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Abstract. Existing temporal action detection (TAD) methods rely on
generating an overwhelmingly large number of proposals per video. This
leads to complex model designs due to proposal generation and/or per-
proposal action instance evaluation and the resultant high computational
cost. In this work, for the first time, we propose a proposal-free Temporal
Action detection model via Global Segmentation mask (TAGS). Our core
idea is to learn a global segmentation mask of each action instance jointly
at the full video length. The TAGS model differs significantly from the
conventional proposal-based methods by focusing on global temporal rep-
resentation learning to directly detect local start and end points of ac-
tion instances without proposals. Further, by modeling TAD holistically
rather than locally at the individual proposal level, TAGS needs a much
simpler model architecture with lower computational cost. Extensive ex-
periments show that despite its simpler design, TAGS outperforms ex-
isting TAD methods, achieving new state-of-the-art performance on two
benchmarks. Importantly, it is ∼ 20× faster to train and ∼ 1.6× more
efficient for inference. Our PyTorch implementation of TAGS is available
at https://github.com/sauradip/TAGS.

1 Introduction

Temporal action detection (TAD) aims to identify the temporal interval (i.e., the
start and end points) and the class label of all action instances in an untrimmed
video [16,5]. All existing TAD methods rely on proposal generation by either
regressing predefined anchor boxes [42,8,15,22] (Fig. 1(a)) or directly predicting
the start and end times of proposals [18,4,19,46,27,44,45] (Fig. 1(b)). Centered
around proposals, existing TADmethods essentially take a local view of the video
and focus on each individual proposal for action instance temporal refinement
and classification. Such an approach thus suffers from several fundamental limi-
tations: (1) An excessive (sometimes exhaustive) number of proposals are usually
required for good performance. For example, BMN [18] generates ∼ 5000 propos-
als per video by exhaustively pairing start and end points predicted. Generating
and evaluating such a large number of proposals means high computational costs

https://github.com/sauradip/TAGS
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Fig. 1: All existing TAD methods, no matter whether (a) anchor-based or (b)
anchor-free, all need to generate action proposals. Instead, (c) our global seg-
mentation mask model (TAGS) is proposal-free.

for both training and inference. (2) Once the proposals are generated, the subse-
quent modeling is local to each individual proposal. Missing global context over
the whole video can lead to sub-optimal detection.

In this work, for the first time, we address these limitations by proposing a
proposal-free TAD model. Our model, termed TAGS, learns a global segmenta-
tion mask of action instances at the full video length (Fig. 1(c)). By modeling
TAD globally rather than locally, TAGS not only removes the need for proposal
generation, and the associated design and computational complexity, it is also
more effective. Concretely, instead of predicting the start/end points of each
action instance, TAGS learns to predict an action segmentation mask of an en-
tire video. Such a mask represents the global temporal structure of all action
instances in the video; TAGS is thus intrinsically global context-aware.

Taking a proposal-free approach to TAD, our TAGS has a simpler model
architecture design than existing methods. Specifically, it takes each local snip-
pet (i.e., a short sequence of consecutive frames of a video) as a predictive unit.
That is, taking as input a snippet feature representation for a given video, TAGS
directly outputs the target action segmentation mask as well as class label con-
currently. To facilitate global context modeling, we leverage self-attention [36] for
capturing necessary video-level inter-snippet relationship. Once the mask is gen-
erated, simple foreground segment classification follows to produce the final TAD
result. To facilitate global segmentation mask learning, we further introduce a
novel boundary focused loss that pays more attention to temporal boundary
regions, and leverage mask predictive redundancy and inter-branch consistency
for prediction enhancement. During inference, once the masks and class labels
are predicted, top-scoring segments with refined boundary can then be selected
via non-maximal suppression (NMS) to produce the final TAD result.

We make the following contributions. (I) We present a novel proposal-free
TAD model based on global segmentation mask (TAGS) learning. To the best of
our knowledge, this is the first model that eliminates the need for proposal gen-
eration/evaluation. As a result, it has a much simpler model design with a lower
computational cost than existing alternatives. (II)We improve TAD feature rep-
resentation learning with global temporal context using self-attention leading to
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context-aware TAD. (III) To enhance the learning of temporal boundary, we
propose a novel boundary focused loss function, along with mask predictive re-
dundancy and inter-branch consistency. (IV) Extensive experiments show that
the proposed TAGS method yields new state-of-the-art performance on two TAD
datasets (ActivityNet-v1.3 and THUMOS’14). Importantly, our method is also
significantly more efficient in both training/inference. For instance, it is 20/1.6×
faster than G-TAD [46] in training and inference respectively.

