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1 Appendix A: More Implementation Details

A.1 More details on boundary IoU loss Intersection over Union (IoU) is
the standard evaluation metric for segmentation (e.g., image segmentation) and
detection tasks (e.g., object detection and temporal action detection). Given a
number of predictions it measures what are true positives and false positives
against the ground-truth. Besides, IoU has been successfully used to design loss
functions [15, 9] for training object detection models. Recently, it is shown that
boundary region is critical part for mask prediction in image segmentation.

Inspired by these considerations as above, in this work a novel boundary
IOU (bIoU) loss design is introduced. We first define the boundary IOU metric.
Concretely, given a ground-truth mask G (Fig. 2(a)), we obtain the boundary
region Gd by extracting those pixels within a given distance d away from the
contour (Fig. 2(c)). This can be implemented using a morphological erosion
operation, with the parameter d controlled by the morphological kernel k. Given
a predicted mask P (Fig. 2(b)) we similarly obtain the boundary region Pd (Fig.
2(d)). We then compute the bIoU metric between G and P as:

bIOU(P,G) =
|(Gd ∩G) ∩ (Pd ∩ P )|
|(Gd ∩G) ∪ (Pd ∩ P )| (1)

The distance parameter d controls the boundary sensitivity. Note, when d is
sufficiently large, the boundary will expand to the whole mask, leading to the
standard IoU metric. Empirical evaluations in Table 1 suggests that selecting
k = 7 gives the best temporal boundaries.

We formulate the bIoU loss function as:

LbIOU = 1− bIOU(P,G) = 1− |(Gd ∩G) ∩ (Pd ∩ P )|
|(Gd ∩G) ∪ (Pd ∩ P )|

= 1− |Φ(G) ∩ Φ(P )|
|Φ(G) ∪ Φ(P )|

(2)

where Φ(.) represents the morphological operation.
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Table 1: Impact of kernel size on bIOU loss on ActivityNet.

Kernel Size
mAP

0.5 Avg

3 53.3 34.3
5 55.1 35.7
7 56.3 36.5
9 55.7 36.0

Differentiation To facilitate model training, a loss function needs to be dif-
ferentiable. To that end, we adopt the differentiable morphological erosion [10]
as the mask morphological operation.
Vanishing gradients Our proposed bIOU loss may suffer from vanishing gra-
dients, causing extra convergence difficulties. For example, this may arise at the
cases of non-overlapping mask boundaries, as illustrated in Fig. 2(d,f). To alle-
viate this problem, we append an additional L2 distance penalty on the whole
mask. Mathematically, the entire bIoU loss can be finally defined as:

LbIOU = 1− bIOU(P,G) + λ ∗ L2(P,G),

with λ = 1/(Φ(G) ∩ Φ(P ) + ϵ).
(3)

Here, λ specifies the coefficient inversely proportional to the boundary overlap
and ϵ is used for avoiding zero denominator. We conjecture that this penalty can
help push the predicted boundaries closer to the ground-truth to yield better
masks. Concretely, this penalty term is designed as:

L2(P,G) =
d(P,G)

c
(4)

where d(.) is the normalized L2 distance between the masks P and G, and c
is the foreground snippet number of ground-truth mask. We found that using
this additional penalizing term, the model training can became more stable and
better fit to the training data (Fig. 1).

0

1

2

3

4

0 0.04 0.08 0.12 0.16 0.2No of Iterations

Er
ro

r

w bIOU Loss
w/o bIOU Loss

Fig. 1: Convergence of the mask branch’s loss.
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Fig. 2: A 2-D illustration of our bIOU loss design and example cases.

Comparing IoU loss and bIoU loss on Temporal Action Detection For
quantitative evaluation, we compare the IOU loss LIOU and our proposed bIOU
loss LbIOU for training the masl branch of TAGS. The dice loss Ldice is also
applied simultaneously. Table 2 shows that our bIOU loss gives a performance
gain of 1.1% in average mAP on ActivityNet, due to its ability of predicting
better temporal boundaries.

Table 2: Analysis of IOU and bIOU loss on ActivityNet.

