Supplementary: Semi-Supervised Temporal
Action Detection with Proposal-Free Masking

Sauradip Nag!?, Xiatian Zhu'3, Yi-Zhe Song!:?, and Tao Xiang!-?

1 CVSSP, University of Surrey, UK
2 {FlyTek-Surrey Joint Research Centre on Artificial Intelligence, UK
3 Surrey Institute for People-Centred Artificial Intelligence, University of Surrey, UK
{s.nag,xiatian.zhu,y.song,t.xiang}@surrey.ac.uk

1 Appendix A : More Implementation Details

Branch Label Assignment To train our SPOT [8], the ground-truth needs
to be arranged into a specific format. Concretely, given a training video with
temporal intervals and action class labels (Fig. 1(a)), we assign all the snippets
(e.g., the orange and green squares of class branch in Fig. 1(a)) lying in each
action interval as (positive) action snippets with the shared action class. All
the snippets outside of any action interval are labeled as (negative) background
samples. For an action snippet in mask branch M, its segmentation mask label is
defined as the full binary mask of the associated action instance with the whole
video length (the columns with a sequence of blue squares in Fig. 1(a)). When
there are multiple action snippets involved in a specific action instance (e.g., 5/5
snippets covered by the first/second action instance from class i/j in Fig. 1(a),
each will be assigned with the global segmentation mask label corresponding to
that instance.
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Fig. 1: Hlustration of label assignment (see text for details).
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Detailed Inference Process Our model inference is similar to existing TAD
methods [5,15,6,7,9,10]. Given a test video, the action instance predictions are
first generated separately based on the classification P and mask M predic-
tions and combined for the following post-processing. From P we first select the
top-scoring snippets with class probability greater than a threshold 6. (e.g., the
orange and green squares in Fig 1(b)), and obtain their corresponding segmen-
tation mask predictions by thresholding the corresponding columns of M (Fig
1(c)). To generate sufficient candidates, we apply multiple thresholds © = {6;}
to yield action candidates with varying lengths and confidences. For each can-
didate, we compute its confidence score by multiplying the classification score
(obtained from the corresponding top-scoring snippet in P) and the segmenta-
tion mask score (i.e., the mean predicted foreground segment in M). Finally, we
apply SoftNMS [1] on top scoring candidates to obtain the final predictions.
More Hyperparameters We first pre-train SPOT (except the classification
stream) on the training set including the unlabeled samples for 12 epochs with a
learning rate of 5 x 1073 /10~* and weight decay of 4 x 1073. We then fine-tune
SPOT for 15 epochs using Adam optimizer with a learning rate of 10=%/1075,
a weight decay of 1072/107°, and a batch size of 200/50.

2 Appendix B : More Results

Setting Apart from the proposed semi-supervised setting using 60% and 10%
labeled data, we also experimented with a third setting with 50% labeled data
in order to make a comparison with [11].

Competitors Similar to Table 1 in the main paper, we compare our approach
with two semi-supervised TAD approaches (SSTAP [13] and SSP [4]) and the
very recent SSAD [11]. SSTAP and SSP use UNet [12] for proposal classification,
which is trained by full class labels. We use the TSN features as used in [16] for
all the competitors for fair comparison.

Results The results are reported in Table 1. It can be observed that all existing
methods are drastically outperformed by our SPOT model, due to suffering from
localization error propagation. Besides, SSTAP [13] and SSP [4] outperforms
SSAD [11]. Two possible reasons include the backbone of SSAD (SSN [16]) is
weaker than that of SSTAP (BMN [5]), and the usage of 100% class labels used
for training UNet [12].