2 Related Works

Although all existing TAD methods use proposals, they differ in how the pro-
posals are generated.
Anchor-based proposal learning methods These methods generate pro-
posal based on a pre-determined set of anchors. Inspired by object detection
in static images [30], R-C3D [42] proposes to use anchor boxes. It follows the
structure of proposal generation and classification in design. With similar model
design, TURN [15] aggregates local features to represent snippet-level features,
which are then used for temporal boundary regression and classification. Later,
GTAN [22] improves the proposal feature pooling procedure with a learnable
Gaussian kernel for weighted averaging. PBR-Net [20] improves the detection
performance using a pyramidal anchor based detection and fine-grained re-
finement using frame-level features. G-TAD [46] learns semantic and tempo-
ral context via graph convolutional networks for better proposal generation.
MUSES [21] further improves the performance by handling intra-instance vari-
ations caused by shot change. VSGN [51] focuses on short-action detection in a
cross-scale multi-level pyramidal architecture. Note that these anchor boxes are
often exhaustively generated so are high in number.
Anchor-free proposal learning methods Instead of using pre-designed and
fixed anchor boxes, these methods directly learn to predict temporal proposals
(i.e., start and end times/points) [53,19,18]. For example, SSN [53] decomposes
an action instance into three stages (starting, course, and ending) and employs
structured temporal pyramid pooling to generate proposals. BSN [19] predicts
the start, end and actionness at each temporal location and generates proposals
using locations with high start and end probabilities. Later, BMN [18] addition-
ally generates a boundary-matching confidence map to improve proposal gener-
ation. BSN++ [34] further extends BMN with a complementary boundary gen-
erator to capture rich context. CSA [33] enriches the proposal temporal context
via attention transfer. Recently, ContextLoc [57] further pushes the boundaries
by adapting global context at proposal-level and handling the context-aware
inter-proposal relations. While no pre-defined anchor boxes are required, these
methods often have to exhaustively pair all possible locations predicted with
high scores. So both anchor-based and anchor-free TAD methods have a large
quantity of temporal proposals to evaluate. This results in complex model de-
sign, high computational cost and lack of global context modeling. Our TAGS
is designed to address all these limitations by being proposal-free.
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Fig. 2: Architecture of our proposal-free Temporal Action detection
model via Global Segmentation mask (TAGS). Given an untrimmed
video, TAGS first extracts a sequence of T snippet features with a pre-trained
video encoder (e.g., I3D [7]), and conducts self-attentive learning at multiple
temporal scales s to obtain snippet embedding with global context. Subse-
quently, with each snippet embedding, TAGS classifies different actions (output
P s ∈ R(K+1)×T s

with K the action class number) and predicts full-video-long
foreground mask (output M s ∈ RT s×T s

) concurrently in a two-branch design.
During training, TAGS minimizes the difference of class and mask predictions
against the ground-truth. For more accurate localization, an efficient boundary
refinement strategy is further introduced, along with mask predictive redundancy
and classification-mask consistency regularization. During inference, TAGS se-
lects top scoring snippets from the classification output P , and then thresholds
the corresponding foreground masks in M at each scale and then aggregates
them to yield action instance candidates. Finally, softNMS is applied to remove
redundant candidates.

Self-attention Our snippet representation is learned based on self-attention,
which has been firstly introduced in Transformers for natural language process-
ing tasks [36]. In computer vision, non-local neural networks [41] apply the core
self-attention block from transformers for context modeling and feature learn-
ing. State-of-the-art performance has been achieved in classification [13], self-
supervised learning [9], semantic segmentation [50,54], object detection [6,48,56],
few-shot action recognition [28,55], and object tracking [10] by using such an at-
tention model. Several recent works [35,40,29,26,25,27,24] also use Transformers
for TAD. They focus on either temporal proposal generation [35] or refinement
[29]. In this paper, we demonstrate the effectiveness of self-attention in a novel
proposal-free TAD architecture.

