IN-1K 3× 10 33G 35.3M 77.5 93.2

SlowFast-R50 [13] IN-1K 3× 10 36G 32.4M 75.6 92.1
X3D-XL [12] - 3× 10 48G 11.0M 79.1 93.9
TSM [22] IN-1K 3× 10 65G 24.3M 74.7 91.4

TEINet [26] IN-1K 3× 10 66G 30.4M 76.2 92.5
TEA [20] IN-1K 3× 10 70G 24.3M 76.1 92.5
TDN [37] IN-1K 3× 10 72G 24.8M 77.5 93.2

Timesformer-L [2] IN-21K 3× 1 2380G 121.4M 80.7 94.7
ViViT-L/16x2 [1] IN-21K 3× 1 3980G 310.8M 81.7 93.8

X-ViT [3] IN-21K 3× 1 283G 92M 80.2 94.7
MViT-B, 32×3 [9] IN-21K 1× 5 170G 36.6M 80.2 94.4
MViT-B, 64×3 [9] IN-21K 3× 3 455G 36.6M 81.2 95.1
Mformer-HR [29] K400 3× 1 959G 86M 81.1 95.2
TokenShift-HR [44] IN-21K 3× 10 2096G 303.4M 80.4 94.5

SIFAR-L [10] IN-21K 3× 1 576G 196M 82.2 95.1
Video-Swin [24] IN-21K 3× 4 282G 88.1M 82.7 95.5

PST-T IN-1K 3× 4 72G 28.5M 78.2 92.2
PST-T† IN-1K 3× 4 74G 28.5M 78.6 93.5
PST-B IN-21K 3× 4 247G 88.8M 81.8 95.4
PST-B† IN-21K 3× 4 252G 88.8M 82.5 95.6

Diving-48 V2. In Table 5, we further evaluate our method on fine-grained
action dataset Diving-48. As older version of diving-48 has labeling errors, we
compare our methods with reproduced SlowFast [13] and Timesformer in [2] on
V2. PST-T achieves competitive 79.2% top-1 performance with ImageNet-1K
pretrain and costs much less computation resources than SlowFast, Timersformer
and Timesformer-HR. When PST-T is pretrained on Kinetics400, it also outper-
forms Timersformer-L. Our larger model PST-B outperforms TimsFormer-L by
a large margin of 2.6% when both are pretrained on ImageNet-21K with 9.7×
less FLOPs. When model is pretrained on Kinetic400, PST-B achieves 85.0%
top-1 accuracy. PST-T† and PST-B† further boost the performance to 82.1%
and 86.0%, respectively.

Latency, throughput and memory. The inference latency, throughput
(videos/second) and inference memory consumption are important for action
recognition in practice. We performed measurement on a single NVIDIA Tesla
V100 GPU. We use batch size of 1 for latency measurement and batch size
of 4 for throughput measurement. The accuracy is tested on validation set of
Something-something V1&V2 dataset. The results are shown in Table 6. We
make three observations: (1) Comparing to baseline “2D Swin-T” that uses 2D
transformer with avgpooling for temporal modeling, PST-T has slightly higher
latency, same memory consumption, but much better performance (11.6%, 9.0%
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Table 5. Comparisons with the other methods on Diving-48 V2.

Model Pretrain Crops × Clips FLOPs Params Top-1 Top-5

SlowFast R101, 8x8 [13] K400 3× 1 106G 53.3M 77.6 -

Timesformer [2] IN-21K 3× 1 196G 121.4M 74.9 -
Timesformer-HR [2] IN-21K 3× 1 1703G 121.4M 78.0 -
Timesformer-L [2] IN-21K 3× 1 2380G 121.4M 81.0 -

PST-T
IN-1K 3× 1 72G

28.5M
79.2 98.2

K400 3× 1 72G 81.2 98.7
PST-T† K400 3× 1 74G 82.1 98.6

PST-B
IN-21K 3× 1 247G

88.1M
83.6 98.5

K400 3× 1 247G 85.0 98.6
PST-B† K400 3× 1 252G 86.0 98.6

top-1 improvements on Sthv1&v2, respectively). (2) Comparing to “Video-Swin-
T” that utilizes full scale temporal information, PST-T uses 76% less memory
and has 2 times faster inference speed, while achieves very competitive per-
formance. (3) For larger model PST-B†, it achieves better performance than
Video-Swin-B while using 50% less inference memory and 80% less time.

Table 6. Memory and latency comparison on Something-something V1&V2 (Measured
on NVIDIA Tesla V100 GPU)

Methods FLOPs Param Memory Latency Throughput
Sthv1 Sthv2

Top-1 Top-5 Top-1 Top-5

2D Swin-T 72G 1.7G 29ms 35.5 v/s 40.6 71.4 56.7 84.1
Video-Swin-T [24] 106G(↑ 34G) 28.5M 3.0G(↑ 1.3G) 62ms(↑ 33ms) 17.7 v/s 51.5 80.0 65.7 90.1

PST-T 72G 1.7G 31ms(↑ 2ms) 34.7 v/s 52.2 80.3 65.7 90.2

2D Swin-B 247G 2.2G 71ms 15.5 v/s - - 59.5 86.3
Video-Swin-B [24] 321G(↑ 74G) 88.8M 3.6G(↑ 1.4G) 147ms(↑ 76ms) 7.9 v/s - - 69.6 92.7

PST-B† 252G(↑ 5G) 2.4G(↑ 0.2G) 81ms(↑ 10ms) 13.8 v/s - - 69.8 93.0

5 Conclusions

In this paper, we proposed a novel temporal patch shift method, which can
be inserted into transformer blocks in a plug-and-play manner for efficient and
effective spatiotemporal modeling. By comparing the patch shift and channel
shift operations under transformer framework, we showed that they are two effi-
cient temporal modeling methods and complementary in nature. PST achieved
competitive performance comparing to previous methods on the datasets of
Something-something V1&V2 [15], Diving-48 [21] and Kinetics400 [17]. In ad-
dition, we presented in-depth ablation studies and visualization analysis on PST
to investigate the design principles of patch shift patterns, and explained why it
is effective for learning spatiotemporal relations. PST achieved a good balance
between accuracy and computational cost for effective action recognition.
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