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Abstract Although action recognition has achieved impressive results
over recent years, both collection and annotation of video training data
are still time-consuming and cost intensive. Therefore, image-to-video
adaptation has been proposed to exploit labeling-free web image source
for adapting on unlabeled target videos. This poses two major chal-
lenges: (1) spatial domain shift between web images and video frames;
(2) modality gap between image and video data. To address these chal-
lenges, we propose Cycle Domain Adaptation (CycDA), a cycle-based
approach for unsupervised image-to-video domain adaptation. We lever-
age the joint spatial information in images and videos on the one hand
and, on the other hand, train an independent spatio-temporal model to
bridge the modality gap. We alternate between the spatial and spatio-
temporal learning with knowledge transfer between the two in each cycle.
We evaluate our approach on benchmark datasets for image-to-video as
well as for mixed-source domain adaptation achieving state-of-the-art
results and demonstrating the benefits of our cyclic adaptation.

Keywords: Image-to-video adaptation, unsupervised domain adapta-
tion, action recognition

1 Introduction

The task of action recognition has seen tremendous success in recent years with
top-performing approaches typically requiring large-scale labeled video datasets
[10,39,40], which can be impractical in terms of both data collection and anno-
tation effort. In the meanwhile, webly-supervised learning has been explored to
leverage the large amount of easily accessible web data as a labeling-free data
source for video recognition [12,16,24,38,41,47].

In this work, we address the problem of image-to-video adaptation with
webly-labeled images as the source domain and unlabeled videos as the target
domain to allow for action classification without video annotation. This setting
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provides two major challenges: (1) the spatial domain shift between web images
and video frames, based on difference in image styles, camera perspectives and
semantic drifts; (2) the modality gap between spatial images and spatio-temporal
videos. Specifically, this modality gap restrains that merely spatial knowledge
can be transferred from source to target domain. Previous works on action recog-
nition with web supervision either learn from web data directly [11,13] or perform
joint training by combining the web source with annotated target data [9,29].
To specifically address the domain shift between web images and target videos,
some approaches perform class-agnostic domain-invariant feature learning either
within [19] or across modalities [44,43,27], in the absence of ensuring domain-
invariance on the category-level.

In this context, we propose Cycle Domain Adaptation (CycDA), i.e. alter-
nating knowledge transfer between a spatial model and a spatio-temporal model.
Compared to other works, we address the two challenges at hand, domain-
alignment and closing the modality gap in separate stages, cycling between both
of them. An overview of the CycDA is given in Fig. 1. With the category knowl-
edge from the spatio-temporal model, we achieve enhanced category-level domain
invariance on the spatial model. With updated knowledge transferred from the
spatial model, we attain better spatio-temporal learning. In this manner, we
can better tackle each challenge for the corresponding model, with the updated
knowledge transferred from the other.

More specifically, we propose a four stage framework to address the do-
main shift between images and videos on different levels. In stage 1, we enforce
class-agnostic domain alignment on the spatial model between images and video
frames. In stage 2, we use supervision from the spatial model to learn a spatio-
temporal video model, bridging the gap between the two modalities. Stage 3 then
focuses on class-aware domain alignment on the spatial model, given pseudo la-
bels computed by the video model trained on stage 2. In stage 4, we update the
video model with the improved pseudo labels from the spatial model of stage 3.

We first evaluate our approach on several challenging settings for web image
based action recognition, where a single cycle already outperforms baselines and
state-of-the-arts. Second, we show how CycDA can be flexibly applied for mixed-
source image&video-to-video DA settings, leading to a performance competitive
to the state-of-the-art requiring only 5% of the provided source videos.

We summarize our contributions as follows: (1) We propose to address web
image-to-video domain adaptation by decoupling the domain-alignment and
spatio-temporal learning to bridge the modality gap. (2) We propose cyclic al-
ternation between spatial and spatio-temporal learning to improve spatial and
spatio-temporal models respectively. (3) We provide an extensive evaluation with
different benchmark tasks that shows state-of-the-art results on unsupervised
image-to-video domain adaptation and a competitive performance for the mixed-
source image&video-to-video setting.
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Figure 1. Cycle Domain Adaptation (CycDA) pipeline: we address image-to-video
adaption by training a spatial model and a spatio-temporal model alternately, passing
pseudo labels to supervise each other in a cycle. The two alternating steps are: (1)
domain alignment on the spatial model with pseudo labels from the spatio-temporal
model, and (2) training the spatio-temporal model with updated pseudo labels from
the spatial model.