3 Proposal-Free Global Segmentation Mask

Our global segmentation mask (TAGS) model takes as input an untrimmed video
V with a variable number of frames. Video frames are pre-processed by a feature
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encoder (e.g., a Kinetics pre-trained I3D network [7]) into a sequence of localized
snippets following the standard practice [18]. To train the model, we collect a
set of labeled video training set Dtrain = {Vi, Ψi}. Each video Vi is labeled with
temporal segmentation Ψi = {(ψj , ξj , yj)}Mi

j=1 where ψj/ξj denote the start/end
time, yj is the action category, and Mi is the action instance number.
Architecture As depicted in Fig. 2, a TAGS model has two key components:
(1) a self-attentive snippet embedding module that learns feature representations
with global temporal context (Sec. 3.1), and (2) a temporal action detection head
with two branches for per-snippet multi-class action classification and binary-
class global segmentation mask inference, respectively (Sec. 3.2).

3.1 Self-attentive multi-scale snippet embedding

Given a varying length untrimmed video V , following the standard practice
[46,18] we first sample T equidistantly distributed temporal snippets (points)
over the entire length and use a Kinetics pre-trained video encoder (e.g., a two-
stream model [38]) to extract RGB Xr ∈ Rd×T and optical flow features Xo ∈
Rd×T at the snippet level, where d denotes the feature dimension. We then
concatenate them as F = [Xr;Xo] ∈ R2d×T . Each snippet is a short sequence of
(e.g., 16 in our case) consecutive frames. While F contains local spatio-temporal
information, it lacks a global context critical for TAD. We hence leverage the
self-attention mechanism [36] to learn the global context. Formally, we set the
Q/K/V of a Transformer encoder as the features F/F/F . To model finer action
details efficiently, we consider multiple temporal scales in a hierarchy. We start
with the finest temporal resolution (e.g., sampling T = 800 snippets), which is
progressively reduced via temporal pooling P (θ) with kernel size k, stride s and
padding p. For efficiency, we first apply temporal pooling: Q̂s = P (Q; θQ), K̂

s =

P (K; θK) and V̂ s = P (V ; θV ) with the scale s ∈ {1, 2, 4}. The self-attention
then follows as:

As
i = F + softmax(

FWQ̂s(FWK̂s)⊤
√
d

)(FWV̂ s), (1)

where WQ̂s ,WK̂s ,WV̂ s are learnable parameters. In multi-head attention (MA)
design, for each scale s we combine a set of nh independent heads Ai to form a
richer learning process. The snippet embedding E at scale s is obtained as:

Es =MLP ([As
1 · · ·As

nh
]︸ ︷︷ ︸

MA

) ∈ RT s×C . (2)

The Multi-Layer Perceptron (MLP) block has one fully-connected layer with
residual skip connection. Layer norm is applied before both the MA and MLP
block. We use nh = 4 heads by default.

3.2 Parallel action classification and global segmentation masking

Our TAD head consists of two parallel branches: one for multi-class action clas-
sification and the other for binary-class global segmentation mask inference.
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Multi-class action classification Given the t-th snippet Es(t) ∈ Rc (i.e,
the t-th column of Es), our classification branch predicts the probability pt ∈
R(K+1)×1 that it belongs to one of K target action classes or background. This
is realized by a 1-D convolution layer Hc followed by a softmax normalization.
Since a video has been encoded into T s temporal snippets, the output of the
classification branch can be expressed in column-wise as:

P s := softmax(Hc(E
s)) ∈ R(K+1)×T s

. (3)

Global segmentation mask inference In parallel to the classification branch,
this branch aims to predict a global segmentation mask for each action instance
of a video. Each global mask is action instance specific and class agnostic. For a
training video, all temporal snippets of a single action instance are assigned with
the same 1D global mask ∈ RT×1 for model optimization (refer to Fig. 3(a)).
For each snippet Es(t), it outputs a mask prediction mt = [q1, · · · , qT ] ∈ RT s×1

with the k-th element qk ∈ [0, 1] indicating the foreground probability of k-th
snippet conditioned on t-th snippet. This process is implemented by a stack of
three 1-D conv layers as:

