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Abstract. This paper presents a novel framework for social group activ-
ity recognition. As an expanded task of group activity recognition, social
group activity recognition requires recognizing multiple sub-group activ-
ities and identifying group members. Most existing methods tackle both
tasks by refining region features and then summarizing them into activ-
ity features. Such heuristic feature design renders the effectiveness of fea-
tures susceptible to incomplete person localization and disregards the im-
portance of scene contexts. Furthermore, region features are sub-optimal
to identify group members because the features may be dominated by
those of people in the regions and have different semantics. To overcome
these drawbacks, we propose to leverage attention modules in transform-
ers to generate effective social group features. Our method is designed in
such a way that the attention modules identify and then aggregate fea-
tures relevant to social group activities, generating an effective feature
for each social group. Group member information is embedded into the
features and thus accessed by feed-forward networks. The outputs of feed-
forward networks represent groups so concisely that group members can
be identified with simple Hungarian matching between groups and indi-
viduals. Experimental results show that our method outperforms state-
of-the-art methods on the Volleyball and Collective Activity datasets.

Keywords: social group activity recognition, group activity recogni-
tion, social scene understanding, attention mechanism, transformer

1 Introduction

Social group activity recognition is a task of recognizing multiple sub-group
activities and identifying group members in a scene. This task is derived from
group activity recognition, which needs to recognize only one group activity
in a scene. Both tasks have gained tremendous attention in recent years for
potential applications such as sports video analysis, crowd behavior analysis,
and social scene understanding [1–5,12–14,17–19,22,24–28,34,35,37,40,43–50].
In the context of these tasks, the term “action” denotes an atomic movement
of a single person, and the term “activity” refers to a more complex relation
of movements performed by a group of people. Although our framework can
recognize both actions and activities, we focus on group activities.
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Fig. 1: Overviews of conventional and proposed social group activity recognition
methods. The labels in the right image show predicted social group activities.

Most existing methods decompose the recognition process into two indepen-
dent parts; person localization and activity recognition (See Fig. 1a) [5, 12–14,
17,19,22, 27, 34,35, 37, 43,44, 49, 50]. Person localization identifies regions where
people are observed in a scene with bounding boxes. These boxes are used to
extract region features from feature maps. The region features are further refined
to encode spatio-temporal relations with refinement modules such as recurrent
neural networks (RNNs) [8, 16], graph neural networks (GNNs) [21, 42], and
transformers [41]. The refined features are summarized for activity recognition.

While these methods have demonstrated significant improvement, they have
several drawbacks attributed to the heuristic nature of feature design. Since
region features are extracted from bounding box regions in feature maps, the
effectiveness of the features is affected by the localization performance. Most
existing methods ignore this effect and evaluate their performances with region
features of ground truth boxes. However, several works [5,13,35,44] show that the
recognition performance is slightly degraded when using predicted boxes instead
of ground truth boxes. Moreover, substantial scene contexts are discarded by
using region features because they are typically dominated by features of the
people in the boxes. Scene contexts such as object positions and background
situations are sometimes crucial to recognize group activities. For instance, the
positions of sports balls are informative to recognize group activities in sports
games. These features should be leveraged to enhance recognition performance.

Another challenge specific to social group activity recognition is that utilizing
region features is sub-optimal to identify group members. Ehsanpour et al . [13]
use region features as node features of graph attention networks (GATs) [42] and
train them to output adjacency matrices that have low probabilities for people
in different groups and high probabilities for those in the same groups. During
inference, spectral clustering [32] is applied to the adjacency matrices to divide
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people into groups. Because adjacency matrices reflect semantic similarities of
node features, this method may not work if region features of people in the same
group have different semantics such as doing different actions.

To address these challenges, we propose a novel social group activity recog-
nition method that can be applied to both social group activity recognition and
group activity recognition. We leverage a transformer-based object detection
framework [6,52] to obviate the need for the heuristic feature design in existing
methods (See Fig. 1b). Attention modules in transformers play crucial roles in
our method. We design our method in such a way that the attention modules
identify and then aggregate features relevant to social group activities, generat-
ing an effective feature for each social group. Because activity and group member
information is embedded into the generated features, the information can be ac-
cessed by feed-forward networks (FFNs) in the detection heads. The outputs of
the detection heads are designed so concisely that group member identification
can be performed with simple Hungarian matching between groups and individ-
uals. This identification method differs from Ehsanpour et al .’s method [13] in
that their method relies on individuals’ features to divide people into groups,
while our method generates features that are embedded with clues for grouping
people, enabling effective group identification.