2 Related Work

Webly-supervised action recognition. Various works have shown how web
images and videos can be used as labeling-free data source to improve the per-
formance of action recognition [9,11,13,29]. Gan et al . [11,13] train with web
data only, without adaptation to the target domain. Ma et al . [29] combine web
images and video frames to train a spatial model and achieve comparable perfor-
mance by replacing parts of annotated videos with web images. Duan et al . [9]
transform different types of web modalities to trimmed video clips and combine
them with labeled target videos for joint training. In our work, we specifically
address the domain shift on the spatial level and transfer the knowledge to the
spatio-temporal level, without using any annotations on target data.

Image-to-video DA. Compared to webly-supervised learning, image-to-
video DA approaches actively address the domain shift between web images and
target videos either by spatial alignment between web images and video frames
[24,36,45], or through class-agnostic domain-invariant feature learning for images
and videos [27,43,44]. Li et al . [24] use a spatial attention map for cross-domain
knowledge transfer from web images to videos. In this case, the DA is addressed
on the spatial level without transfer to the temporal level. Liu et al . [27] perform
domain-invariant representation learning for images, video keyframes and videos,
and fuse features of different modalities. Furthermore, hierarchical GAN [44],
symmetric GAN [43] and spatio-temporal causal graph [2] are proposed to learn
the mapping between image features and video features. Closest to our work is
probably the work of Kae et al . [19] which also employs a spatial and a spatio-
temporal model for two stages of class-agnostic domain alignment, proposing to
copy the weights from the spatial to the spatio-temporal model.

In contrast to these, we propose to transfer knowledge in the form of pseudo
labels, without enforcing spatial information from the DA stage onto the spatio-
temporal model. Moreover, we alternately conduct spatial alignment and spatio-
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Figure 2. Our CycDA framework alternates between spatial alignment (stage 1 and
3) and spatio-temporal learning (stage 2 and 4). See text for details.

temporal learning with knowledge transfer to each other. With category knowl-
edge transferred to the spatial model, we perform class-aware domain alignment
that induces domain-invariance within category-level.

Video-to-video DA. Compared to image-to-video adaption, video-to-video
adaptation methods adapt annotated source videos to unlabeled target videos
[3,33,22,7,6,31,28,32,18], focusing mainly on the problem of domain alignment.
Chen et al . [3] align the features spatially on the frame-level and temporally
on the scale-level. Others propose feature alignment via self-attention [7], cross-
domain co-attention [32], or across two-stream modalities of RGB and optical
flow [22,31]. Sahoo et al . [33] propose temporal contrastive learning and back-
ground mixing for domain-invariance. In this work, we focus on image-to-video
adaptation and use only single stream of RGB. We further show that we are able
to extend the pipeline to the mixed-source case, where we achieve competitive
performance compared to video-to-video adaptation methods while requiring
only a small amount of source videos.

3 Cycle Domain Adaptation (CycDA)

We propose four stages to tackle image-to-video adaptation, which we summarize
in Sec. 3.1. Afterwards, we detail each stage and motivate the cycling of stages in
Sec. 3.2. Our CycDA can be flexibly extended (Sec. 3.3) for mixed-source video
adaptation, where a limited amount of annotated source videos are available.

3.1 System Overview

The task of unsupervised image-to-video DA is to learn a video classifier given
labeled source images and unlabeled target videos. In order to close the domain
gap across these two different modalities, we employ (1) a spatial (image) model
to train on source web images and frames sampled from target videos, and (2)
a spatio-temporal (video) model to train on target video clips. We propose a
training pipeline that alternately adapts the two models by passing pseudo la-
bels to supervise each other in a cycle. This facilitates the knowledge transfer be-
tween both models, where pseudo labels efficiently guide the model through the
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corresponding task, i.e. semantic alignment (image model) or spatio-temporal
learning (video model).

As shown in Fig. 2, our CycDA pipeline consists of four training stages. The
initial pseudo labels from class-agnostic domain alignment (Stage 1) are im-
proved via video spatio-temporal learning (Stage 2). In Stage 3, these pseudo
labels on target data, together with ground truth labels on source, enable seman-
tic alignment through the class-aware domain alignment. This again refines the
pseudo labels, which further provide enhanced supervision for spatio-temporal
learning in stage 4. In this manner, one iteration of CycDA facilitates the alter-
nating knowledge transfer between the image and video models, whereby pseudo
labels are improved on each stage and further provide strengthened supervision
for better learning on the next stage.