M s := sigmoid(Hb(E
s)) ∈ RT s×T s

, (4)

where the t-th column of M is the segmentation mask prediction at the t-
th snippet. With the proposed mask signal as learning supervision, our TAGS
model can facilitate context-aware representation learning, which brings clear
benefit on TAD accuracy (see Table 4).
Remarks: Actionness [18,53] is a popular localization method which predicts a
single mask in shape of ∈ RT×1. There are several key differences between ac-
tionness and TAGS: (1) Our per-snippet mask model TAGS focuses on a single
action instance per snippet per mask so that all the foreground parts of a mask
are intrinsically related; In contrast, actionness does not. (2) TAGS breaks the
single multi-instance 1D actionness problem into a multiple 1D single-instance
mask problem (refer to Fig. 3(a)). This takes a divide-and-conquer strategy.
By explicitly segmenting foreground instances at different temporal positions,
TAGS converts the regression based actionness problem into a position aware
classification task. Each mask, associated with a specific time t, focuses on a sin-
gle action instance. On the other hand, one action instance would be predicted
by multiple successive masks. This predictive redundancy, simply removable by
NMS, provides rich opportunities for accurate detection. (3) Whilst learning
a 2D actionness map, BMN [18] relies on predicting 1D probability sequences
which are highly noisy causing many false alarms. Further, its confidence evalu-
ation cannot model the relations between candidates whilst our TAGS can (Eq.
(7)). Lastly, our experiments in Table 8 validate the superiority of TAGS over
actionness learning.

3.3 Model Training

Ground-truth labels. To train TAGS, the ground-truth needs to be arranged
into the designed format. Concretely, given a training video with temporal in-
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Label Assignment Inference Strategy

Fig. 3: Example of label assignment and model inference (see text for details).

tervals and class labels (Fig. 3(a)), we label all the snippets (orange or blue
squares) of a single action instance with the same action class. All the snippets
off from action intervals are labeled as background. For an action snippet of a
particular instance, its global mask is defined as the video-length binary mask
of that action instance. Each mask is action instance specific. All snippets of a
specific action instance share the same mask. For instance, all orange snippets
(Fig. 3(a)) are assigned with a T -length mask (eg. m24 to m38) with one in the
interval of [q24, q38].
Learning objectives. The classification branch is trained by a combination
of a cross-entropy based focal loss and a class-balanced logistic regression loss
[12]. For a training snippet, we denote y the ground-truth class label, p the
classification output, and r the per-class regression output obtained by applying
sigmoid on top of Hc in Eq. (3) (discarded at inference time). The loss of the
classification branch is then written as:

Lc = λ1(1− p(y))γ log(py) + (1− λ1)
(
log(ry)−

α

|N |
∑
kϵN

(log(1− r(k)))
)
, (5)

where γ = 2 is a focal degree parameter, α = 10 is a class-balancing weight, and
N specifies a set of hard negative classes at size of K/10 where K is the toTAD
action class number. We set the loss trade-off parameter λ1 = 0.4.

For training the segmentation mask branch, we combine a novel boundary
IOU (bIOU) loss and the dice loss in [23] to model two types of structured con-
sistency respectively: mask boundary consistency and inter-mask consistency.
Inspired by the boundary IOU metric [11], bIOU is designed particularly to
penalize incorrect temporal boundary prediction w.r.t. the ground-truth seg-
mentation mask. Formally, for a snippet location, we denote m ∈ RT×1 the
predicted segmentation mask, and g ∈ RT×1 the ground-truth mask. The over-
all segmentation mask loss is formulated as:

Lm = 1−
(∩(m, g)

∪(m, g)
+

1

∩(m, g) + ϵ

∥m− g∥2
c

)
+ λ2

(
1− m⊤g∑T

t=1

(
m(t)2 + g(t)2

)),
(6)
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Fig. 4: An example of (a) ground-truth labels and (b) prediction along with
an illustration of exploring (c) mask predictive redundancy (Eq. (7)) (d)
classification-mask consistency ((Eq. (9)).

where ∩(m, g) = Φ(m) ∩ Φ(g) and ∪(m, g) = Φ(m) ∪ Φ(g), Φ(·) represents a
kernel of size k (7 in our default setting, see more analysis in Suppl.) used as a
differentiable morphological erosion operation [31] on a mask and c specifies the
ground-truth mask length. In case of no boundary overlap between the predicted
and ground-truth masks, we use the normalized L2 loss. The constant ϵ = e−8

is introduced for numerical stability. We set the weight λ2 = 0.4.