Loss
mAP

0.5 Avg

Ldice + LIOU 54.9 35.3
Ldice + LbIOU 56.3 36.5

IoU loss vs. bIoU loss on RGB saliency detection Image saliency is
essentially a mask prediction task. In this test, we use a popular saliency detec-
tion method BASNet [8] on DUTS dataset [11]. The performance metrics are
Mean Absolute Error (MAE) and F-measure of boundary (Fβ). To train the
model, binary cross-entropy (BCE) and SSIM losses are also applied in addition
to IoU/bIoU loss. Table 3 shows that our bIOU loss is again superior to the
conventional IoU loss, suggesting its general advantage.

Table 3: Comparative analysis of IOU and bIOU loss on image saliency detection.
BASNet [8] is used.

Loss Head
DUTS Dataset

maxFβ relaxF b
β MAE

Lbce + Lssim + Liou 0.942 0.826 0.037

Lbce + Lssim + Lbiou 0.940 0.823 0.034
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2 Appendix B: More Analysis

Importance of structured consistency We further analyze the impact of
structural consistency on the fine-grained performance by video length. Follow-
ing [1], the videos of THUMOS dataset are classified into 5 different categories
by action temporal duration: extra-small, small, medium, long and extra-long.
We compare our TAGS with and without the structural consistency: (i) mask
redundancy (Lpp) or (ii) class-mask consistency (Lfc) on each of these 5 duration
categories individually. As seen in Fig. 3, our TAGS performs better with struc-
tural consistency especially on more challenging short videos with less action
content.

Fig. 3: Impact of structural consistency across different video lengths
on THUMOS dataset.

Scoring method We evaluate the design of sequence scoring (refer to Eq. (7)
of main paper) on ActivityNet. We investigate three distinct scoring methods for
training: (a) only inner scores, (b) score contrast of action instances, (c) contrast
of both action and background ones, which is our default design. As shown in
Table 4, compared to inner scores, both contrast methods generate more accurate
mask sequences and hence bring good performance gains at high IoU thresholds.
Moreover, incorporating background segments in score calculation helps to find
more accurate mask sequences thereby improving the detection performance at
test time.
TAGS with conventional objective loss To evaluate the importance of our
loss functions, we test TAGS under common conventional TAD loss functions
on ActivityNet. We evaluate the performance of our TAGS with simple loss
functions: the wBCE loss used in BMN [2] for the mask branch and the standard
cross entropy loss for the classification branch. We denote this variant as TAGS†.
For fair comparison, we use BMN [2] as a competitor using the same post-
processing and the feature backbone. It can be observed in Table 5 that the
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Table 4: Ablation study on choice of mask-redundancy score on ActivityNet.

Scoring design
mAP

0.5 0.75 0.95 Avg

Inner Score 54.9 35.2 9.1 35.3
Contrast in Action 55.5 36.0 9.3 35.7

Contrast in Action and Background 56.3 36.8 9.6 36.5

performance of our single stage TAGS† drops by 4.2% in mAP@0.5, justifying
the importance of our loss design (refer to Table 6 in main paper). Further, with
even such a simple loss function our TAGS can still be comparable to BMN [2],
justifying our model design.

Table 5: Ablation of TAGS with conventional objective loss.

