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Abstract. Existing temporal action detection (TAD) methods rely on
a large number of training data with segment-level annotations. Col-
lecting and annotating such a training set is thus highly expensive and
unscalable. Semi-supervised TAD (SS-TAD) alleviates this problem by
leveraging unlabeled videos freely available at scale. However, SS-TAD
is also a much more challenging problem than supervised TAD, and con-
sequently much under-studied. Prior SS-TAD methods directly combine
an existing proposal-based TAD method and a SSL method. Due to their
sequential localization (e.g., proposal generation) and classification de-
sign, they are prone to proposal error propagation. To overcome this
limitation, in this work we propose a novel Semi-supervised Temporal
action detection model based on PropOsal-free Temporal mask (SPOT)
with a parallel localization (mask generation) and classification architec-
ture. Such a novel design effectively eliminates the dependence between
localization and classification by cutting off the route for error propaga-
tion in-between. We further introduce an interaction mechanism between
classification and localization for prediction refinement, and a new pre-
text task for self-supervised model pre-training. Extensive experiments
on two standard benchmarks show that our SPOT outperforms state-of-
the-art alternatives, often by a large margin. The PyTorch implementa-
tion of SPOT is available at https://github.com/sauradip/SPOT

1 Introduction

Temporal action detection (TAD) aims to predict the temporal duration (i.e., the
start and end points) and the class label of each action instances in an untrimmed
video [22,8]. Most state-of-the-art TAD methods [65,66,7,54,70,38,37] rely on
training datasets containing a large number of videos (e.g., hundreds) with ex-
haustive segment-level annotations. Obtaining such annotations is tedious and
costly. This has severely limited the usability of existing TAD methods in low
data setting [40,39].

Semi-supervised learning (SSL) offers a solution to the annotation cost prob-
lem by exploiting a large amount of unlabeled data along with limited labeled
data [51,47]. This has led to an emerging research interest [23,57] in semi-
supervised TAD (SS-TAD). Existing methods adopt an intuitive strategy of
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Fig. 1: Illustration of main design difference between existing and our SS-TAD
methods. (a) Existing SS-TAD methods suffers from the intrinsic localization
error propagation problem, due to the sequential localization (e.g., proposal
generation) and classification design. (b) We solve this problem by designing
a Proposal Free Temporal Mask (SPOT) learning model with a parallel localiza-
tion and classification architecture.

combining an existing TAD models, dominated by proposal-based methods and
a SSL method. However, this strategy is intrinsically sub-optimal and prone to
an error propagation problem. As illustrated in Fig. 1(a), this is because ex-
isting TAD models adopt a sequential localization (e.g., proposal generation)
and classification design. When extended to SSL setting, the localization errors,
inevitable when trained with unlabeled data, can be easily propagated to the
classification module leading to accumulated errors in class prediction.

To overcome the above limitation, in this work we propose a novel Semi-
supervised PropOsal-free Temporal Masking (SPOT) model with a parallel lo-
calization (mask generation) and classification architecture (see Fig. 1(b)). Con-
cretely, SPOT consists of a classification stream and a mask based localization
stream, established in parallel on a shared feature embedding module. This archi-
tecture design has no sequential dependence between localization and classifica-
tion as in conventional TAD models, therefore eliminating the localization error
propagation problem. We further introduce a boundary refinement algorithm
and a novel pretext task for self-supervised model pre-training. We integrate
the SPOT with pseudo labeling for SS-TAD with new classification and mask
loss functions formulated specifically for our parallel design. Moreover, by virtue
of being proposal free, our model is 30×/2× faster in training/inference than
existing alternatives.

Contributions. (1) To solve the localization error propagation problem suffered
by existing SS-TAD methods, we propose a Proposal-Free Temporal Masking
(SPOT) model with a new parallel classification and localization architecture4.
(2)We further design a novel pretext task for model pre-training and a boundary
refinement algorithm. (3) Extensive experiments on two standard benchmarks
(ActivityNet-V1.3 and THUMOS14) show that the proposed SPOT outperforms
significantly alternative state-of-the-art SSL methods.