Mask predictive redundancy Although the mask loss Eq. (6) above treats the
global mask as a 2D binary mask prediction problem, it cannot always regulate
the behaviour of individual 1D mask within an action instance. Specifically, for a
predicted maskmt at time t, thresholding it at a specific threshold θj ∈ Θ can re-
sult in binarized segments of foreground and background: π[j] = {(qis, qie, zi)}Li=1

where qis and qie denotes the start and end of i-th segment, and zi ∈ {0, 1} indi-
cates background or foreground. For a mask corresponding to an action snippet,
ideally at least one of these {π[j]} should be closer to the ground truth. To
explore this redundancy, we define a prediction scoring criterion with the outer-
inner-contrast [32] as follows:

R(π[j]) =
1

L

L∑
i=1

 1

li

qie∑
r=qis

ui(r)

︸ ︷︷ ︸
inside

− 1

⌈δli⌉+ ⌈δli⌉

 qis−1∑
r=qis−⌈δli⌉

ui(r) +

qie+⌈δli⌉∑
r=qie+1

ui(r)


︸ ︷︷ ︸

outside


where ui(r) =

{
mt[r], if zi = 1 (i.e., foreground)

1−mt[r], otherwise
(7)

li = qie − qis + 1 is the temporal length of i-th segment, δ is a weight hyper-
parameter which is set to 0.25. We obtain the best prediction with the maximal
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score as j∗ = argmax(R(π[j])) (see Fig. 4(c)). Higher R(π[j∗]) means a better
prediction. To encourage this best prediction, we design a prediction promotion
loss function:

Lpp =
(
1− R(π[j∗])

)β ∥mt − gt∥2 , (8)

where we set β = 2 for penalizing lower-quality prediction stronger. We average
this loss across all snippets of each action instance per training video.
Classification-mask consistency In TAGS, there is structural consistency in
terms of foreground between class and mask labels by design (Fig. 4(a)). To
leverage this consistency, we formulate a feature consistency loss as:

Lfc = 1− cosine
(
F̂clf , F̂mask

)
, (9)

where F̂clf = topk(argmax((Pbin ∗ Ep)[: K, :])) is the features obtained from
the top scoring foreground snippets obtained from the thresholded classification
output Pbin := η(P − θc) with θc the threshold and Ep obtained by passing the
embedding E into a 1D conv layer for matching the dimension of P . The top
scoring features from the mask output M are obtained similarly as: F̂mask =
topk(σ(1DPool(Em ∗ Mbin))) where Mbin := η(M − θm) is a binarization of
mask-prediction M , Em is obtained by passing the embedding E into a 1D conv
layer for matching the dimension of M , ∗ is element-wise multiplication, η(.) is
the binarization function, and σ is sigmoid activation. Our intuition is that the
foreground features should be closer and consistent after the classification and
masking process (refer to Fig. 4(d)).
Overall objective The overall objective loss function for training TAGS is defined
as: L = Lc + Lm + Lpp + Lfc. This loss is calculated for each temporal scale s
and finally aggregated over all the scales.

3.4 Model Inference

Our model inference is similar as existing TAD methods [18,46]. Given a test
video, at each temporal scale s the action instance predictions are first generated
separately based on the classification P s and mask M s predictions and com-
bined for the following post-processing. Starting with the top scoring snippets
from P (Fig 3(b)), we obtain their segmentation mask predictions (Fig 3(c)) by
thresholding the corresponding columns of M (Fig 3(d)). To generate sufficient
candidates, we apply multiple thresholds Θ = {θi} to yield action candidates
with varying lengths and confidences. For each candidate, we compute its con-
fidence score scfinal by multiplying the classification score (obtained from the
corresponding top-scoring snippet in P ) and the segmentation mask score (i.e.,
the mean predicted foreground segment in M). Finally, we apply SoftNMS [3]
on top scoring candidates to obtain the final predictions.

4 Experiments

Datasets We conduct extensive experiments on two popular TAD benchmarks.
(1) ActivityNet-v1.3 [5] has 19,994 videos from 200 action classes. We follow the
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Type Model Bkb
THUMOS14 ActivityNet-v1.3

0.3 0.4 0.5 0.6 0.7 Avg. 0.5 0.75 0.95 Avg.

