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This supplementary material contains additional details of the main manuscript,
and provides more experiment analysis. In Sec. 1, we present the details of our
proposed architectures and the comparison methods. Next, we elaborate the
hyperparameters in Sec. 2. Then, we overview the four datasets and provide
the evaluation protocols of our experiments in Sec. 3. Finally, we provide more
experiment analysis in Sec. 4.

1 Architecture Details

In this section, we elaborate the details of the proposed architectures in Sec. 1.1
and the comparison methods in the few-shot experiments in Sec. 1.2.

1.1 The proposed architectures

For CLIP, we provide three variants: X-CLIP-B/32, X-CLIP-B/16 and X-CLIP-
L/14. In detail, there are three parts in our framework: a cross-frame communi-
cation transformer followed by a multi-frame integration transformer and a text
encoder. X-CLIP-B/32 adopts ViT-B/32 (L.=12, N,=12, d=768, p=32) as parts
of the cross-frame communication transformer, X-CLIP-B/16 uses ViT-B/16
(L.=12, Np=12, d=768, p=16), while X-CLIP-L/14 employs ViT-L/14 (L.=24,
N,=12, d=1,024, p=14), where L. denotes the layers, N}, refers to the number
of attention heads, d represents the embedding dimension and p is the patch size.
We use a simple 1-layer multi-frame integration transformer for all three X-CLIP
variants (L,,=1, N=8 for X-CLIP-B while N,=12 for X-CLIP-L). The text
encoder is the same as in CLIP [10]. For Florence, we replace the cross-frame
communication transformer with the pretrained CoSwin-H [13] visual encoder.
We stack a 4-layer multi-frame integration transformer on top of CoSwin-H. The
text encoder is the same as in Florence [13]. In both X-CLIP and X-Florence,
the number of the video-specific prompting blocks is set to 2.
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Table 1: The training hyperparameters for all the experiments.

Fully-sup. Few-shot Zero-shot

Optimisation

Optimizer AdamW
Optimizer betas (0.9, 0.98)

Batch size 256 64 256
Learning rate schedule cosine

Linear warmup epochs 5

Base learning rate 8e-6 2e-6 8e-6
Minimal learning rate 8e-8 2e-8 8e-8
Epochs 30 50 10
Data augmentation

RandomFlip 0.5
MultiScaleCrop (1, 0.875, 0.75, 0.66)
ColorJitter 0.8

GrayScale 0.2

Label smoothing 0.1

Mixup 0.8

Cutmix 1.0

Other regularisation
Weight decay 0.001

1.2 Other compared architectures

In few-shot experiments, we implemented the Video Swin [9], TSM [8] and
TimeSformer [2] using MMAction2 [5] library with the default hyperparameters.
The TSM-R50 is initialized with ImageNet-1k pretraining, while the Video Swin-B
and TimeSformer are initialized with ImageNet-21k pretraining.

2 Hyperparameter Details

In this section, we present the elaborated training hyperparameters in Sec. 2.1
and the hand-craft prompt templates in the Tab. 9 of the main manuscript in
Sec. 2.2.

2.1 Training Hyperparameters

Tab. 1 presents the hyperparameters for our experiments, corresponding to
Section 4.2-4.4 of the main manuscript. It is noteworthy that the learning rate of
the randomly initialized parameters is 10x higher than the base learning rate.
All the expanded models are trained with 32 NVIDIA 32G V100 GPUs.
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2.2 Hand-craft Prompt Templates

In Tab. 9 of the main manuscript, we compare our video-specific prompting
scheme with the existing prompt ensemble method [10] and demonstrate the
superiority of our method. We construct 16 hand-craft templates totally. We
randomly choose one template in each training iteration, and the result in
inference is the average result of all templates. The complete list of templates is
as follows: a photo of action {label}; a picture of action {label}; Human action
of {label}; {label}, an action; {label}, this is an action; {label}, a video of action;
Playing action of {label}; {label}; Playing a kind of action, {label}; Doing a kind
of action, {label}; Look, the human is {label}; Can you recognize the action of
{label}; Video classification of {label}; A video of {label}; The man is {label};
The woman is {label}.

3 Datasets and Evaluation Protocols

In this section, we overview the four datasets briefly in Sec. 3.1. Then, we provide
the evaluation protocols for different experiment settings, i.e., zero-shot, few-shot
and fully-supervised in Sec. 3.2-3.4, respectively.

3.1 Datasets Overview

— Kinetics-400& 600. The Kinetics [6,3] dataset consists of 10-second video clips
collected from YouTube. In particular, Kinetics-400 [6] consists of ~240k
training videos and ~20k validation videos with 400 classes, while Kinetics-
600 [3] consists of ~410k training videos and ~29k validation videos from
600 classes.

— UCF-101 [11]. UCF-101 is a video recognition dataset for realistic actions, col-
lected from YouTube, including 13,320 video clips with 101 action categories
in total. There are three splits of the training and test data.

— HMDB-51 [7]. It has around 7,000 videos with 51 classes, which is relatively
small compared to UCF-101 and Kinetics. HMDB-51 has three splits of the
training and test data.

3.2 Fully-supervised Experiments

We conduct the fully-supervised experiments on Kinetics-4008&600. We use the
complete training and validation sets for training and inference, respectively.
During training, a sparse sampling strategy [12] is used. The number of frames is
set to 8 or 16. We spatially scale the shorter side of each frame to 256 and take
a 224 center crop. Following [9,1,2], we adopt the multi-view inference with 3
spatial crops and 4 temporal clips.
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Table 2: Comparison with different video encoders. The video encoders are
adapted from ViT-B/16 [10]. The fully-supervised experiment is conducted on
Kinetics-400 [6]. The few-shot(2-shot) experiments are conducted on HMDB-51,
and zero-shot experiments are conducted on UCF-101 [11].