4 Note, instead of contributing a novel generic SSL algorithm, we propose a new TAD
architecture designed particularly for facilitating the usage of prior SSL methods
(e.g., pseudo labeling) in the sense of minimizing localization error propagation.
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2 Related Works

Temporal Action Detection While all existing TAD methods use action
proposals, they differ in how the proposals are produced.
Anchor-based proposal learning methods generate proposal with a pre-determined
set of anchors. Inspired by object detection in static images [44], R-C3D [62] pro-
poses to use anchor boxes. It follows the structure of proposal generation and
classification in design. With a similar model design, TURN [17] aggregates lo-
cal features to represent snippet-level features, which are then used for temporal
boundary regression and classification. Later, GTAN [30] improves the proposal
feature pooling procedure with a learnable Gaussian kernel for weighted averag-
ing. G-TAD [66] learns semantic and temporal context via graph convolutional
networks for better proposal generation. Recently, VSGN [68] improves short-
action localization with a cross-scale multi-level pyramidal architecture. Note
that these anchor boxes are often exhaustively generated so are high in number.
Anchor-free proposal learning methods directly learn to predict temporal pro-
posals (i.e., start and end times) [70,28,27]. For example, SSN [70] decomposes
an action instance into three stages (starting, course, and ending) and employs
structured temporal pyramid pooling to generate proposals. BSN [28] predicts
the start, end and actionness at each temporal location and generates proposals
with high start and end probabilities. Later, BMN [27] additionally generates
a boundary-matching confidence map to improve proposal generation. BSN++
[49] further extends BMN with a complementary boundary generator to cap-
ture rich context. CSA [48] enriches the proposal temporal context via attention
transfer. While no pre-defined anchor boxes are required, these methods often
have to exhaustively pair all possible locations predicted with high scores. So
both anchor-based and anchor-free TAD methods have a large quantity of tem-
poral proposals to evaluate. Critically, both groups of TAD models in essence
adopt a sequential localization (mask generation) and classification architecture.
This will cause the localization error propagation problem for SS-TAD. Our
SPOT is designed to address this limitation by removing the dependence between
localization and classification thus cutting off the path for error propagation.
Semi-supervised learning (SSL) [71,10] has been widely adopted in com-
puter vision for image classification [5,47,13], object detection [50,69], seman-
tic segmentation [41,21], and pose estimation [15,35]. Two dominant learning
paradigms in SSL are pseudo-labeling [47,67,26,24] and consistency regulariza-
tion [51,25,60,36]. Key to pseudo-labeling is to reliably estimate the labels of
unlabeled data which in turn are used to further train the model. Instead, con-
sistency regularization enforces the output of a model to be consistent at the
presence of variations in the input space and/or the model space. The variations
can be implemented by adding noises, perturbations or forming multiple vari-
ants of the same data sample or the model. In this work, we focus on designing
a TAD model particularly suitable for SSL, while following the pseudo-labelling
paradigm for exploiting unlabeled data for training.
Semi-supervised Temporal Action Detection (SS-TAD). SSL has only
been studied very recently in the context of TAD. Existing SS-TAD works
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[23,57,46] naively combine existing semi-supervised learning and TAD meth-
ods. They are thus particularly prone to the aforementioned localization error
propagation problem when trained with unlabeled data. We solve this problem
for the first time by introducing a novel proposal-free temporal mask learning
model.

Self-supervised learning aims to learn generic feature representations from
a large amount of unlabeled data [11,19,18]. It is typically designed to provide
a pre-trained model for a downstream task to further fine-tune with a specific
labeled training data. We have seen a recent surge of self-supervised learning
studies with a focus on both object recognition in images [59,11,19,18,33,53,12]
and action classification in videos [1,4,31,34,58]. The most related works to our
self-supervised learning based pre-training are very recently introduced in [65,64].
They aim to improve the video encoder for the fully supervised TAD problem.
In contrast, we focus on pre-training a superior TAD head in the context of
semi-supervised learning.

3 Proposal-Free Temporal Mask Learning

Approach overview In semi-supervised temporal action detection (SS-TAD),
we have access to a small set of Nl labeled videos Dl = {Vi, Ψi}Nl

i=1 and a large

set of Nu unlabeled videos Du = {Ui}Nu
i=1. Each labeled video’s annotation Ψi =

{(ψj , ξj , yj)}Mi
j=1 contains the start time ψj , the end time ξj , and the class label

yj ∈ Y for each of Mi action instances. We denote the label space as Y =
[1, · · · ,K + 1] with K action and one background classes. For more effective
SS-TAD, we propose a Proposal-Free Temporal Mask (SPOT) learning method
(see Fig. 2). It has two components: video snippet embedding (Sec. 3.1), and
TAD head (Sec. 3.2). The latter is our core contribution.