To summarize, our contributions are three-fold: (1) We propose a novel social
group activity recognition method that leverages the attention modules to gener-
ate effective social group features. (2) Our method achieves better or competitive
performance to state-of-the-art methods on both group activity recognition and
social group activity recognition. (3) We perform comprehensive analyses to re-
veal how our method works with activities under various conditions.

2 Related Works

2.1 Group Member Identification and Activity Recognition

Several group member identification methods [15,33,38] were proposed indepen-
dently of group activity recognition. They utilize hand-crafted features to find
interactions and identify group members on the basis of their interactions.

In group activity recognition, deep-neural-network-based methods have be-
come dominant due to the learning capability of the networks. Ibrahim et al . [19]
proposed an RNN-based method that uses convolutional neural networks to ex-
tract region features and long short-term memories to refine the features. This
architecture captures the temporal dynamics of each person between frames and
the spatial dynamics of people in a scene. After their work, several RNN-based
methods were proposed [5, 22,35,37,43].

GNNs are also utilized to model the spatio-temporal context and relation-
ships of people in a scene. Wu et al . [44] used graph convolutional networks
(GCNs) [21] to capture spatio-temporal relations of people’s appearances and
positions between frames. Ehsanpour et al . [13] adopted GATs [42] to learn
underlying interactions and divide people into social groups with adjacency ma-
trices. Hu et al . [17] utilized both RNNs and GNNs with reinforcement learning
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to refine features. Yuan et al . [49] used person-specific dynamic graphs that
dynamically change connections of GNNs for each node.

Several works introduced transformers into group activity recognition. Gavri-
lyuk et al . [14] used transformer encoders to refine region features. Li et al . [27]
proposed spatial-temporal transformers that can encode spatio-temporal depen-
dence and decode the group activity information. Zhou et al . [50] proposed
multi-scale spatio-temporal stacked transformers for compositional understand-
ing and relational reasoning in group activities.

Our method differs from existing methods in that they rely on region features,
while our method generates social group features with the attention modules in
transformers, resulting in improving the performance.

2.2 Detection Transformer

Carion et al . [6] proposed a transformer-based object detector called DETR,
which regards object detection as a set prediction problem. One significant dif-
ference between conventional object detectors and DETR is that conventional
ones need heuristic detection points whose features are used to predict object
classes and bounding boxes, while DETR obviates such heuristic components by
letting queries in transformer decoders aggregate features for their target objects.
DETR shows competitive performance compared with conventional state-of-the-
art detectors even without such heuristic components.

To further improve the performance of DETR, several methods have been
proposed [11, 39, 52]. Zhu et al . [52] proposed Deformable DETR that replaces
standard transformers with deformable ones. Deformable attention modules in
the transformers combine a sparse sampling of deformable convolution [10] and
dynamic weighting of standard attention modules, which significantly reduces
the computational complexity of the attention weight calculation. This reduc-
tion allows Deformable DETR to use multi-scale feature maps from backbone
networks. To leverage non-heuristic designs and multi-scale feature maps, we use
deformable transformers to generate social group features.

3 Proposed Method

We leverage a deformable-transformer-based object detection framework [52],
whose details are omitted due to the limited space. We encourage readers to
refer to the paper for more details.

3.1 Overall Architecture

Figure 2 shows the overall architecture of the proposed method. Given a frame
sequence x ∈ R3×T×H×W , a feature extractor extracts a set of multi-scale feature

maps Zf = {z(f)
i | z

(f)
i ∈ RDi×T×H′

i×W ′
i }Lf

i=1, where T is the length of the
sequence, H and W are the height and width of the frame, H ′

i and W ′
i are those

of the output feature maps, Di is the number of channels, and Lf is the number
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Fig. 2: Overall architecture of the proposed method.

of scales. We adopt the inflated 3D (I3D) network [7] as a feature extractor
to embed local spatio-temporal context into feature maps. Note that we use
only the RGB stream of I3D because group members are identified by their
positions, which cannot be predicted with the optical flow stream. To reduce the

computational costs of transformers, each feature map z
(f)
i is mean-pooled over

the temporal dimension and input to a projection convolution layer that reduces
the channel dimension from Di to Dp. One additional projection convolution
layer with a kernel size of 3 × 3 and stride of 2 × 2 is applied to the smallest
feature map to further add the scale.