Notations: First, we denote the feature extractor as E(·; θE), the classifier
as C(·; θC), and the domain discriminator as D(·; θD). Then, we have the im-
age model ϕI = {EI(·; θIE), CI(·; θIC), DI(·; θID)} and the video model ϕV =
{EV (·; θVE ), CV (·; θVC )}. We use the superscripts I, V and F to denote modali-
ties of image, video and video frame, correspondingly. S and T stand for source
and target domains respectively. The labeled source image domain is denoted as

IS = {(ij , l(ij))|
NI

S
j=1}, where l(·) is the ground truth label of the corresponding

image. The unlabeled target video domain is VT = {vj |
NV

T
j=1} and each video vj has

Mj frames, the set of frames of unlabeled target videos V F
T = {{vFj,m|Mj

m=1}|
NV

T
j=1}.

3.2 Stages

Stage 1 - Class-agnostic Spatial Alignment. In the first stage, we learn the
class-agnostic domain alignment between source web images and frames sam-
pled from unlabeled target videos. Thus, we reduce the domain gap between
the appearance of the web images and target videos even if the classes could be
incorrectly aligned during this stage. We train the image model ϕI with a su-
pervised cross entropy loss LCE(IS) and an adversarial domain discrimination
loss LADD(IS , V

F
T ) on source images and target frames. With the classification

loss on source images given as

LCE(IS) =
∑

(ij ,l(ij))∈IS

−l(ij) · log(CI(E(ij ; θ
I
E); θ

I
C)) (1)

and the binary cross entropy loss for domain discrimination given as

LADD(IS , V
F
T ) =

∑
ij ,vF

j′,m

logDI(EI(ij ; θ
I
E); θ

I
D)+ log(1−DI(EI(vFj′,m; θIE); θ

I
D)),

(2)
the overall objective is minθI

E ,θI
C
LCE(IS)+βmaxθI

E
minθI

D
LADD(IS , V

F
T ), where

β is the trade-off weight between the two losses. We train the domain discrimina-
tor DI to distinguish between extracted features from different domains, while
the feature extractor is trained adversely based on the domain discrimination
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task. In this case, the feature extractor learns to yield domain invariant features
that the domain discriminator is unable to differentiate. The adversarial training
is performed with a gradient reversal layer (GRL) [14,15] which reverses the sign
of gradients of the domain discrimination loss on the feature extractor during
back-propagation. The domain alignment on this stage is class-agnostic as there
is not yet any pseudo label for category knowledge in the target domain. The
alignment is performed globally at the domain level.

Stage 2 & Stage 4 - Spatio-Temporal Learning. In this stage, we use the
trained image model ϕI from the previous stage to generate pseudo labels for
the target videos. Then we perform supervised spatio-temporal learning with
the pseudo labeled target data.

Specifically, we first use ϕI to predict the pseudo label l̂(·) for each frame
of the target videos. We employ a spatio-temporal model that trains on target
videos capturing both spatial and temporal information in the target domain
only. To select new pseudo label candidates, we temporally aggregate frame-level
predictions into a video-level prediction. We discard predictions with confidence
lower than a threshold δp and perform a majority voting among the remaining
predictions to define the video label. From all videos, we only keep those that
have at least one frame with a minimum confidence. We set the confidence
threshold δp such that p× 100% of videos remain after the thresholding.

We denote the target video set after thresholding as ṼT . For stage 2, the
supervised task on pseudo labeled target videos is to minθV

E ,θV
C
L̂CE(ṼT ), with

L̂CE(ṼT ) =
∑

vj∈ṼT

−l̂(vj) · log(CV (EV (Vj ; θ
V
E ); θV )). (3)

In stage 4, we repeat the process as described above and re-train the video model
on the target data with the updated pseudo labels from the third stage.