3.1 Video Snippet Embedding

Given a varying length untrimmed video V , following the standard practice
[66,27] we first sample T equidistantly distributed temporal snippets (points)
over the entire length and use a fine-tuned two-stream video encoder similar to
[27] to extract RGB Xr ∈ Rd×T and optical flow features Xo ∈ Rd×T at the
snippet level, where d denotes the feature dimension. We then concatenate them
as F = [Xr;Xo] ∈ R2d×T . Each snippet is a short sequence of (16 in this work)
consecutive frames. While F contains local spatio-temporal information, it lacks
a global context critical for TAD.We hence leverage the self-attention mechanism
[52] to learn the global context. Formally, we set the input {query, key, value}
of a multi-head Transformer encoder T () as the features {F, F, F} (Fig. 2(a)).
Positional encoding is not applied as it is found to be detrimental (see Appendix
B in Supplementary) The final snippet embedding is then obtained as E =
T (F ) ∈ RC×T with C being the embedding dimension.
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Fig. 2: Overview of the proposed Semi-supervised Temporal action de-
tection model based on PropOsal-free Temporal mask (SPOT). Given
an untrimmed video V , (a) we first extract a sequence of T snippet features
with a pre-trained video encoder and conduct self-attention learning to obtain
the snippet embedding E with a global context. (b) For each snippet embed-
ding, we then predict a classification score P with the classification stream and a
foreground mask M with the mask stream in parallel, (c) both of which are fur-
ther used for boundary refinement. It is based on mining hard&easy foreground
(FG) and background (BG) snippets. For SS-TAD, we alternatingly predict and
leverage pseudo class and mask labels of unlabeled training videos, along with
labeled videos.

3.2 Temporal Action Detection Head

To realize a proposal-free design, we introduce a temporal mask learning based
TAD head. It consists of two parallel streams (Fig. 2(b)): one for snippet clas-
sification and the other for temporal mask inference. This design breaks the
sequential dependence between localization and classification which causes un-
wanted error propagation in the existing TAD models.
Snippet classification stream Given the t-th snippet E(t) ∈ Rc (i.e., the
t-th column of E), our classification branch predicts a probability distribution
pt ∈ R(K+1)×1 over Y. This is realized by a 1-D convolution layer Hc followed
by a softmax normalization. For a video with T snippets, the output of the
classification branch can be expressed as:

P := softmax
(
Hc(E)

)
∈ R(K+1)×T . (1)

Temporal mask stream In parallel to the classification stream, this stream
predicts temporal masks of action instances across the whole temporal span
of the video. Given the t-th snippet E(t), it outputs a mask vector mt =
[q1, · · · , qT ] ∈ RT×1 with each element qi ∈ [0, 1] (i ∈ [1, T ]) indicating the
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foreground probability of the i-th snippet (see Fig. 2(b) for illustration). This is
implemented by a stack of three 1-D convolution layers Hm as:

M := sigmoid
(
Hm(E)

)
∈ RT×T , (2)

where the t-th column of M is the temporal mask prediction by the t-th snippet.
With the proposed mask signal as the model output supervision, proposals are
no longer required for facilitating SS-TAD learning.

Fig. 3: Snippet selection for inter-stream interaction.

Boundary Refinement TAD methods typically struggle at estimating accu-
rately the boundary between foreground and background segments. This problem
is more pronounced for a SS-TAD model by learning from unlabeled data. To
mitigate this problem, we design an inter-stream interaction mechanism for TAD
refinement at the end of the TAD head (Fig. 2(c)). More specifically, we focus on
ambiguous snippets in the transition between foreground and background (i.e.,
temporal boundary). They are considered as hard snippets, in contrast to those
easy ones located inside mask or background intervals far away from temporal
borders with more trustworthy interference. We detect hard snippets by exam-
ining the structure of temporal mask M . First, we threshold the M to obtain
a binary mask as Mbin := η(M − θm), where η(.) is the Heavyside step func-
tion and θm is the threshold. As shown in Fig. 3(b), we consider the snippets
spanned by the eroded mask boundary as hard background whereas those by the
non-boundary mask as hard foreground. We use a differentiable morphological
erosion [45] to obtain the eroded mask Mouter. We denote the complement of
Mouter as Minner. They are formally defined as:

Mouter = E(Mbin, e), Minner =Mbin −Mouter,

where E(.) is the differentiable erosion operation and e is the erosion kernel size.
We represent the top k scoring hard snippets by multiplying the downsampled
embedding Em (obtained after applying 1-D convolution on the embedding E).
They are obtained as:

Xfg = topk(Minner ∗ Em), Xbg = topk(Mouter ∗ Em),
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Fig. 4: Illustration of our self-supervised pre-training.