Features in the modified feature maps are refined and aggregated with de-
formable transformers. Given a set of the modified multi-scale feature maps Zp =

{z(p)
i | z(p)

i ∈ RDp×H′
i×W ′

i }Lf+1
i=1 , a set of refined feature maps Ze = {z(e)

i | z(e)
i ∈

RDp×H′
i×W ′

i }Lf+1
i=1 is obtained as Ze = fenc (Zp,P ), where fenc (·, ·) is stacked

deformable transformer encoder layers and P = {pi | pi ∈ RDp×H′
i×W ′

i }Lf+1
i=1

is a set of multi-scale position encodings [52], which supplement the attention
modules with position and scale information to identify where each feature lies
in the feature maps. The encoder helps features to acquire rich social group
context by exchanging information in a feature map and between multi-scale
feature maps. These enriched feature maps are fed into the deformable trans-
former decoder to aggregate features. Given a set of refined feature maps Ze

and learnable query embeddings Q = {qi | qi ∈ R2Dp}Nq

i=1, a set of feature em-

beddings H = {hi | hi ∈ RDp}Nq

i=1 is obtained as H = fdec (Ze,Q), where Nq is
the number of query embeddings and fdec (·, ·) is stacked deformable transformer
decoder layers. Each decoder layer predicts locations that contain features rel-
evant to input embeddings and aggregates the features from the locations with
the dynamic weighting. We design queries in such a way that one query captures
at most one social group. This design enables each query to aggregate features
of its target social group from the refined feature maps.
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The feature embeddings are transformed into prediction results with detec-
tion heads. Here we denote the localization results in normalized image coordi-
nates. Social group activities are recognized by predicting activities and identi-
fying group members. The identification is performed with a group size head and
group member point head. The size head predicts the number of people in a tar-
get social group, and the point head indicates group members by localizing the
centers of group members’ bounding boxes. This design enables our method to
identify group members with simple point matching during inference as described

in Sec. 3.3. The predictions of activity class probabilities {v̂i | v̂i ∈ [0, 1]Nv}Nq

i=1,

group sizes {ŝi | ŝi ∈ [0, 1]}Nq

i=1, and sequences of group member points {Ûi}
Nq

i=1

are obtained as v̂i = fv (hi), ŝi = fs (hi), and Ûi = fu (hi, ri), where Nv is

the number of activity classes, Ûi = (û
(i)
j | û(i)

j ∈ [0, 1]2)Mj=1 is a sequence of
points that indicate centers of group members’ bounding boxes, M is a hyper-
parameter that defines the maximum group size, fv (·), fs (·), and fu (·, ·) are
the detection heads for each prediction, and ri ∈ [0, 1]2 is a reference point,
which is used in the same way as the localization in Deformable DETR [52]. The
predicted group sizes are values normalized with M . All the detection heads are
composed of FFNs with subsequent sigmoid functions. We describe the details
of the detection heads in the supplementary material.

Individual recognition can be performed by replacing the group recognition
heads with individual recognition heads. We empirically find that using differ-
ent parameters of deformable transformers for individual recognition and social
group recognition does not show performance improvement. Therefore, we use
shared parameters to reduce computational costs. The details of the individual
recognition heads are described in the supplementary material.

3.2 Loss Calculation

We view social group activity recognition as a direct set prediction problem and
match predictions and ground truths with the Hungarian algorithm [23] during
training following the training procedure of DETR [6]. The optimal assignment
is determined by calculating the matching cost with the predicted activity class
probabilities, group sizes, and group member points. Given a ground truth set of
social group activity recognition, the set is first padded with ϕ(gr) (no activity)
to change the set size to Nq. With the padded ground truth set, the matching
cost of the i-th element in the ground truth set and j-th element in the prediction
set is calculated as follows:

H(gr)
i,j = 1{i ̸∈Φ(gr)}

[
ηvH(v)

i,j + ηsH(s)
i,j + ηuH(u)

i,j

]
, (1)

H(v)
i,j = − vT

i v̂j + (1− vi)
T
(1− v̂j)

Nv
, (2)

H(s)
i,j = |si − ŝj | , (3)

H(u)
i,j =

∑Si

k=1

∥∥∥u(i)
k − û

(j)
k

∥∥∥
1

Si
, (4)
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where Φ(gr) is a set of ground-truth indices that correspond to ϕ(gr), vi ∈
{0, 1}Nv is a ground truth activity label, si ∈ [0, 1] is a ground truth group size

normalized with M , Si is an unnormalized ground truth group size, u
(i)
k ∈ [0, 1]2

is a ground truth group member point normalized with the image size, and
η{v,s,u} are hyper-parameters. Group member points in the sequence Ui =

(u
(i)
k )Si

k=1 are sorted in ascending order along X coordinates as seen from the
image of the group recognition result in Fig. 2. We use this arrangement because
group members are typically seen side by side at the same vertical positions in
an image, and the order of group member points is clear from their positions,
which makes the prediction easy. We evaluate the performances with other ar-
rangements and compare the results in Sec. 4.4. Using Hungarian algorithm, the

optimal assignment is calculated as ω̂(gr) = argminω∈ΩNq

∑Nq

i=1 H
(gr)
i,ω(i), where

ΩNq
is the set of all possible permutations of Nq elements.