Anchor

R-C3D [42] C3D 44.8 35.6 28.9 - - - 26.8 - - -

TAD [8] I3D 53.2 48.5 42.8 33.8 20.8 39.8 38.2 18.3 1.3 20.2

GTAN [22] P3D 57.8 47.2 38.8 - - - 52.6 34.1 8.9 34.3

PBR-Net [20] I3D 58.5 54.6 51.3 41.8 29.5 - 53.9 34.9 8.9 35.0

MUSES [21] I3D 68.9 64.0 56.9 46.3 31.0 53.4 50.0 34.9 6.5 34.0

VSGN [51] I3D 66.7 60.4 52.4 41.0 30.4 50.1 52.3 36.0 8.3 35.0

Actn

BMN [18] TS 56.0 47.4 38.8 29.7 20.5 38.5 50.1 34.8 8.3 33.9

DBG [17] TS 57.8 49.4 42.8 33.8 21.7 41.1 - - - -

G-TAD [46] TS 54.5 47.6 40.2 30.8 23.4 39.3 50.4 34.6 9.0 34.1

BU-TAL [52] I3D 53.9 50.7 45.4 38.0 28.5 43.3 43.5 33.9 9.2 30.1

BSN++ [34] TS 59.9 49.5 41.3 31.9 22.8 - 51.2 35.7 8.3 34.8

GTAD+CSA[33] TS 58.4 52.8 44.0 33.6 24.2 42.6 51.8 36.8 8.7 35.7

BC-GNN [2] TS 57.1 49.1 40.4 31.2 23.1 40.2 50.6 34.8 9.4 34.3

TCANet [29] TS 60.6 53.2 44.6 36.8 26.7 - 52.2 36.7 6.8 35.5

ContextLoc [57] I3D 68.3 63.8 54.3 41.8 26.2 - 56.0 35.2 3.5 34.2

RTD-Net [35] I3D 68.3 62.3 51.9 38.8 23.7 - 47.2 30.7 8.6 30.8

Mixed
A2Net [47] I3D 58.6 54.1 45.5 32.5 17.2 41.6 43.6 28.7 3.7 27.8

GTAD+PGCN[49] I3D 66.4 60.4 51.6 37.6 22.9 47.8 - - - -

PF
TAGS (Ours) I3D 68.6 63.8 57.0 46.3 31.8 52.8 56.3 36.8 9.6 36.5
TAGS (Ours) TS 61.4 52.9 46.5 38.1 27.0 44.0 53.7 36.1 9.5 35.9

Table 1: Performance comparison with state-of-the-art methods on THUMOS14
and ActivityNet-v1.3. The results are measured by mAP at different IoU thresh-
olds, and average mAP in [0.3 : 0.1 : 0.7] on THUMOS14 and [0.5 : 0.05 : 0.95]
on ActivityNet-v1.3. Actn = Actioness; PF = Proposal Free; Bkb = Backbone.

standard setting to split all videos into training, validation and testing subsets
in ratio of 2:1:1. (2) THUMOS14 [16] has 200 validation videos and 213 testing
videos from 20 categories with labeled temporal boundary and action class.

Implementation details We use two pre-extracted encoders for feature ex-
traction, for fair comparisons with previous methods. One is a fine-tuned two-
stream model [18], with downsampling ratio 16 and stride 2. Each video’s feature
sequence F is rescaled to T = 800/1024 snippets for AcitivtyNet/THUMOS us-
ing linear interpolation. The other is Kinetics pre-trained I3D model [7] with a
downsampling ratio of 5. Our model is trained for 15 epochs using Adam with
learning rate of 10−4/10−5 for AcitivityNet/THUMOS respectively. The batch
size is set to 50 for ActivityNet and 25 for THUMOS. For classification-mask
consistency, the threshold θm/θp is set to 0.5/0.3 and in top−k to 40. In testing,
we set the threshold set for mask Θ = {0.1 ∼ 0.9} with step 0.05. We use the
same set of threshold Θ for mask predictive redundancy during training.