As the snippets from the same instance often predict different length 1-D masks,
applying a binarization process on top generates masks of arbitrary shapes, as
illustrated in Fig. 3(a). We calculate the boundary features for all of these mask
clusters and select the top snippets from all of the clusters jointly. For inter-
stream interaction, we further use high-confidence foreground and background
snippets from the classification stream. We thus consider them as easy foreground
and easy background due to their easy to predict property. As seen in Fig. 3(a),
we similarly select top scoring foreground and background snippets from the
thresholded classification output Pbin := η(P − θc) as:

Y fg = topk(argmax((Pbin ∗ Ep)[: K, :])), Y bg = topk((Pbin ∗ Ep)[K + 1, :]).

where Ep is obtained by passing the embedding E into a 1-D conv layer for
matching the dimension of P . We adopt infoNCE loss [20] for TAD refinement:

Lref = tri(xfg, yfg, ybg) + tri(ybg, xbg, yfg), (3)

where x∗ ∈ X∗ and y∗ ∈ Y ∗ and tri(·, ·, ·) defines the foreground and background
triplet training samples. In this way, we maximize the correlation between easy
and hard snippets of the same category (foreground or background), refining the
inter-stream feature representation for better perceiving temporal boundaries.

3.3 Model Training

To better exploit unlabeled data, we formulate a two-staged training pipeline,
including self-supervised pre-training and semi-supervised fine-tuning.

Stage I: Self-supervised pre-training We introduce a pretext task based
on a novel notion of random foreground specially designed for TAD model pre-
training. Given a video feature sequence F ∈ RT×d, we sample a random token
segment (s, e) of varying proportions as foreground and the remaining tokens as
background (Fig. 4). Cropping out foreground at feature level has shown to be
useful in learning discriminative representation [42]. Motivated by this, we zero
out the background snippet features whilst keeping for the pseudo foreground.
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This shares a similar spirit with masked region modeling [14,3] with a different
objective of detecting the location of masked segment.

With such a masked feature sequence, our pretext task aims to predict jointly
(1) the temporal mask with the start s and end e (Fig. 4(b)), (2) the temporal
position of each snippet after temporal shuffling (Fig. 4(c)), and (3) the recon-
struction of snippet feature (Fig. 4(a)). We treat each of T temporal positions
as a specific positional class, and apply a small Transformer with learnable posi-
tional embedding on the shuffled snippet sequences. All zeroed snippet features
will become non-zero after the transformer’s processing, preventing the model
from learning a trivial solution. We use the cross-entropy loss Ltp for temporal
position prediction. This supervision aims to learn the intrinsic temporal struc-
ture information in videos. The feature reconstruction loss Lrec is measured by
L2 normalized mean squared error between the backbone feature F and the
embedding E from the transformer. The motivation is to preserve the video
encoder’s discriminative information in learning global context. By dropping
random snippets, the Transformer is forced to aggregate and utilize information
from the context to predict the dropped snippets. As a result, the model can
learn temporal semantic relations and discriminative features useful for TAD.
The pretext task loss for pre-training is formulated as:

Lpre = Lm + λ1Lrec + λ2Ltp, (4)

where Lm is the mask learning loss as defined in Eq. (11) and λ1 and λ2 are
two hyper-parameters set as 0.8 and 0.4 respectively. We use both labeled and
unlabeled data for SPOT pre-training without using any ground-truth labels.