Stage 3 - Class-aware Spatial Alignment. The adversarial learning for do-
main discrimination in the first stage aligns features from different domains
globally, but not within each category (c.f . Fig. 3 (b) and (c)). In this case,
target samples in a category A can be incorrectly aligned with source samples in
a different category B. This would lead to inferior classification performance of
the target classifier. To evade this misalignment, we perform class-aware domain
alignment in the third stage between the source web images and the target video
frames. Since the source data consists exclusively of images, we apply alignment
on the spatial model between images and frames. Furthermore, as the target
data is unlabeled, in order to align features across both domains within each
category, we generate pseudo labels by the model ϕV from the second stage to
provide category knowledge. Specifically, we use the video model to generate
video-level labels that we disseminate into frame-level labels. To align images
and video frames we use cross-domain contrastive learning by maximizing the
similarity between samples across domains of the same class and minimizing the
similarity between samples from different classes. We use z = EI(i; θIE) to de-
note the feature computed by the feature extractor on image i. The set of source
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image features is ZI
S = {EI(i; θIE)|i ∈ IS} and the set of target frame features

is ZF
T = {EI(vF ; θIE)|vF ∈ V F

T }. During training, for each pseudo labeled target
sample zFj ∈ ZF

T , we randomly choose two samples from the source domain: a
positive sample of the same label and a negative sample of a different label, i.e.
zIj +, z

I
j − ∈ IS . The contrastive loss is formulated as

LCONTR(IS , V
F
T ) = −

∑
zF
j ∈ZF

T

log
h(zFj , z

I
j +)

h(zFj , z
I
j +) + h(zFj , z

I
j −)

. (4)

Following [5], we set h(u, v) = exp(sim(u, v)/τ), where we use the cosine simi-
larity sim(u, v) = uTv/(∥u∥∥v∥) and τ is the temperature parameter. Thus, the
objective of stage 3 on the image model is minθI

E ,θI
C
LCE(IS)+LCONTR(IS , V

F
T ).

In the third stage, an alternative of exploiting pseudo labels from the video
model from the second stage is to self-train the video model on the target data,
as self-training is a common practice in DA [26,46,48,49]. However, the category-
level domain alignment with supervision from the source domain further regu-
larizes the learning of class distribution in the target domain. This results in a
significantly improved target classifier, as we show in Sec. 4.5.

Cycling of the Stages. The pseudo labels from the video model are exploited
for class-aware domain alignment on the image model (stage 3) and the updated
pseudo labels from the image model can supervise the training of the video model
(stage 4). In this manner, stage 3 and stage 4 can be performed iteratively. We
show in the evaluation (Table 1 and Fig. 5) the impact of this cyclic learning
setup and how several iterations of CycDA can further improve the performance
of the target classifier.

3.3 Mixed-source Video Adaptation

Image-to-video DA applies to the case in which the source domain consists only
of web images. However, other possible settings presume limited amount of anno-
tated videos with the domain shift to the unlabeled target videos. We refer to this
case as mixed-source video adaptation. CycDA can be adjusted for this setting as

follows. We denote the labeled source video domain as VS = {(vj , l(vj))|
NV

S
j=1}. For

the class-agnostic (stage 1) and class-aware domain alignment (stage 3) stages we
replace the source image domain {IS} by the mixed-source domain data {IS , FS}
which consists of web images and frames sampled from source videos. The su-
pervised classification, adversarial domain discrimination and cross-domain con-
trastive learning are adapted accordingly. For the spatio-temporal learning of
the video model ϕV (stage 2 and 4) we include additional supervised classifica-
tion w.r.t. the ground truth labels for the source videos, therefore the overall
loss is LCE(VS) + L̂CE(ṼT ). In this case, the annotated source videos are uti-
lized to regularize domain alignment on the image model, and provide further
supervision for learning the classification task on the video model. In Sec. 4.4, we
demonstrate that in the context of mixed-source video adaptation, even a limited
amount of source videos is sufficient to achieve results competitive to video-to-
video adaptation approaches that employ the entire source video dataset.
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4 Experiments

4.1 Datasets

To evaluate our CycDA framework for image-to-video adaptation, we conduct
experiments on 3 real-world image-video action recognition benchmark settings.
Videos are from two large-scale action recognition datasets, UCF101 [35] and
HMDB51 [23]. Web images are from the EADs (Extensive Action Dataset) [2],
Stanford40 [42] and the BU101 dataset [29].