Proposal-Free TAD via Global Segmentation Masking 11

4.1 Main Results

Results on ActivityNet From Table 1, we can make the following observa-
tions: (1) TAGS with I3D feature achieves the best result in average mAP. De-
spite the fact that our model is much simpler in architecture design compared to
the existing alternatives. This validates our assumption that with proper global
context modeling, explicit proposal generation is not only redundant but also
less effective. (2) When using the relatively weaker two-stream (TS) features, our
model remains competitive and even surpasses I3D based BU-TAL [52], A2Net
[47] and the very recent ContextLoc [57] and MUSES [21] by a significant margin.
TAGS also surpasses a proposal refinement and strong G-TAD based approach
CSA [33] on avg mAP. (3) Compared to RTD-Net which employs an architec-
ture similar to object detection Transformers, our TAGS is significantly superior.
This validates our model formulation in exploiting the Transformer for TAD.
Results on THUMOS14 Similar conclusions can be drawn in general on
THUMOS from Table 1. When using TS features, TAGS achieves again the
best results, beating strong competitors like TCANet [39], CSA [33] by a clear
margin. There are some noticeable differences: (1) We find that I3D is now much
more effective than two-stream (TS), e.g., 8.8% gain in average mAP over TS
with TAGS, compared with 0.6% on ActivityNet. This is mostly likely caused
by the distinctive characteristics of the two datasets in terms of action instance
duration and video length. (2) Our method achieves the second best result with
marginal edge behind MUSES [21]. This is partly due to that MUSES benefits
from additionally tackling the scene-changes. (3) Our model achieves the best
results in stricter IOU metrics (e.g., IOU@0.5/0.6/0.7) consistently using both
TS and I3D features, verifying the effectiveness of solving mask redundancy.
Computational cost comparison One of the key motivations to design a
proposal-free TAD model is to reduce the model training and inference cost.
For comparative evaluation, we evaluate TAGS against two representative and
recent TAD methods (BMN [18] and G-TAD [46]) using their released codes. All
the methods are tested on the same machine with one Nvidia 2080 Ti GPU. We
measure the convergence time in training and average inference time per video
in testing. The two-stream video features are used. It can be seen in Table 2 that
our TAGS is drastically faster, e.g., 20/25× for training and clearly quicker –
1.6/1.8× for testing in comparison to G-TAD/BMN, respectively. We also notice
that our TAGS needs less epochs to converge. Table 3 also shows that our TAGS
has the smallest FLOPs and the least parameter number.

4.2 Ablation study and further analysis

Transformers vs. CNNs We compare our multi-scale Transformer with CNN
for snippet embedding. We consider two CNN designs: (1) a 1D CNN with 3
dilation rates (1, 3, 5) each with 2 layers, and (2) a multi-scale MS-TCN [14], and
(3) a standard single-scale Transformer [36]. Table 4 shows that the Transformers
are clearly superior to both 1D-CNN and a relatively stronger MS-TCN. This
suggests that our global segmentation mask learning is more compatible with
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Table 2: Analysis of model training
and test cost.

Model Epoch Train Test

BMN 13 6.45 hr 0.21 sec
G-TAD 11 4.91 hr 0.19 sec

TAGS 9 0.26 hr 0.12 sec

Table 3: Analysis of model parameters
# and FLOPs.

Model Params (in M) FLOPs (in G)

BMN 5.0 91.2
GTAD 9.5 97.2

TAGS 6.2 17.8

self-attention models due to stronger contextual learning capability. Besides,
multi-scale learning with Transformer gives 0.4% gain in avg mAP validating the
importance of larger snippets. As shown in Table 5, the gain almost saturates
from 200 snippets, and finer scale only increases the computational cost.

Table 4: Ablation of Transformer
vs. CNN on ActivityNet.

Network
mAP

0.5 Avg

1D CNN 46.8 26.4
MS-TCN 53.1 33.8
Transformer 55.8 36.1
MS-Transformer 56.3 36.5

Table 5: Ablation on snippet embedding de-
sign and multiple temporal scales.

Scale Snippet
Params
(in M)

Infer
(in sec)