Stage II: Semi-supervised fine-tuning We implement temporal mask semi-
supervised learning following the pseudo label paradigm [47]. Concretely, we
alternate between predicting and applying pseudo labels, starting by using the
labeled samples alone.
Pseudo label prediction Given an unlabeled video embedding E, the pseudo
class label is obtained by:

ŷ = max
(
softmax(Hc(E)/τc)

)
, (5)

where the sharpening operator τc = τ − (τ − 1)ŷ
′

max with ŷ
′

max the maximum
probability over the K classes, and τ a hyper-parameter controlling the largest
sharpening strength. Similarly, we obtain the pseudo mask label ĝ as:

ĝ = sig
(
Hm(E)/τm

)
, (6)

where τm is the mask sharpening operator, and sig() is the sigmoid function
[29]. Then, we threshold the pseudo class and mask labels at θc/θm to be binary.
Loss functions For SS-TAD, we use both pseudo and ground-truth labels to
minimize the objective loss function as formulated below. For the classification
stream, we devise a class-balanced loss to tackle the intrinsic class imbalance
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challenge with TAD. Inspired by [56,16], we adopt the sigmoid regression based
binary cross-entropy loss function. Given a snippet E(t) with class label y, the
classification loss function is designed as:

Lbce = − log(py)−
∑

k ̸=y,k∈Y

(
log(1− pk)

)
, (7)

where py denotes the the logits from class stream P . Critically, this binary
cross-entropy loss gives us the flexibility to regulate each class individually per
training sample. This is useful because untrimmed videos often encompass a
dominant proportion of background content, which would overwhelm the under-
represented tail action classes Yt with small training data. To mitigate this
problem, we further improve this loss by encouraging the activation of tail ac-
tion classes. Concretely, given a background snippet, we still allow tail action
classes to be activated under a certain degree ε (set as θc). This is realized by
introducing a weighting mechanism as:

Lwbce = − log(py)−
∑

k ̸=y,k∈Y

(
wk log(1− pk)

)
(8)

where ωk =

{
0 if k ∈ Yt and p(k) < ε
1 otherwise

(9)

Given a video with the background Tbg and foreground Tfg snippets, our final
classification loss is expressed as:

Lc =
1

T

( ∑
t∈Tfg

Lbce(t) +
∑

t∈Tbg

Lwbce(t)
)
. (10)

For the mask stream, we exploit a weighted binary cross-entropy loss Lmce

for balancing foreground and background classes, along with a binary dice loss
Ldice [32]. For a snippet location t, we denote m(t) ∈ RT×1 and g(t) ∈ RT×1 as
the predicted and ground-truth mask. The mask learning loss is designed as:

Lm = βfg

T∑
t=1

g(t) log(m(t)) + βbg

T∑
t=1

(1− g(t)) log(1−m(t))

+ λd

(
1− m⊤g∑T

t=1

(
m(t)2 + g(t)2

)), (11)

where βfg and βbg are the inverse proportion of foreground and background used
for class balance, and λd is the dice loss weight which is empirically set as 0.6.
Overall learning objective The overall objective loss is designed as L = Lc +
Lm + Lref + Lrec where Lref is the refinement loss (Eq. (3)) and Lrec is the
feature reconstruction loss as described in the pre-training stage. This loss is
applied on both ground-truth and pseudo labels for fine-tuning SPOT. Note
that the temporal ordering loss term Ltp is not used during fine-tuning as it
gives performance drop (see Appendix B in Supplementary). A plausible cause
is its incompatibility with the fine-tuning loss Lc.
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Labels Methods
ActivityNet THUMOS

0.5 0.75 0.95 Avg 0.3 0.4 0.5 0.6 0.7 Avg

60%

BMN∗ [27] 47.6 31.7 7.5 31.5 50.8 45.9 34.8 23.7 16.3 34.3

Mean Teacher [51]+BMN 48.0 32.1 7.4 31.9 53.5 45.0 36.9 27.4 19.0 35.8
FixMatch [47]+BMN 48.7 32.9 7.7 32.8 53.8 46.2 37.8 28.7 19.5 36.9

SSP [23] 49.8 34.5 7.0 33.5 53.2 46.8 39.3 29.7 19.8 37.8
SSTAP [57] 50.1 34.9 7.4 34.0 56.4 49.5 41.0 30.9 21.6 39.9

SPOT (Ours) 52.8 35.0 8.1 35.2 58.9 50.1 42.3 33.5 22.9 41.5

10%

BMN∗ [27] 35.4 26.4 8.0 25.8 38.3 28.3 18.8 11.4 5.6 20.5

Mean Teacher [51]+BMN 36.0 27.2 7.4 26.6 41.2 32.1 23.1 15.0 7.0 23.7
FixMatch [47]+BMN 36.8 27.9 8.0 26.9 42.0 32.8 23.0 15.9 8.5 24.3

SSP [23] 38.9 28.7 8.4 27.6 44.2 34.1 24.6 16.9 9.3 25.8
SSTAP [57] 40.7 29.6 9.0 28.2 45.6 35.2 26.3 17.5 10.7 27.0

SPOT (Ours) 49.9 31.1 8.3 32.1 49.4 40.4 31.5 22.9 12.4 31.3

Table 1: SS-TAD results on the validation set of ActivityNet v1.3 and
the test set of THUMOS14. Note: All methods except SPOT use the
UNet [54] trained with 100% class labels for proposal classification; These
methods hence benefit from extra classification supervision in comparison
to SPOT. ∗: Using only labeled training set.

