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1 Overview

For additional insights into our unsupervised cycle domain adaptation approach
(CycDA), we first analyze the frame thresholding in Sec. 2 and provide additional
baselines of image-to-video, frame-to-video and frame&video-to-video adapta-
tion in Sec. 3. We illustrate the performance of multiple iterations of CycDA on
two adaptation datasets in Sec. 4. Then, we demonstrate that the domain align-
ment improves the learned feature representations by searching nearest neighbors
to target query frames in the source domain in Sec. 5. In Sec. 6, we inspect the
confusion matrices of our generated pseudo labels. Finally, we analyze potential
failure cases of CycDA in Sec. 7.

2 Frame Thresholding

In the spatio-temporal learning stage (Sec. 3.2 in the main paper), we train a
video model with pseudo labeled data in the target domain. To remove pseudo
labels with low confidence, we set the confidence threshold δp such that p×100%
of videos with highest confidence remain after the thresholding.

We determine the maximum of the frame-level confidence scores within each
video, and sort the maximum frame-level confidence scores of all videos in a
descending order. The ordered score sequence is denoted as [s1, s2, ..., sN ]. For
δp ∈ [s⌊p·N⌋, s⌊p·N⌋+1], there are ⌊p · N⌋ videos left after thresholding. We set
δp = (s⌊p·N⌋ + s⌊p·N⌋+1)/2.

We illustrate the accuracy of video pseudo labels and the spatio-temporal
learning (Stage 2) performance in Fig. 1. Intuitively, with p increasing, the accu-
racy of video pseudo labels drops, from 85.7% (p = 10%) to 42.7% (p = 100%).
For p smaller than 60%, the spatio-temporal learning performance suffers due
to the insufficient amount of training data, in spite of the higher accuracy of
pseudo labels. For p between 70% and 100%, the performance remains fairly
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Figure 1. Accuracy of video pseudo labels and the spatio-temporal learning (Stage 2)
performance w.r.t. different thresholding percentages p×100% on EADs → HMDB51.

stable at an accuracy of approximately 55%. We set p to 70% for Stage 2 in all
the experiments in the main paper. As Stage 3 further improves the pseudo la-
bels transferred to Stage 4, we increase p by 10% to 80% for the spatio-temporal
learning in Stage 4 heuristically.

3 Additional baselines

3.1 Image-to-video adaptation from BU101 to UCF-HMDB

In Sec. 4.4 of the main paper, we sample 50 web images per class from the
12 classes in BU101 and adapt to the UCF-HMDB videos. The BU101 dataset
has around 230 images per class on average. Here, we evaluate the image-to-
video adaptation with a varying amount of web images. For this, we sample
different numbers of web images per class from BU101 and also compare our
CycDA with video-to-video adaptation approaches (on UCF-HMDB) in Table 1.
Apparently, increasing the number of web images on BU101 leads to a significant
performance boost.The image-to-video adaptation with 230 images per class
(82.2% for BU→H and 97.9% for BU→U) outperforms most state-of-the-art
video-to-video adaptation approaches. The performance of BU→U even exceeds
the supervised target model. This demonstrates that CycDA can exploit the
large informativity in the web images for enhanced performance on the target
video classifier.

3.2 Frame-to-Video and Frame&Video-to-Video Adaptation

We add the baselines of frame-to-video in the case of 1 frame and 5 frames from
each source video in Table 1. Furthermore, we add a new setting of frame&video-
to-video adaptation: using 5 frames from each source video as the source image
data (instead of web images), together with the videos as the source video data,
to adapt to target videos with domain shift. Both, using more frames and using
frame together with videos, lead to further improvements.
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DA setting method
source data

U→H H→U

BU web image (#
images per class)

videos (U or H)
in %

A: video-to-video

AdaBN [5] - 100% 75.5 77.4
MCD [10] - 100% 74.4 79.3
TA3N [1] - 100% 78.3 81.8
ABG [6] - 100% 79.1 85.1
TCoN [8] - 100% 87.2 89.1
DANN [3] - 100% 80.7 88.0
TA3N [1] - 100% 81.4 90.5
SAVA [2] - 100% 82.2 91.2

MM-SADA [7] - 100% 84.2 91.1
CrossModal [4] - 100% 84.7 92.8

CoMix [9] - 100% 86.7 93.9

B: image-to-video CycDA
50 - 77.8 88.6
100 - 81.7 93.9
230 - 82.2 97.9

C: frame-to-video CycDA
- 1 frame 83.3 80.4
- 5 frames 84.4 84.6

D:
frame&video-to-

video
CycDA - 5 frames+videos 85.6 87.9

supervised target - - 94.4 97.0

Table 1. Results of image-to-video adaptation (from images in BU101 to videos on
UCF-HMDB) in comparison to video-to-video adaptation approaches.