3 Appendix C : More Analysis

Pre-text Task Design To validate our pre-text task for self-supervised pre-
training, we experiment with 3 designs: (a) Without any augmentation, i.e.,
randomly selecting multiple start and end points and keep the same raw fea-
tures; (b) We randomly select multiple start and end points as the foreground,
and mask out the features by zeroing the features corresponding to the snip-
pets outside these selected foreground segments. This augmentation resembles
the mask region modeling in [2] with a different purpose to select the start/end



Supplementary : Semi-Supervised TAD with Proposal-Free Masking 3

Table 1: SS-TAD results on test set of THUMOS14 under 50% label
setting. T: Using UntrimmedNet [12] trained with 100% labels for proposal
classification.

mAP
Method 0.3 0.4 05 0.6 0.7
SSPT [4] 51.7 445 37.3 265 16.4
SSTAPT [13] 54.1 46.8 39.2 27.7 19.4
SSAD [11] 45.6 36.4 26.2 155 7.1
SPOT (Ours) 54.8 a7.9 39.3 30.6 22.8

points of the masked segments; (c) We randomly select multiple start and end
points, and instead of masking out the features, we add random noise to the
features corresponding to the snippets outside these selected segments. This
augmentation is similar to Random Erasing [17] but with a motivation of eras-
ing pseudo background content alone, i.e., erasing the features corresponding to
the pseudo background snippets. From Fig. 2(a) we observe that the overall pre-
training loss is more stable for random mask than other alternatives. Although
both the augmented variants incur huge losses in the first few epochs than the
no-augmentation variant, the random mask augmentation gradually improves
the pre-training. For the variant without any augmentation, the feature recon-
struction loss L. is useless, which is also indicated in the cosine-similarity of
features in Fig 2(b). However, this might degrade the pre-training as seen in
Table 3 (in main paper).
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Fig. 2: Tllustration of (a) the pre-training loss curve, and the cosine-similarity
for (b) no-augmentation pre-training, (c¢) random noise augmentation, and (d)
random mask augmentation.

Impact of Snippet Length We evaluate the impact of video snippet length
on ActivityNet. As shown in Table 2, when the snippet length is small (e.g., 50),
we observe a performance drop of 2.7% in mAP@Q.5. This may be due to that
too small snippets are less capable to represent local motion patterns. We find
that the length of 100 is the best, confirming the same findings as GTAD [15]
and BMN [5].
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Table 2: Impact of the snippet length of a video on ActivityNet w/ 10% labeled
data.

Snippet Length ‘ mAP
‘ 0.5 ‘ Avg
50 47.2 314
100 49.9 32.1
150 49.9 32.0
200 50.0 31.9

Number of Hyperparameters We compare the number of hyperparameters
used for training the existing 2-stage (proposal generation then classification)
SSTAP [13] and our single-stage SPOT. For clarity, we subdivide the total num-
ber of hyperparameters into 3 stages: (1) Hyperaprameters for semi-supervised
learning (SSL); (2) Hyperparameters for Temporal Action Detection (TAD); (3)
Hyperparameters for post-processing. From the results in Table 3, we observe
that SSTAP has fewer hyperaprameters for semi-supervised learning, but twice
the number of parameters in TAD along with more trainable parameters. Over-
all, our SPOT design cuts down significantly on the number of hyperparameters
from 34 to 24, while being more light-weight.

Table 3: Number of trainable parameters and hyperparameters. SSL: Semi-
supervised learning.

Metho d‘No o.f Pl\e/m[rams‘ Number of Hyperparams

‘ (in M) ‘SSL‘ TAD ‘Post—Process‘Total
SSTAP 53.2 7 |12 (1st stage) + 11 (2nd stage) 4 34
SPOT 15.8 8 12 4 24

Snippet Embedding Design We compare the Transformer with CNN for
snippet feature learning. To this end, we consider two CNN designs: (1) a 1D
CNN with 3 dilation rates (1, 3, 5) each with 2 layers, and (2) a multi-scale
Temporal Convolutional Network MS-TCN [3]. Each CNN design substitutes the
Transformer respectively while remaining all the others. The results in Table 4
shows that the Transformer is clearly superior to both 1D-CNN and a relatively
stronger MS-TCN.