3.4 Model Inference

At test time, we generate action instance predictions for each test video by the
classification P and mask M predictions. For P , we only consider the snippets
whose class probabilities are greater than θc and select top scoring snippets.
For each such top scoring action snippet, we then obtain the temporal mask
by thresholding the ti-th column of M using the localization threshold Θ. To
produce sufficient candidates, we use a set of thresholds Θ = {θi}. For each
candidate, we compute a confidence score s by multiplying the classification and
max-mask scores. SoftNMS [6] is finally applied to obtain top scoring results.

4 Experiments

Datasets We use two standard TAD datasets in our evaluation. (1) ActivityNet
v1.3 is a large-scale benchmark containing 19,994 untrimmed videos with 200
classes. We adopt the standard 2:1:1 training/validation/testing video data split.
(2) THUMOS14 provides 200 validation videos and 213 testing videos labeled
with temporal annotations for action understanding. We train our model on the
validation set and evaluate on the test set.
Implementation details For fair comparisons, we use both TSN [55] and
I3D [9] features in our evaluations. For ActivityNet, we use fine-tuned TSN
features for fair comparison with [57,27]. For THUMOS, we use TSN and I3D
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features both pre-trained on Kinetics [61]. The temporal dimension T is fixed at
100/256 for ActivityNet/THUMOS respectively (see the suppl. for more analy-
sis). For AcitivityNet/THUMOS, we first pre-train SPOT (except the classifica-
tion stream) on the training set including the unlabeled samples for 12 epochs
and then we fine-tune SPOT for 15 epochs with a learning rate of 10−4/10−5,
a weight decay of 10−3/10−5. For boundary refinement, we set top-k = 40 snip-
pets, θc/θm is set as 0.3/0.7 and e is set as 7. In semi-supervised setting, the
label sharpening operator τ is set as 1.1 and τm is set as 0.7. In testing, we set
the threshold set for mask θ = {0.1 ∼ 0.9} with a step 0.1. The SoftNMS is
performed on ActivityNet/Thumos with a threshold of 0.6/0.4.

4.1 Comparative Results

Setting We introduce two SS-TAD settings with different label sizes. For each
dataset, we randomly select 10% or 60% training videos as the labeled set and
the remaining as the unlabeled set. Both labeled and unlabeled sets are accessible
for SS-TAD model training.
Competitors We compared with the following methods. (1) Two state-of-the-
art supervised TAD methods: BMN [27]+UNet [54] and GTAD [63]+UNet [54]
(2) Two SSL+TAD methods: As SS-TAD is a new problem, we need to imple-
ment the competitors by extending existing SSL methods to TAD by ourselves.
We select two top SSL methods (Mean Teacher [51] and FixMatch [47]), and
a state-of-the-art TAD model based on a popular proposal generation method
BMN [27] (using TSN features) and GTAD [63] (using I3D features). Both of
these models use a common untrimmed video classification model UNet [54]. For
FixMatch [47], we use temporal flip (i.e., playing the video backwards) as strong
augmentation and temporal feature shift as weak augmentation. For UNet, due
to the lack of Caffe based training environment, we can only apply the official
weights trained with 100% supervision (3) Two recent semi-supervised tempo-
ral proposal generation methods [23,57]. Note that the concurrent SS-TAD work
[46] does not give reproducible experiment settings and prevents an exact com-
parison. Besides, [46] achieves only 12.27% avg mAP on ActivityNet v1.2 vs.
32.1% by SPOT on v1.3 (v1.2 has only half classes of v1.3 hence simpler), thus
significantly inferior to the two compared methods [23,57].
Results The SS-TAD results are reported in Table 1 and Table 5. We make the
following observations: (1) Without leveraging unlabeled video data, the state-
of-the-art fully supervised TAD method BMN [27] (with UNet [54]) achieves
the poorest result among all the methods. This clearly suggests the usefulness
of unlabeled data and the consistent benefits of adopting semi-supervised learn-
ing for TAD – a largely ignored research topic. (2) Combining existing TAD
methods (e.g., BMN [27]) with previous SSL methods (e.g., Mean Teacher [51]
and FixMatch [47]) is indeed effective in improving model generalization. Similar
observations can be made on SSP [23] and SS-TAD [57], our two main competi-
tors. Despite such performance improvements, these methods still suffer from the
proposal error propagation problem that would limit their ability in exploiting
unlabeled videos. (3) By solving this problem with a new parallel design, our
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Table 2: Analysis of localization
error propagation on ActivityNet
with 10% supervision. GT: Ground-
Truth.