mAP

0.5 Avg

{1} 100 2.9 0.09 55.8 36.1

{1,2} 100,200 6.2 0.12 56.3 36.5
{1,2,4} 100,200,400 9.8 0.16 56.5 36.4

Proposal-based vs. proposal-free We compare our proposal-free TAGS with
conventional proposal-based TAD methods BMN [2] (anchor-free) and R-C3D
[42] (anchor-based) via false positive analysis [1]. We sort the predictions by the
scores and take the top-scoring predictions per video. Two major errors of TAD
are considered: (1) Localization error, which is defined as when a proposal/mask
is predicted as foreground, has a minimum tIoU of 0.1 but does not meet the
tIoU threshold. (2) Background error, which happens when a proposal/mask is
predicted as foreground but its tIoU with ground truth instance is smaller than
0.1. In this test, we use ActivityNet. We observe in Fig. 5 that TAGS has the
most true positive samples at every amount of predictions. The proportion of
localization error with TAGS is also notably smaller, which is the most critical
metric for improving average mAP [1]. This explains the gain of TAGS over
BMN and R-C3D.
Direction of improvement analysis Two subtasks are involved in TAD
– temporal localization and action classification, each of which would affect the
final performance. Given the two-branch design in TAGS, the performance effect
of one subtask can be individually examined by simply assigning ground-truth to
the other subtask’s output at test time. From Table 7, the following observations
can be made: (1) There is still a big scope for improvement on both subtasks.
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Fig. 5: False positive profile of TAGS, BMN and R-C3D on ActivityNet. We use
top up-to 10G predictions per video, where G is the number of ground truth
action instances.

(2) Regarding the benefit from the improvement from the other subtask, the
classification subtask seems to have the most to gain at mAP@0.5, whilst the
localization task can benefit more on the average mAP metric. Overall, this
analysis suggests that further improving the efficacy on the classification subtask
would be more influential to the final model performance.
Analysis of components We can see in Table 6 that without the proposed
segmentation mask branch, the model will degrade significantly, e.g., a drop of
7.6% in average mAP. This is due to its fundamental capability of modeling
the global temporal structure of action instances and hence yielding better ac-
tion temporal intervals. Further, for TAGS we use a pre-trained UntrimmedNet
(UNet) [37] as an external classifier instead of using the classification branch, re-
sulted in a 2-stage method. This causes a performance drop of 4.7%, suggesting
that both classification and mask branches are critical for model accuracy and
efficiency.

Table 6: Analysis of TAGS’s two
branches on ActivityNet.

Model
mAP

0.5 Avg

TAGS(Full) 56.3 36.5

w/o Mask Branch 45.8 28.9
w/o Class Branch + UNet 49.7 31.8

Table 7: Improvement analysis of TAGS
on ActivityNet.

Model
mAP

0.5 Avg

TAGS (full) 56.3 36.5

+ Ground-truth class 61.0 43.8 ( ↑ 7.3%)
+ Ground-truth mask 69.2 48.5 ( ↑ 12.0%)

Global mask design We compare our global mask with previous 1D actionness
mask [18,43]. We integrate actionness with TAGS by reformulating the mask
branch to output 1D actionness. From the results in Table 8, we observe a
significant performance drop of 11.5% in mAP@0.5 IOU. One reason is that
the number of action candidates generated by actionness is drastically limited,
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Table 8: Analysis of mask design of
TAGS on ActivityNet dataset.

Mask Design
mAP Avg

masks / video
0.5 Avg

Actionness 44.8 27.1 30

Our Global Mask 56.3 36.5 250

Fig. 6: Pairwise feature similarity.

leading to poor recall. Additionally, we visualize the cosine similarity scores
of all snippet feature pairs on a random ActivityNet val video. As shown in
Fig. 6, our single-instance mask (global mask) design learns more discriminating
feature representation with larger separation between background and action, as
compared to multi-instance actionness design. This validates the efficacy of our
design in terms of jointly learning multiple per-snippet masks each with focus
on a single action instance.

5 Limitations

In general, short foreground and background segments with the duration similar
as or less than the snippet length would challenge snippet-based TAD methods.
For instance, given short background between two foreground instances, our
TAGS might wrongly predict it as part of the foreground. Besides, given a snippet
with mixed background and foreground, TAGS tends to make a background
prediction. In such cases, the ground-truth annotation involves uncertainty which
however is less noted and investigated thus far.

6 Conclusion

In this work, we have presented the first proposal-free TAD model by Global
Segmentation Mask (TAGS) learning. Instead of generating via predefined an-
chors, or predicting many start-end pairs (i.e., temporal proposals), our model is
designed to estimate the full-video-length segmentation mask of action instances
directly. As a result, the TAD model design has been significantly simplified with
more efficient training and inference. With our TAGS learning, we further show
that learning global temporal context is beneficial for TAD. Extensive experi-
ments validated that the proposed TAGS yields new state-of-the-art performance
on two TAD benchmarks, and with clear efficiency advantages on both model
training and inference.
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