The three image-to-video adaptation tasks are: (1) Stanford40 → UCF101:
the UCF101 action dataset contains 13320 videos collected from YouTube with
101 action classes. The Stanford40 dataset contains 9532 images collected from
Google, Bing and Flickr, comprised of 40 action classes. Following [2,43,44], we
select the 12 common action classes between the two datasets for image-to-video
action recognition. (2) EADs→HMDB51: HMDB51 has 6766 videos with 51 ac-
tion classes collected from online videos and movie clips. The EADs dataset
consists of Stanford40 and the HII dataset [37]. It has 11504 images from 50
action classes. There are 13 shared action classes between the two datasets.
(3) BU101→UCF101: BU101 consists of 23.8K web action images from 101
classes that completely correspond to classes on UCF101. We use data of all
classes for evaluation on large-scale image-to-video adaptation.

UCF101 and HMDB51 both have three splits of training and test sets. Fol-
lowing [24,44,43], we report the average performance over all three splits.

The UCF-HMDB dataset [3] is a benchmark for video-to-video DA. It consists
of the 12 common classes between UCF101 and HMDB51. On this dataset, we
perform two types of evaluations: (1) frame-to-video adaptation: we use only a
single frame from each source video to adapt to target videos; and (2) mixed-
source video adaptation: we use source and target videos of UCF-HMDB, and
extend the source domain with web images from BU101.

4.2 Implementation Details

For the image model, we use a ResNet-18 [17] pretrained on ImageNet [8]. We
freeze the first 6 sequential blocks and train with a learning rate of 0.001 to
perform the domain alignment between web images and frames sampled from
target videos. To avoid redundancy in the video frames, we uniformly divide a
video into 5 segments. In each training epoch, we randomly sample one frame
from each segment. As trade-off weight for domain discrimination, we follow
the common practices in [14,15,4] to gradually increase β from 0 to 1. The
temperature parameter τ is set to 0.05.

For the video model, we employ I3D Inception v1 [1] pretrained on the Ki-
netics dataset [21], which is common practice, e.g . [2,7,22,31,33]. We train the
RGB stream only. To validate the efficacy of our CycDA pipeline, we use the
I3D backbone with a shallow classifier of 2 FC layers, without any temporal ag-
gregation module (e.g . GCN in [33] or self-attention module in [7]). We extract
a clip of 64 frames from each video. Following [33], we use a learning rate of
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Method Backbone E→H S→U B→U

source only ResNet18 37.2 76.8 54.8

DANN [15]* ResNet18 39.6 80.3 55.3
UnAtt [24] ResNet101 - - 66.4
HiGAN [44] ResNet50, C3D 44.6 95.4 -

SymGAN [43] ResNet50, C3D 55.0 97.7 -
CycDA (1 iteration) ResNet50, C3D 56.6 98.0 -

DANN [15]+I3D* ResNet18, I3D 53.8 97.9 68.3
HPDA [2]* ResNet50, I3D 38.2 40.0 -

CycDA (1 iteration) ResNet18, I3D 60.5 99.2 69.8
CycDA (2 iterations) ResNet18, I3D 60.3 99.3 72.1
CycDA (3 iterations) ResNet18, I3D 62.0 99.1 72.6

supervised target ResNet18, I3D 83.2 99.3 93.1

Table 1. Results on E→H (13 classes), S→U (12 classes) and B→U (101 classes),
averaged over 3 splits. ResNet, C3D and I3D are pretrained on ImageNet[17], Sports-
1M[20] and Kinetics400[21]. * denotes our evaluation.

0.001 for the backbone and 0.01 on other components. We keep p = 70% and
80% of videos in stage 2 and stage 4.

4.3 Image-to-video DA

We compare the proposed approach to other image-to-video adaptation methods
on the three described benchmark settings as shown in Table 1. As CycDA
enables the iterative knowledge transfer between the image model and the video
model, we can repeat stage 3 and stage 4 multiple times. We therefore report
the performance for the first three iterations. We add the lower bound (source
only) and the upper bound (ground truth supervised target) for reference.

We compare against several approaches: DANN [15] is classical adversarial
domain discrimination on the image-level. UnAtt [24] applies a spatial attention
map on video frames. HiGAN [44] and SymGAN [43] employ GANs for feature
alignment (on backbone of ResNet50 and C3D) and define the current state-of-
the-art on E→H and S→U. We also evaluate CycDA with the same backbones for
fair comparison. DANN [15]+I3D is a strong baseline that trains the I3D model
with pseudo labels from an adapted image model. HPDA [2] is a recent partial
DA approach and for a fair comparison, we re-run its official implementation in
a closed-set DA setting. Our CycDA outperforms all other approaches already
after the first iteration. Except for the saturation on S→U, running CycDA for
more iterations leads to a further performance boost on all evaluation settings.