4 Multiple Iterations

We observed that the fluctuation effect of performance among multiple iterations
is more pronounced for small datasets with large domain shift (such as E→H),
which are more prone to overfitting on either the image or the video side. To ver-
ify this, we compare the behaviour on E→H with B→U for 6 iterations in Fig. 2.
While in both cases the peak is reached after three iterations, the performance
on the large-scale B→U remains more stable.

Figure 2. Multiple iterations of CycDA on E→H and B→U.
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5 Nearest Neighbor Search in Image Feature Space

In Sec. 4.5 in the main paper, we perform a stage-wise ablation study to show
how each stage contributes to the performance boost. In order to further demon-
strate how the domain alignment is improved, we use the sampled target frames
as query and search for their nearest neighbor (NN) source web images. For
this, we use the following three image feature representations: (i) source-only,
(ii) class-agnostic domain alignment (CycDA stage 1) and (iii) class-aware do-
main alignment (CycDA stage 3). The t-SNE visualizations of these 3 image
feature spaces are shown in the main paper in Figure 3(a)–(c). For further in-
vestigation, we sample query frames from target videos and show their 5 nearest
neighbor source web images in Fig. 4 and 5. In each subfigure, the 3 rows show
the nearest neighbor results in the image feature space of the source-only model
(1st row), after CycDA stage 1 class-agnostic alignment (2nd row), and after
CycDA stage 3 class-aware alignment (3rd row).

We see that the nearest neighbors of the target query frame in the source-
only feature space are from different categories, due to the large domain shift
between source and target distributions before alignment. After class-agnostic
domain alignment, the amount of source nearest neighbors from the same cate-
gory slightly increases. After class-aware domain alignment in stage 3, most of
the nearest neighbors are from the same category. In Fig. 5(b), where the target
query frame shows a child clapping, both source-only and class-agnostic align-
ment result in several source nearest neighbors which show children, but none of
these belong to the clap category. On the contrary, class-aware alignment leads
to nearest neighbors with non-baby content in the correct category. This indi-
cates our effective category-level alignment which semantically gathers target
frames with source data of the same category, instead of simply aligning images
in terms of styles and appearance. Similar examples can be found in Fig. 4(c)
and (d).

6 Confusion Matrix

Complementing our pseudo label analysis (Fig. 4(a) in the main paper), we
further illustrate the confusion matrices of the video pseudo labels on the target
videos after CycDA stage 2 (Fig. 3(a)) and CycDA stage 4 (Fig. 3(b)). Clearly,
Fig. 3(b) improves along the diagonal on the difficult classes (e.g . run, hug,
kiss). Furthermore, Fig. 3(b) shows less confusion in comparison to Fig. 3(a),
e.g . between kiss and hug, drink and pour, or run and climb. Our complete
CycDA (with stages 3 and 4) contributes to a significant performance boost
with less confusion among categories.

The remaining confusion in Fig. 3(b) is due to low inter-class variation (c.f .
Sec. 7), e.g . between wave and clap, or jump and run. The most difficult category
is talk (with zero accuracy), which is defined on EADs as the interaction between
two or more subjects. This interaction is captured by our model and provides
a strong bias for classification. On HMDB51, however, most talk videos contain
only a single subject speaking and thus, capture no interaction.
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(a) CycDA stage 1 + stage 2 (b) CycDA stage 1 to 4 

Figure 3. Confusion matrices of video pseudo labels on target videos after (a) CycDA
stage 2 and (b) CycDA stage 4 for 12 classes on EADs → HMDB51. Best viewed on
screen.