Method
mAP

0.5 Avg

TAGS (ours) 56.3 36.5

TAGS† 52.1 33.8
BMN [2] + UNet [12] 50.1 33.9

Analysis of component design in TAGS Our TAGS primarily consists of
a Snippet Embedding Transformer and 1-D Convolution heads for classification
and localization branch. We ablate the number of 1-D CNN layers for both
the branch heads in Table 6. As the results suggest, only 1 layer is enough for
classification branch. A plausible reason for this is that for classification it needs
global information and stacking multiple 1-D CNNmay affect global information.
For localization branch, it is observed that 3 layers give best performance. This
is probably because for predicting the masks the network needs to process local
information captured by 1-D CNNs. Additionally, we also ablate the performance
of transformer design in head size. Table 7 demonstrates that the performance
of TAGS improves significantly with the increase of heads in the Transformer.
However, excessive heads will lead to overfitting. The performance peaks at four
heads.
Cross-domain generalization The experiments so far assumed that the train-
ing and test data come from the same dataset/domain. However, in real-world
applications a trained model typically needs to handle many different deployment
situations out of the box. To simulate this more realistic deployment setting, we
design a cross-domain experiment using a subset of classes shared by Activi-
tyNet and THUMOS. We manually match the class semantics across the two
datasets and then merge those classes with same semantics but different names.
This results in a total of 12 classes. G-TAD [14] is selected for comparative eval-
uation. We then train each model on one dataset and test on the other. We
observe from Table 8 that: (1) Both models’ performance degrades (vs. Table 1
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Table 6: Effect of the number of 1-D CNN Layers for the classification and mask
branches on ActivityNet.

# Layers
Class. brch Mask brch

0.5 Avg 0.5 Avg

1 56.3 36.5 52.7 34.2
2 55.8 36.0 53.8 35.1
3 55.2 35.9 56.3 36.5
4 54.3 35.1 56.0 36.1
5 53.8 34.7 55.9 36.0

Table 7: Impact of the head number in the Transformer on ActivityNet.

Number of heads
mAP

0.5 Avg

1 53.8 34.8
2 54.6 35.0
3 55.2 35.7
4 56.3 36.5
5 55.8 35.9

(main)) under this more challenging setting due to the data distribution shift.
(2) Importantly, our model’s advantage over G-TAD is even bigger compared to
the same-domain setting, suggesting that our model is more suited to real-world
deployments. This is not surprising as simpler models often generalize better.

Table 8: Cross-domain generalization.

Methods
ActivityNet → Thumos Thumos → ActivityNet

mAP@0.5 Avg mAP mAP@0.5 Avg mAP

GTAD [14] 27.5 28.2 34.5 22.1

TAGS 32.7 30.3 43.4 25.6

Transformers in existing TAD setting We examine how well existing TAD
methods [4, 5, 7, 6, 13] work with TAGS’s transformer for snippet embedding.
We select a representative model BMN [2] and insert our snippet embedding
module right after the video encoder. As shown in Table 9, self-attention can also
improve the performance of BMN, demonstrating the importance of temporal
relationship modeling for temporal action detection task. However, it is still
significantly inferior to our TAGS model.
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Table 9: Transformer for existing TAD methods on ActivityNet.

Network
mAP

0.5 Avg

BMN [2] 50.1 33.9
Transformer + BMN 51.6 34.8

Effect of snippet length We evaluate the impact of video snippet length T
for TAGS on ActivityNet. As shown in Table 10, when the snippet length is
small (e.g., 100), the pooling of multi-scale will further bring down to extremely
small temporal snippet dimension. As a result, we observe a performance drop of
2.8% in mAP@0.5. This is as expected in that too few snippets per video are less
capable to represent local motion patterns. We find that once the snippet length
increases until 400, the performance drop keeps reducing. Further increasing
the temporal dimension to 800 points gives the best result in terms of cost. In
this case, we apply 3 temporal scales of 100, 200, 400 snippets throughout, and
impose the training supervision to the top two scales (100 and 200). Further
including the 400 scale does not give benefit, as shown in Table 5 of main paper.
Further increasing the snippet dimension indeed boosts the performance slightly,
whilst at a more significant computational cost.

Table 10: Impact of the snippet length of a video on ActivityNet.

Snippet Length
mAP

0.5 Avg

100 53.5 34.8
200 54.9 35.2
400 55.7 36.1
800 56.3 36.5
1000 56.5 36.6

Effect of loss objectives The results in Table 11 show that each loss is bene-
ficial for TAD’s accuracy. In particular, focal loss can tackle the class imbalance
problem in classification branch with 4.5% gain in Avg mAP, balanced logistic
regression (LR) loss (Eq. 5 in main paper) treats the snippet classes individu-
ally by taking a binary mask problem, binary dice loss (Eq. 6 in main paper)
handles the imbalance problem between action and background classes, whilst
our proposed boundary IOU (bIOU) loss (Eq. 6 in main paper) is helpful in
sharpening the foreground mask prediction. More specifically, bIOU contributes
3.1% in mAP@0.5 and 2.6% in Avg mAP, indicating the importance of temporal
boundary and the effectiveness of our loss design in regulating more capacity for
boundary inference. Besides branch-specific loss terms, the mask redundancy
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loss term Lpp benefits in IOU@0.5 and specially in stricter IOU scores. This
reveals the reason for low localization error in proposal-free designs like TAGS
[5, 4, 6, 7]. The classification-mask consistency loss Lfc also contributes 0.5% in
mAP@0.5 and 0.3% in avg mAP, validating the usefulness of structural consis-
tency in design.