We further explore the potential of CycDA on UCF-HMDB, which is a bench-
mark for video-to-video adaptation. For a strict comparison, we select data from
the same source video dataset used in the video-to-video adaptation methods,
without using any auxiliary web data for training. However, instead of directly
using the source videos, we perform frame-to-video adaptation where we use
only one frame from each source video to adapt to target videos. Here we sam-
ple the middle frame from each video and report the results in Table 2 (case B).
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DA setting Method
Video

backbone
Source data

U→H H→U

web
image

videos (U or
H) in %

A: video-to-video

AdaBN [25] ResNet101 - 100% 75.5 77.4
MCD [34] ResNet101 - 100% 74.4 79.3
TA3N [3] ResNet101 - 100% 78.3 81.8
ABG [28] ResNet101 - 100% 79.1 85.1
TCoN [32] ResNet101 - 100% 87.2 89.1
DANN [15] I3D - 100% 80.7 88.0
TA3N [3] I3D - 100% 81.4 90.5
SAVA [7] I3D - 100% 82.2 91.2

MM-SADA [31] I3D - 100% 84.2 91.1
CrossModal [22] I3D - 100% 84.7 92.8

CoMix [33] I3D - 100% 86.7 93.9

B: frame-to-video CycDA I3D - one frame 83.3 80.4

C:
mixed-source

to video
CycDA I3D

BU* 0% 77.8 88.6
BU* 5% 82.2 93.1
BU* 10% 82.5 93.5
BU* 50% 84.2 95.2
BU* 100% 88.1 98.0

supervised target I3D - - 94.4 97.0

Table 2. Results of Cycle Adaption on UCF-HMDB in comparison to video-to-video
adaptation (case A) approaches. For frame-to-video adaptation (case B), we use only
one frame from each source video to adapt to target videos. For mixed-source video
adaptation (case C), we combine BU101 web images and source videos as the source
data. *We sample 50 web images per class from 12 classes in BU101.

We see that even when using only one frame per source video, on U→H, Cy-
cDA (83.3%) can already outperform TA3N [3] (81.4%) and SAVA [7] (82.2%)
which use all source videos for video-to-video adaptation. This demonstrates the
strength of CycDA to exploit the large informativity in single images such that
they could potentially replace videos as the source data. On H→U, our source
domain contains only 840 frames from the 840 videos in the HMDB training set
on UCF-HMDB, which leads to an inferior performance. We show that this can
be easily addressed by adding auxiliary web data in Sec. 4.4.

4.4 Mixed-source image&video-to-video DA

For mixed-source adaptation, we assume to have both web images and some
amount of source videos in the source domain. To evaluate this case, we use the
source and target videos on UCF-HMDB, and extend the source domain with
web images of the 12 corresponding action classes in BU101. We notice that us-
ing all web data from BU101 leads to performance saturation on the target video
set of UCF-HMDB. Therefore, to validate the efficacy of CycDA, we only sample
50 web images per class as auxiliary training data. We vary the amount of source
videos in the mixed-source domain and report the results in Table 2 (case C).
First, by training with only sampled web images (without any source videos), we
achieve baseline results of 77.8% (BU→H) and 88.6% (BU→U). By adding only
5% of videos to the mixed-source domain, we already achieve performance com-
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Experiment stage 1 stage 2 stage 3 stage 4 Acc

A: source only LCE(IS) - - - 39.0

B:
source only +
video model

LCE(IS) L̂CE(VT ) - - 50.5

C:
class-agnostic DA
+ video model

LCE(IS),

LADD(IS , V F
T )

L̂CE(VT ) - - 52.3

D:
case C + vid.
self-train×1

LCE(IS),

LADD(IS , V F
T )

L̂CE(VT ) L̂CE(VT ) - 55.4

E:
case C + vid.
self-train×2

LCE(IS),

LADD(IS , V F
T )

L̂CE(VT ) L̂CE(VT ) L̂CE(VT ) 56.4

F: CycDA
LCE(IS),

LADD(IS , V F
T )

L̂CE(VT )
LCE(IS),

LCONTR(IS , V F
T )