7 Failure Cases

To analyze the limitations of CycDA, Fig. 6 illustrates failure cases of the nearest
neighbor search in the image feature space after the step 3 class-aware domain
alignment. The majority of our failures can be attributed to unusual backgrounds
(where the background has a high visual similarity to the typical scenario of
another action category) and ambiguous actions (low inter-class variation). For
example, Fig. 6(a) shows a baby waving in a crib, where the crib has a similar
pattern to carts that are typically found in the push category. Similarly, running
in front of rocks (Fig. 6(b)) or running towards a vehicle (Fig. 6(c)) is grouped to
climb or push respectively. Jumping on the slope of a bouncy castle (Fig. 6(d))
looks visually similar to the scene of climb.

Fig. 6(e)–(h) demonstrate category confusion due to low inter-class variation.
For example, waving while talking to another subject occurs frequently in the
web images annotated as talk (Fig. 6(e)). Waving with both hands is visually
similar to clap (Fig. 6(f)). Kissing while hugging can be confused with hugging
only (Fig. 6(g)). Running can look like jumping when the subject is in the
air (Fig. 6(h)). These ambiguous actions can also be seen from the confusion
matrices in Fig. 3. Although spatio-temporal learning on a video model improves
the inference of motion-based actions on the target domain, these visually similar
or ambiguous actions still pose a challenge. Deriving motion information from
source web images might be a solution to this issue.
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(a)

(b)

(c)

(d)

Figure 4. Target video frame and its 5 nearest neighbor (NN) web images in the source
domain. Each 3-row group subfigure displays the NN search in image feature space of
source only (1st row), CyDA stage 1 class-agnostic alignment (2nd row), CycDA stage 3
class-aware alignment (3rd row). The image border color indicates NN in same (green)
or different (red) category.
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(a)

(b)

(c)

(d)

Figure 5. Target video frame and its 5 nearest neighbor (NN) web images in the source
domain. Each 3-row group subfigure displays the NN search in image feature space of
source only (1st row), CyDA stage 1 class-agnostic alignment (2nd row), CycDA stage 3
class-aware alignment (3rd row). The image border color indicates NN in same (green)
or different (red) category.
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(a)

(e)

(c)
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Figure 6. Failure cases in search of 5 nearest neighbors (NN) in the image feature space
of CycDA stage 3 class-aware domain alignment. The image border color indicates NN
in same (green) or different (red) category.



Title Suppressed Due to Excessive Length 9

References

1. Chen, M.H., Kira, Z., AlRegib, G., Yoo, J., Chen, R., Zheng, J.: Temporal attentive
alignment for large-scale video domain adaptation. In: ICCV. pp. 6321–6330 (2019)

2. Choi, J., Sharma, G., Schulter, S., Huang, J.B.: Shuffle and attend: Video domain
adaptation. In: ECCV. pp. 678–695. Springer (2020)

3. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks.
JMLR 17(1), 2096–2030 (2016)

4. Kim, D., Tsai, Y.H., Zhuang, B., Yu, X., Sclaroff, S., Saenko, K., Chandraker, M.:
Learning cross-modal contrastive features for video domain adaptation. In: ICCV.
pp. 13618–13627 (2021)

5. Li, Y., Wang, N., Shi, J., Hou, X., Liu, J.: Adaptive batch normalization for prac-
tical domain adaptation. Pattern Recognition 80, 109–117 (2018)

6. Luo, Y., Huang, Z., Wang, Z., Zhang, Z., Baktashmotlagh, M.: Adversarial bipar-
tite graph learning for video domain adaptation. In: ACM Multimedia. pp. 19–27
(2020)

7. Munro, J., Damen, D.: Multi-modal domain adaptation for fine-grained action
recognition. In: CVPR. pp. 122–132 (2020)

8. Pan, B., Cao, Z., Adeli, E., Niebles, J.C.: Adversarial cross-domain action recog-
nition with co-attention. In: AAAI. vol. 34, pp. 11815–11822 (2020)

9. Sahoo, A., Shah, R., Panda, R., Saenko, K., Das, A.: Contrast and mix: Temporal
contrastive video domain adaptation with background mixing. In: NeurIPS (2021)

10. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy
for unsupervised domain adaptation. In: CVPR. pp. 3723–3732 (2018)