Table 11: Effect of TAGS loss objectives on ActivityNet.

Loss
mAP

0.5 Avg

TAGS (full) 56.3 36.5

w/o Focal Loss 51.4 32.0
w/o Balanced LR Loss 55.2 35.4

w/o bIOU Loss 53.2 33.9
w/o Dice Loss 52.5 32.7

w/o Mask Red. Loss (Lpp) 55.6 36.0
w/o Const. Loss (Lfc) 55.8 36.2

Effects of action instance duration We additionally evaluate how the model
performance is affected by the duration of action instances on THUMOS. We
compare our proposal-free method with a proposal based approach BMN [2]. We
measure segmentation error between the ground-truth and temporal prediction
both with L1 norm) against the ground-truth normalized duration. As seen in
Fig. 4, our TAGS [5] yields lower segmentation error than BMN particularly for
shorter action instances w.r.t. the whole video length.

Fig. 4: Segmentation error analysis on THUMOS.

Inference speed For comparison with more previous methods with no training
code released, we can only compare with their reported inference speed measured
in FPS without considering the feature extraction time similar to [3]. As different
GPU hardware is used in previous papers, for easier comparison we translate the
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FPS speed according to their specification. For this comparison, I3D features on
THUMOS14 are used. It is evident from Fig. 5 that despite being a multi-scale
network, our TAGS runs much faster, e.g., 3/4× faster than PGCN/SSTAD.
This is because our TAD model is light-weight with only a light Transformer
and several 1-D conv blocks.

Fig. 5: Accuracy vs. speed (translated FPS based on Titan XM).

3 Qualitative Results

In this section, to make more visual examination we provide additional qualita-
tive results by GTAD [14] and our TAGS model on both ActivityNet and THU-
MOS dataset. We focus on two challenging situations: (i) a single short-duration
action instance per video (Fig. 7), and (ii) multiple short-duration action in-
stances per video (Fig. 8). From these examples, we have a similar observation
that compared to G-TAD, our proposed TAGS method can localize the target
action instances more accurately with a much smaller number of outputs, thus
being more efficient at inference.
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Fig. 6: Qualitative TAD result comparison on videos from (a) ActivityNet-
v1.3 and (b) Thumos14. We compare our TAGS (first 3 rows) with G-TAD [14]
(last 3 rows). For each method, we show a number of top action detection
candidates, with the confidence score given inside each detection box. It can
be seen that for both cases, our TAGS produces more accurate action instance
detection with much less candidates compared to G-TAD.



Supplementary : Proposal-Free TAD via Global Segmentation Mask 11

GroundTruth : Sumo

Final Prediction

46 234

44

(a) ActivityNet v1.3

GTAD : Final Prediction14 48

Predicted
Global 
Mask

0

1

Time ( in secs ) :

22

23

GroundTruth : 

Temporal SegmentsTime ( in secs ) :

Predicted
Start/End

Point
0

1

SoccerPenalty66 68 79

C : 0.30

GSM ( Ours ) :  

C : 0.61 

C : 0.76

GSM ( Ours ) : 
[ Before NMS ] 

C : 0.59

C : 0.39C : 0.68

C : 0.91

GTAD : 
[ Before NMS ] 

C : 0.44

Final Prediction 69

GTAD : 

Predicted
Global 
Mask

0

1

64

Predicted
Start/End

Point
0

1

C : 0.30

GSM ( Ours ) :  

C : 0.89
GSM ( Ours ) : 
[ Before NMS ] 

GTAD : 
[ Before NMS ] 

C : 0.22

C : 0.77

C : 0.35

C : 0.16C : 0.30C : 0.28

C : 0.41

(b) THUMOS14

74 Masks

1213 Proposals

283 Masks

3519 Proposals

48 73Final Prediction

Temporal Segments

C : 0.49 C : 0.38

C : 0.17

C : 0.24

C : 0.10

C : 0.13

C : 0.58

C : 0.10

Final Prediction

C : 0.15

Fig. 7: Qualitative TAD result comparison on single-instance videos from
(a) ActivityNet-v1.3 and (b) Thumos14.