L̂CE(VT ) 60.8

Table 3. Stage-wise ablation study of the CycDA training pipeline on EADs →
HMDB51 split 1. A: source only on image model. B: source only training on image
model and video model training. C: class-agnostic DA (stage 1) and video model train-
ing (stage 2). D: case C + one stage of self-training the videos model. E: case C +
two stages of self-training the video model. F: CycDA with stage 1∼4. Category-level
pseudo labels of case C and F are compared in Fig. 4.

parable to the video-to-video adaptation methods, i.e. 82.0% (BU+U→H) and
93.1% (BU+H→U). Furthermore, increasing the amount of source videos from
5% to 50% leads to another improvement of 2%. As web images are more informa-
tive than sampled video frames, using web images as auxiliary training data can
thus significantly reduce the amount of videos required. Finally, with sampled
web images and all source videos, we outperform all video-to-video adaptation
methods, even exceeding the supervised target model for BU+H→U by 1%.
Considering that we only use 50 web images per class, this further demonstrates
that CycDA can exploit both, the information in web images and knowledge
from the source data with domain shift, for a potentially improved learning.

4.5 Ablation study

We perform several ablation studies to validate the proposed CycDA pipeline.
We conduct these experiments on the setting of EADs → HMDB51 (split 1).

Stage-wise ablation study. We first validate the efficacy of the CycDA
pipeline by switching the stages with alternate counterparts. We report the
quantitative results of six ablation settings in Table 3. Case A (source only),
training the image model on web images only and predicting on target test set,
demonstrates the lower bound of 39%. Case B (source only + video model),
training with pseudo labeled target videos, is a vanilla baseline. It shows that
training the video model with supervision from the image model already signif-
icantly improves performance by 11.5%. In case C, with class-agnostic domain
alignment on the image model, the performance of B is improved by 1.8%. In
case F, after completing the cycle with class-aware domain alignment in stage
3 and training the video model in stage 4 with the updated pseudo labels, we
achieve the best performance with 60.8%.
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target
video frames

source
web images

(a) source only (b) CycDA stage 1
class-agnostic alignment 

(c) CycDA stage 3
class-aware alignment

(e) CycDA stage 2
video model training

(f) CycDA stage 4
video model training

(d) source only 
+ video model 

image features

target video features

Figure 3. t-SNE visualizations of image features (for both source and target) and
target video features (colored w.r.t. ground truth). We plot the results of source only,
source only and video model training, and results of each stage in CycDA.

Additionally, we conduct ablation experiments using pseudo labels from case
C to self-train the video model. Although self-training the video model for 1 (case
D) or 2 (case E) stages exhibits performance improvement compared to case C,
it is still clearly outperformed by CycDA. This indicates that the elaborate step
of knowledge transfer from the video model to the image model and class-aware
domain alignment are critical for a good performance.

We further illustrate the t-SNE [30] feature visualizations of ablation cases
in Fig. 3. By observing image features of the source only case (Fig. 3(a)), we
see that web images (blue) gather in category clusters after supervised training,
while target video frames (red) are far less discriminative and highly misaligned
with source due to large domain shift. The class-agnostic domain alignment
(Fig. 3(b)) in stage 1 results in a slightly better global alignment of source
and target features. With category knowledge from the video model, the class-
aware domain alignment (Fig. 3(c)) demonstrates distinctly better category-
level association between source and target. By passing pseudo labels from the
image model of Fig. 3(a)(b)(c) to supervise the spatio-temporal training, we get
the corresponding video models whose features are plotted in Fig. 3(d)(e)(f).
The vanilla baseline of source only + video model (Fig. 3(d)) leads to highly
undiscriminative features on the difficult classes, which is slightly improved by
class-agnostic alignment (Fig. 3(e)). Class-aware domain alignment (Fig. 3(f))
results in more pronounced category clusters with larger inter-class distances.



CycDA: Unsupervised Cycle Domain Adaptation from Image to Video 13

C:  stage 1 + stage 2

F:  CycDA (stage 1~4)

EADs HMDB51

(a) category-level pseudo labels (b) samples on EADs and HMDB51

Figure 4. (a) Category-level pseudo label analysis on target. We compare the accuracy
of category-level pseudo labels on target videos for the ablation case C and F from
Table 3. Here we plot the accuracy of pseudo labels of the 13 common classes on EADs
→ HMDB51. (b) Samples of four categories on EADs and HMDB51.