Metric
mAP

0.5 Avg

BMN [27] + MLP

GT proposals 55.7 45.3
Pseudo proposals 32.4 23.6

SPOT

GT masks 59.2 47.0
Pseudo masks 49.9 32.1

Table 3: Analysis of SPOT model pre-
training on ActivityNet with 10% label
supervision.

Pre-training loss mAP

Lm Lrec Ltp 0.5 Avg

Random initialization

✗ ✗ ✗ 46.2 30.5

With our pre-training

✓ ✗ ✗ 47.6 31.4
✓ ✓ ✗ 48.5 31.7
✓ ✗ ✓ 47.9 31.5

✓ ✓ ✓ 49.9 32.1

SPOT achieves the new state of the art on both datasets. It is worth pointing
out the larger margin achieved by SPOT over all the competitors at the lower
supervision case (10% label). For instance, with 10% label, SPOT surpasses the
second best SSTAP by 3.9%/4.3% on ActivityNet/THUMOS. A plausible reason
is that the proposal error propagation will become more severe when the labeled
set is smaller, causing more harm to existing proposal based TAD methods. This
validates the overall efficacy and capability of our model formulation in lever-
aging unlabeled video data for SS-TAD. (4) From Table 5 we observe similar
findings as that of BMN [27] using TSN features (Table 1). Our SPOT out-
performs the existing baselines and SS-TAD models by almost similar margin,
confirming that the superiority of our method is feature agnostic.

4.2 Further Analysis

Localization error propagation analysis To examine the effect of localiza-
tion error propagation with previous TAD models, we design a proof-of-concept
experiment by measuring the performance drop between ground-truth proposals
and pseudo proposals. Due to the lack of access to the now obsolete training envi-
ronment for UNet [54], we adopt a MLP classifier with BMN [27] as the baseline
TAD model. For our SPOT, we contrast ground-truth and pseudo masks. This
experiment is tested on ActivityNet with 10% supervision. Table 2 shows that
the proposal based TAD baseline suffers almost double performance degrada-
tion from localization (i.e., proposal) error due to its sequential localization and
classification design. This verifies the advantage of SPOT’s parallel design.
Effectiveness of model pre-trainingWe propose a two-staged training method
characterized by model pre-training based on a novel pretext task (Sec. 4.2). We
now examine how pre-training helps for model accuracy. Here, we take the 10%
label supervision case on ActivityNet, with a comparison to the random initial-
ization baseline. Concretely, we examine three loss terms: the mask prediction
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Fig. 5: Effect of our model pre-training on a
random ActivityNet video.

Table 4: Effect of pre-training on
ActivityNet with 10% labels.

Method
mAP

0.5 Avg

BMN + [54] 35.4 25.8
BMN† + [54] 36.2 26.3

Table 5: SS-TAD results
on THUMOS14 test-set using I3D
features; All method except SPOT uses
UNet [54]; ∗:Using only labeled set.

Labels Method
mAP

0.3 0.5 0.7

60%

GTAD∗[63] 50.9 35.4 16.5

FixMatch [47]+GTAD 53.4 38.9 19.1
SSP [23] 53.5 39.7 20.4

SSTAP[57]+GTAD 55.9 41.6 22.0

SPOT (Ours) 58.7 42.4 23.1

10%

GTAD∗[63] 36.9 20.1 6.6

FixMatch [47]+GTAD 42.1 23.8 9.7
SSP [23] 43.1 25.5 9.6

SSTAP [57]+GTAD 45.3 27.5 11.0

SPOT (Ours) 49.1 31.7 12.6

Table 6: Performance of our SPOT
model w/ and w/o unlabeled data
on ActivityNet.