Method ‘Zero-shot Few-shot Fully-supervised‘FLOPs

CLIP-One 62.5 46.2 69.9 14
CLIP-Joint 69.3 41.3 82.1 184
X-CLIP(Ours)|70.0(+0.7) 50.8(+4.6) ~ 82.3(+0.2) | 145

3.3 Few-shot Experiments

We randomly sample 2, 4, 8 and 16 videos from each class on UCF-101 and
HMDB-51 for constructing the training set. For evaluation, we use the first split
of the test set on UCF-101 and HMDB-51. We report the results with a single
view of 32 frames.

3.4 Zero-shot Experiments

We train X-CLIP-B/16 with 32 frames on Kinetics-400. The single-view inference
is adopted for our method. The same as [4,10], we apply the following two
evaluation protocols in our zero-shot experiments. 1) Evaluation for HMDB-51
and UCF-101. Following [10], the prediction is conducted on the three splits of the
test data, and we report the average top-1 accuracy and standard deviation. 2)
FEvaluation for Kinetics-600. Following [4], the 220 new categories outside Kinetics-
400 [6] in Kinetics-600 are used for evaluation. The evaluation is conducted three
times. For each iteration, we randomly sampled 160 categories for evaluation
from the 220 categories in Kinetics-600.

4 Additional Experiments Analysis

In this section, we further compare different methods of adapting an image
encoder to a video encoder in Sec. 4.1. Besides, we provide an analysis of aligning
the ImageNet pretrained video encoder and the CLIP pretrained text encoder
in Sec. 4.2. Last, we further evaluate our proposed cross-frame communication
transformer and multi-frame integration transformer on a simple single-modality
classification setting in Sec. 4.3.

4.1 Comparison with other video encoders adapted from images

Researchers have proposed several ways of adapting an image encoder to a video
encoder [1,2]. We compare with two existing methods in Tab. 2. The first method
is named “CLIP-One”, in which we randomly sample one frame and feed it
to the pretrained image encoder. The second method is named “CLIP-Joint”,



X-CLIP 5

Table 3: Comparison between the multi-modal framework and single-modal
framework under ImageNet pretraining.

Method ‘ Zero-shot  Few-shot Method ‘ Zero-shot  Few-shot

w/o text / 39.4 w/o text / 10.8

w/ text 62.8 50.7(4+11.3) w/ text 58.0 46.0(+35.2)
(a) ImageNet-21k pretraining. (b) ImageNet-1k pretraining.

Table 4: Evaluating the proposed architecture in the single-modality framework.
Method | Top-1(%) Top-5(%)

ViT-B/32-Mean 45.3 68.5
ViT-B/32 (Ours)|47.8(+2.5) 71.8(+3.3)

where we apply the joint space-time attention [1] that simply forwards all spatio-
temporal tokens extracted from the video through the image encoder. Although
the CLIP-Joint also considers global spatio-temporal information in videos, it
takes more computational overhead than our proposed X-CLIP. What is more, our
method surpasses the CLIP-Joint by +0.2% and +9.5% in the fully-supervised
and few-shot experiments, respectively. Compared to the CLIP-One, X-CLIP
is much better, indicating the efficacy of adapting an image encoder to a video
encoder. We conjecture the reasons are two-fold. 1) CLIP-Joint considers the
joint spatio-temporal tokens and thus breaks the customary input pattern of
the pretrained image encoder, which may impede the representation ability. In
contrast, our method maintains the input pattern of the pretrained image encoder
via modeling frame-level information, thus leveraging the strong representation
ability of the pretrained image encoder. 2) The joint space-time attention requires
more training data and training time to converge than our method.

4.2 Can ImageNet pretrained video encoder align with CLIP
pretrained text encoder?

We have demonstrated that the video encoder with ImageNet pretraining still
achieves competitive performance on the fully-supervised experiment in Tab. 10 of
the main manuscript. However, the embedding space of the ImageNet pretrained
visual encoder is not well aligned with that of the CLIP pretrained text encoder.
It raises a question: can we align the two embedding spaces without the web-scale
joint pretraining, and then transfer the knowledge to zero-shot experiments? To
answer this question, we build an ImageNet pretrained video encoder and extract
the text encoder from the pretrained CLIP. Then, we finetune the video encoder
with the text supervision on Kinetics-400 to align the two embedding spaces. As a
comparison, we also finetune a same video encoder but supervised by the discrete
one-hot labels. Finally, we conduct the few-shot and zero-shot experiments to
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verify the transfer ability of the two models. The categories in few-shot and
zero-shot experiments are not seen in finetuning. From Tab. 3, we can observe
that the aligned model, i.e., the model supervised by text information, achieves
superior performance and surpasses the unaligned model by a large margin. It
indicates that the ImageNet pretrained video encoder can still align with the
CLIP pretrained text encoder by an acquired finetuning process using limited
samples. The results also show the generality and flexibility of our proposed
framework.

4.3 Evaluation of the proposed architectures in the single-modality
framework

We further evaluate the proposed cross-frame communication transformer and
multi-frame integration transformer on a simple classification setting, i.e., train-
ing from scratch with a single-modality framework on Kinetics-400. We use
ViT-B/32s¢ as the backbone and adopt a fully-connected layer as the classifica-
tion head. ViT-B/32-Mean averages the representation of all frames, while our
method uses the cross-frame attention and stacks 1-layer multi-frame integration
transformer on the top. We train both models 100 epochs with a learning rate
1 x 1074, and all the other hyperparameters are the same as in Tab. 1. From
Tab. 4, it can be seen that our method outperforms the baseline +2.5% in terms
of top-1 accuracy, which illustrates that our proposed architecture does not rely
on pretraining and can help general video classification.
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