Category-level pseudo label analysis on target. In Fig. 4(a), we plot the
accuracy of category-wise pseudo labels on target videos for the ablation cases
C and F from Table 3. On case C (blue) which consists of stage 1 (class-agnostic
spatial domain alignment) and stage 2 (spatio-temporal learning), image-to-
video action recognition has varying performance on different action classes.
More specifically, it yields better results on appearance-based actions with dis-
tinct background (e.g . climb), or on actions with discriminative pose or gesture
(e.g . smoke, pour). On the contrary, there is inferior performance on fine-grained
actions with subtle movements (e.g . talk) or actions that are semantically highly
generalized with large inter-class variation (e.g . run, wave), c.f . in Fig. 4(b).

By comparing the pseudo label accuracy of cases C and F, we see that the
complete CycDA with stage 3 and stage 4 contributes to a significant perfor-
mance boost on the difficult classes (e.g . run, hug, kiss) while keeping the per-
formance on the easy classes. This can be attributed to the class-aware domain
alignment that improves cross-domain association on the difficult classes while
keeping the alignment on easy ones. Note that better class-aware domain align-
ment also leads to more support samples for difficult classes, which could result
in slight performance drop on the easier classes.

Domain adaptation strategies in stage 3. In stage 3, we transfer knowl-
edge from the video model to the image model by passing pseudo labels from the
video model to provide category information in domain alignment. We compare
different DA strategies that use pseudo labels from the video model in Table 4.
Intuitively, performing the supervised task on both source and target (case B)
outperforms the case of pseudo labeled target only (case A). Adding the adver-
sarial domain discrimination (case C) leads to a further boost. The cross-domain
contrastive learning (case D) has the best performance among the 4 cases. In
comparison to the case of only stage 1 and 2, a complete cycle with 4 stages
leads to performance improvement of at least 3.3% for all cases. This indicates
the benefits of transferring the knowledge from the video model onto the image
model. The proposed CycDA generalizes well on different strategies using pseudo
labels from the previous stage.
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Experiment stage 3 stage 4 Acc

stage 1∼2 - - 52.3

stage 1∼4

A: LCE(V F
T )

L̂CE(VT )

55.6

B: LCE(IS , V F
T ) 56.4

C: LCE(IS , V F
T ), LADD(IS , V F

T ) 58.0

D: LCE(IS), LCONTR(IS , V F
T ) 60.8

Table 4. Comparison of DA strategies in stage 3 on EADs → HMDB51 split 1. A:
supervised classification on pseudo labeled target frames. B: supervised classification
on source and pseudo labeled target. C: B + adversarial domain discrimination. D:
supervised classification on source + cross-domain contrastive learning.

Aggregation Acc

A: avg. + class-balanced thresh. 50.3
B: avg. + thresh. 55.9
C: thresh. + avg. 60.8

Table 5. Temporal aggregation of frame-
level pseudo labels into video-level pseudo
labels on EADs → HMDB51 split 1.

E->H

Figure 5. Performance of multiple itera-
tions of CycDA (stage 3 and 4) on EADs
→ HMDB51. Average on 3 splits.

Temporal aggregation of frame-level pseudo labels. Before video model
training, we temporally aggregate frame-level pseudo labels. Here we compare
three strategies of temporal aggregation in Table 5. Frame-level thresholding
followed by temporal averaging (case C) outperforms the other two cases which
perform temporal averaging before video-level thresholding. Frame-level thresh-
olding filters out frames of low confidence scores and effectively increases the
accuracy of video pseudo labels.

Number of iterations. Finally, we illustrate the performance after several
iterations on EADs→HMDB51 in Fig. 5. It shows that within the first five iter-
ations, performing CycDA iteratively results in a slight increase of performance.
Further, within all the 9 iterations, CycDA delivers relatively stable performance,
with the result fluctuating between 60.0% and 62.2% without dropping below
the ablated alternatives shown in Table 3.

5 Conclusions

We presented CycDA to address the image-to-video adaptation problem. We
proposed to alternately perform spatial domain alignment to address the do-
main shift between images and target frames, and spatio-temporal learning to
bridge the modality gap. Our evaluations across several benchmarks and datasets
demonstrate that CycDA exploits the large informativity in the source images
for enhanced performance on the target video classifier.
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