Design Component Analysis Our SPOT primarily consists of a snippet em-
bedding Transformer and 1-D Convolution heads for classification and localiza-
tion streams. We ablate the number of 1-D CNN layers for both the branch
heads in Table 5. As the results suggest, only 1 layer is enough for classifica-
tion branch. A plausible reason for this is that for classification it needs global
information and stacking multiple 1-D CNN may affect global information. For
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Table 4: Transformer vs. CNN on ActivityNet under 10% label setting.

Network ‘ mAP

\ 0.5 | Avg
1D CNN 40.7 24.5
MS-TCN 45.2 28.6
Transformer 49.9 32.1

localization branch, it is observed that 3 layers give best performance. This is
probably because for predicting the masks the network needs to process local in-
formation captured by 1-D CNNs. Additionally, we also ablate the performance
of transformer design in head size. Table 6 demonstrates that the performance
of SPOT improves significantly with the increase of heads in the Transformer.
However, excessive heads will lead to overfitting particularly when there are a
small number of annotated samples. The performance peaks with four heads. We
set the DropOut regularization to 0.3 for our snippet embedding Transformer.

Table 5: Effect of the number of 1-D CNN Layers for the classification and mask
branches on ActivityNet under 10% label setting.

‘ Class. branch ‘ Mask branch
# Layers
‘ 0.5 Avg ‘ 0.5 Avg
1 49.9 32.1 46.2 31.0
2 49.2 32.0 48.6 31.9
3 48.9 31.9 49.9 32.1
4 48.0 31.8 49.8 32.1
5 47.7 31.4 49.5 32.0

Table 6: Impact of the head number in the Transformer on ActivityNet under
10% label setting.

Number of heads mAP
0.5 Avg
1 42.5 29.9
2 44.1 30.5
3 47.5 31.1
4 49.9 32.1
5 48.0 31.8




6 Nag et al.

Mask Design Recall that in Sec 3.2 we introduce a global mask € R”*7 for
localizing action boundaries in a holistic manner, where T is the snippet length
of a video. Alternatively, one can also learn a single 1-D actionness mask € R7*!
per video [5, 14]. We integrate this actionness within our SPOT by reformulating
the mask branch to output 1-D mask. From the results in Table 7, we observe
a significant performance drop of 5.6%. This validates the efficacy of our mask
design in terms of jointly learning multiple masks per snippet and focusing on a
single action instance per mask.

Table 7: Effect of mask design on ActivityNet under 10% label setting.

mAP ‘ Avg
‘masks / video

Mask Design ‘ -
‘0,5 Avg

Actionness  [44.3 28.1| 8
Our Global Mask|49.9 32.1| 250

Kernel Size for Hard Snippet We use a differentiable erosion operation in
Inter-Stream Interaction (c¢f. Sec. 3.2 in main paper). We use a kernel parameter
e to get the mask boundaries from the localization stream. We ablate the value
of e for the selection of mask boundary. From the results in Table 8, we fine the
optimal e is 7.

Table 8: Impact of kernel size on ActivityNet in 10% label setting.

Kernel Size ‘ mAP
\ 0.5 | Avg
3 46.6 30.8
5 47.8 31.2
7 49.9 32.1
9 49.2 32.0

Pretext Task: Single- vs. Multi-Scale Cropping Recall that we introduce
a novel pretext task based on Random Foreground in Sec 3.3 of main paper.
Given raw input features we create a masked feature by randomly masking out
foreground features. In this experiment, we investigate which random cropping
strategy (single vs. multi scales) is better. It is evident in Table 9 that pretraining
with randomly cropping out segments at multiple different scales is superior by
imposing more spatio-temoral dynamics and patterns.

Usefulness of boundary refinement In Sec. 3.2 we introduced a TAD re-
finement component based on inter-stream interaction with the aim to mitigate
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Table 9: Analysis of Cropping Strategy during pre-training on ActivityNet
under 60% label setting.