Labels
SSL Modules mAP

Pre-train Lc 0.5 Avg

10%

✓ ✓ 49.9 32.1

✓ ✗ 45.3 29.8
✗ ✓ 46.2 30.5
✗ ✗ 44.5 28.3

60%

✓ ✓ 52.8 35.2

✓ ✗ 51.7 34.4
✗ ✓ 52.1 34.9
✗ ✗ 51.2 34.0

loss (Lm), the feature reconstruction loss (Lrec), and the temporal position loss
(Ltp). The results in Table 3 reveal that: (1) Compared to random initialization,
our pre-training boosts the overall mAP by 1.6%. This gain is also supported by
the more distinct separation of foreground and background features as shown in
Fig. 5 This validates the importance of TAD model initialization and the effi-
cacy of our pretext task. (2) All the loss terms are effective either in isolation
or in the cohorts, suggesting they are complementary with good compatibility.
Additionally, we evaluate the generic impact of our pre-training on BMN [27].
We observe from Table 4 that it again gives a good increase of 0.7% in Avg
mAP, justifying its generic usefulness.
Effectiveness of using unlabeled data We evaluate the impact of using un-
labeled data imposed by the pre-training and the loss term Lc (in Eq. (10)).
Table 6 shows that without these components, the model will degrade in per-
formance particularly in case of less labels, as expected. In particular, both SSL
components (pretraining and Lc) are clearly effective in model performance. This
verifies their designs. Besides, even without the SSL modules our model is better
than SSTAP [57] in 10% label case and comparable in 60% label case, further
indicating the advantage of our model design.
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Table 7: Ablating SPOT objective
loss terms on ActivityNet with 10%
label. Lc: classification loss; Lmce:
cross-entropy mask loss; Ldice: dice
mask loss; Lref : refinement loss;
Lrec: feature reconstruction loss.

Loss
mAP

0.5 Avg

All 49.9 32.1

W/O Lc 45.3 29.8
W/O Lmce 47.8 31.5
W/O Ldice 47.0 31.2
W/O Lrec 45.9 30.2
W/O Lref 46.8 30.7

Table 8: Fully supervised TAD re-
sults on the validation set of Ac-
tivityNet. All the compared methods
use TSN features used in [57]

Method
mAP

0.5 0.75 0.95 Avg

BSN [28] 46.4 29.9 8.0 30.0
GTAD [66] 50.3 34.6 9.0 34.0
BC-GNN [2] 50.6 34.8 9.4 34.3
BMN [27] 50.0 34.8 8.3 33.8

BSN++ [49] 51.2 35.7 8.3 34.8
TCANet [43] 52.2 36.7 6.8 35.5

GTAD+CSA[48] 51.8 36.8 8.7 35.6
SPOT 53.9 35.9 9.4 35.8

Contributions of different losses We ablate the effect of SPOT’s training
loss functions for classification and mask (Sec. 3.3). We test the benefit of the
classification loss (Lc), the weighted binary cross-entropy mask loss (Lmce), the
dice mask loss (Ldice), the refinement loss (Lref ), and the feature reconstruction
loss (Lrec). When testing Lc, we replace it with the standard cross-entropy loss.
Table 7 shows that each loss term is beneficial for improving model accuracy,
verifying their individual and collective efficacy.
Comparisons to fully supervised TAD methods Besides SS-TAD, our
SPOT can be also applied for fully supervised TAD with the pseudo-labels re-
placed by ground-truth labels while keeping the remaining the same. This test
is conducted on ActivityNet. Table 8 shows that when trained with fully-labeled
data, our SPOT can also outperform state-of-the-art TAD methods in the overall
result albeit by a smaller margin as compared to the semi-supervised case. This
is as expected because in fully supervised setting there would be less proposal
error and hence less harm by its propagation.

5 Conclusions

In this work, we have proposed a novel Proposal-Free Temporal Mask (SPOT)
learning model for the under-studied yet practically useful semi-supervised tem-
poral action detection (SS-TAD). It is characterized by a parallel localization
(mask generation) and classification architecture designed to solve the localiza-
tion error propagation problem with conventional TAD models. For superior
optimization, we further introduced a novel pretext task for pre-training and
a boundary refinement algorithm. Extensive experiments on ActivityNet and
THUMOS demonstrate that our SPOT yields state-of-the-art performance un-
der both semi-supervised and supervised learning settings.
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