12 S. Nag et al.

GroundTruth : Applying Sunscreen

Final Prediction

36 79

41

(a) ActivityNet v1.3

GTAD : Final Prediction

Predicted
Global 
Mask

0

1

Time ( in secs ) :

14

22

GroundTruth : 

Temporal SegmentsTime ( in secs ) :

Predicted
Start/End

Point
0

1

TennisSwing4 121

GSM ( Ours ) :  

C : 0.48 

C : 0.63

GSM ( Ours ) : 
[ Before NMS ] 

C : 0.49

C : 0.93

GTAD : 
[ Before NMS ] 

C : 0.37

Final Prediction 8

GTAD : 

Predicted
Global 
Mask

0

1

3

Predicted
Start/End

Point
0

1

GSM ( Ours ) :  

GSM ( Ours ) : 
[ Before NMS ] 

GTAD : 
[ Before NMS ] 

C : 0.10

(b) THUMOS14

117 Masks

598 Proposals

105 Masks

2781 Proposals

7 103Final Prediction

Temporal Segments

C : 0.52

Final Prediction

Applying Sunscreen45 52

C : 0.53

C : 0.14 C : 0.50

Final Prediction46 51

C : 0.17

C : 0.44

C : 0.07

C : 0.78

28 61

TennisSwing TennisSwing3 6 8 89 91

C : 0.45

C : 0.21

C : 0.15C : 0.13

4 90

C : 0.61 C : 0.52

C : 0.13 C : 0.18

C : 0.30C : 0.45C : 0.20C : 0.29

Fig. 8: Qualitative TAD result comparison on multi-instance videos from
(a) ActivityNet-v1.3 and (b) Thumos14.



Supplementary : Proposal-Free TAD via Global Segmentation Mask 13

2. Lin, T., Liu, X., Li, X., Ding, E., Wen, S.: Bmn: Boundary-matching network for
temporal action proposal generation. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. pp. 3889–3898 (2019)

3. Liu, Q., Wang, Z.: Progressive boundary refinement network for temporal ac-
tion detection. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 34, pp. 11612–11619 (2020)

4. Nag, S., Zhu, X., Song, Y.Z., Xiang, T.: Temporal action localization with global
segmentation mask transformers (2021)

5. Nag, S., Zhu, X., Song, Y.z., Xiang, T.: Proposal-free temporal action detection
via global segmentation mask learning. In: ECCV (2022)

6. Nag, S., Zhu, X., Song, Y.z., Xiang, T.: Semi-supervised temporal action detection
with proposal-free masking. In: ECCV (2022)

7. Nag, S., Zhu, X., Song, Y.z., Xiang, T.: Zero-shot temporal action detection via
vision-language prompting. In: ECCV (2022)

8. Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M., Jagersand, M.: Basnet:
Boundary-aware salient object detection. In: Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition. pp. 7479–7489 (2019)

9. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: General-
ized intersection over union (June 2019)

10. Riba, E., Mishkin, D., Ponsa, D., Rublee, E., Bradski, G.: Kornia: an open source
differentiable computer vision library for pytorch. In: WACV. pp. 3674–3683 (2020)

11. Wang, L., Lu, H., Wang, Y., Feng, M., Wang, D., Yin, B., Ruan, X.: Learning to
detect salient objects with image-level supervision. In: CVPR (2017)

12. Wang, L., Xiong, Y., Lin, D., Van Gool, L.: Untrimmednets for weakly supervised
action recognition and detection. In: CVPR. pp. 4325–4334 (2017)
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