‘ mAP
| 05 075 095 | Avg

Single-scale 51.1 32.2 8.8 32.7
Multi-scale 52.8 35.0 8.1 35.2

Cropping

the boundary ambiguity problem. Here we examine its effectiveness in perfor-
mance boost on ActivityNet with 10% labeled data. Besides the entire benefit,
we also test the respective effects of the background and foreground terms, cor-
responding to the first and second loss terms of Eq. 3 (of main paper). Table 11
show that: (1) Our inter-stream interaction is effective for TAD refinement in
semi-supervised learning with 1.5% gain in mAP. This verifies our consideration
on the importance of boundary inference and our model design. (2) Both fore-
ground and background terms are useful in isolation, and importantly present
strong synergy as their combined effect (1.5% mAP gain) is much greater than
the sum of their individual gains (0.7%=0.5%+0.2%). This is not surprising as
the boundary reasoning requires to model both foreground and background well
simultaneously.

Training and inference complexity We compare SPOT with a representa-
tive TAD method BMN [5] with our pre-training and a recent SS-TAD method
SSTAP [15]. All the methods are tested under the same training setting and the
same machine with one Nvidia 2080 Ti GPU. We measure the entire training
time (including pre-training) and average inference time per video in testing. We
use the two-stream video features used in [13] It can be seen in Table 10 that
despite with pre-training and fine-tuning our SPOT is still drastically faster,
e.g., 31/35x for training and 2.3x for testing in comparison to SSTAP/BMN,
respectively. This validates our motivation of designing a proposal-free SS-TAD
model in terms of computational efficiency.

Table 11: Analysis of inter-stream in-
Table 10: Comparison of training teraction for TAD refinement on Activ-
and inference time on a single ityNet with 10% label supervision.
NVIDIA 2080 GTX. Refinement loss (Eq. 3) ‘ mAP

‘ Training (in hrs) ‘Inference

Method . Foreground term Background term‘ 0.5 Avg
‘Pre-train Fine-tune‘ (in secs)
X X |46.8 30.7
BMN |[5] 4.0 6.2 0.21
SSTAP [13]| - 9.4 0.21 v v [49.9 321
SPOT 0.10 0.21 0.09 X v 47.2 31.1
v X 46.9 30.8
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Table 12: Positional Encoding on

Table 13: Ablation of pretraining 1
ActivityNet W/ 10% labels. abe ation ol pretraining loss

during finetuning W/ 10% labels

# Position ‘ mAP on ActivityNet.
E .

ncoding ‘ 0.5 ‘ Avg Loss ‘ Avg
No Encoding 49.9 32.1 W/O Ly, ‘ 32.1
Learnable 46.7 29.4
Non-Learnable 39.8 24.2 W/ Ly | 31.9

Role of Positional Encoding We evaluate the effect of position encoding on
ActivityNet. As shown in Table 12, it is interesting to see that position encoding
is not necessary and even harmful to the performance. This indicates that with
our current formulation, the snippet level temporal information does not bring
extra useful information.

Effect of Pre-training Loss in Finetuning Recall that we do not use the pre-
training loss Ly, (for temporal ordering pretext task) during the finetuning stage
as shown in Sec 3.3. Table 13 shows a slight drop of 0.2% in avg mAP from this
pre-text loss which may be due to the incompatibility with the classification loss
L. of TAD. This is not rare in pretraining-finetuning pipeline with the pretext
loss dropped during finetuning.

Handling Class-Imbalance Challenge In section 3.3 of main paper, we
introduce a new class-balanced loss to handle the class-imbalance problem in
SS-TAD. We evaluate on the videos corresponding to top-10 tail classes on Ac-
tivityNet in terms of error rate. The imbalance problem arises mainly due to the
snippet coverage of a particular class (Fig. 3(b)), and we see a high correlation
with the error rate in Fig. 3(a). Importantly, using our class-balanced loss, the
error rate of the heavily imbalanced “Drinking Coffee” class can be reduced by
~ 20%.
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Fig. 3: Effect of tackling class imbalance on top-10 tail classes from Activ-
ityNet. (a) shows the effect of dealing with the class imbalance. (b) shows the
foreground coverage per class.
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