The training loss for social group activity recognition Lgr is calculated be-
tween matched ground truths and predictions as follows:

Lgr = λvLv + λsLs + λuLu, (5)

Lv =
1

|Φ̄(gr)|

Nq∑
i=1

[
1{i ̸∈Φ(gr)}lf

(
vi, v̂ω̂(gr)(i)

)
+ 1{i∈Φ(gr)}lf

(
0, v̂ω̂(gr)(i)

)]
, (6)

Ls =
1

|Φ̄(gr)|

Nq∑
i=1

1{i ̸∈Φ(gr)}
∣∣si − ŝω̂(gr)(i)

∣∣ , (7)

Lu =
1

|Φ̄(gr)|

Nq∑
i=1

Si∑
j=1

1{i ̸∈Φ(gr)}

∥∥∥u(i)
j − û

(ω̂(gr)(i))
j

∥∥∥
1
, (8)

where λ{v,s,u} are hyper-parameters and lf (·, ·) is the element-wise focal loss
function [29] whose hyper-parameters are described in [51].

Individual recognition is jointly learned by matching ground truths and pre-
dictions of person class probabilities, bounding boxes, and action class probabil-
ities and calculating the losses between matched ground truths and predictions.
The matching and loss calculations are performed by slightly modifying the orig-
inal matching costs and losses of Deformable DETR [52]. We describe the details
of these matching and loss calculations in the supplementary material.

3.3 Group Member Identification

The outputs of the detection heads represent groups in group sizes and group
member points that indicate the centers of group members’ bounding boxes.
These values have to be transformed into values that indicate individuals. We
transform the predicted values into indices that refer to the elements in the in-
dividual prediction set with the following simple process during inference. To
match the group member points and individual predictions, the Hungarian algo-
rithm [23] is used instead of just calculating the closest center of a bounding box



8 M. Tamura et al .

for each group member point. Hungarian algorithm can prevent multiple group
member points from matching the same individuals and thus slightly improve
the performance. The matching cost between i-th group member point of k-th
social group prediction and j-th individual prediction is calculated as follows:

H(gm,k)
i,j =

∥∥∥û(k)
i − fcent

(
b̂j

)∥∥∥
2

ĉj
, (9)

where b̂j ∈ [0, 1]4 is a predicted bounding box of an individual, ĉj ∈ [0, 1] is a de-
tection score of the individual, and fcent (·) is a function that calculates the center
of a bounding box. By applying the Hungarian algorithm to this matching cost,

the optimal assignment is calculated as ω̂(gm,k) = argminω∈ΩNq

∑⌊M×ŝk⌉
i=1 H(gm,k)

i,ω(i) ,

where ⌊·⌉ rounds an input value to the nearest integer. Finally, the index set of in-

dividuals for k-th social group prediction is obtained asGk = {ω̂(gm,k) (i)}⌊M×ŝk⌉
i=1 .

4 Experiments

4.1 Datasets and Evaluation Metrics

We evaluate the performance of our method on two publicly available bench-
mark datasets: the Volleyball dataset [19] and Collective Activity dataset [9].
The Volleyball dataset contains 4,830 videos of 55 volleyball matches, which
are split into 3,493 training videos and 1,337 test videos. The center frame of
each video is annotated with bounding boxes, actions, and one group activity.
The number of action and activity classes are 9 and 8, respectively. Because
the original annotations do not contain group member information, we use an
extra annotation set provided by Sendo and Ukita [36]. We combine the origi-
nal annotations with the group annotations in the extra set and use them for
our experiments. Note that annotations other than the group annotations in the
extra set are not used for a fair comparison. The Collective Activity dataset
contains 44 videos of life scenes, which are split into 32 training videos and 12
test videos. The videos are annotated every ten frames with bounding boxes and
actions. The group activity is defined as the action with the largest number in
the scenes. The number of action classes is 6. Because the original annotations
do not have group member information, Ehsanpour et al . [13] annotated group
labels. We use their annotations for our experiments.

We divide the evaluation into two parts: group activity recognition and social
group activity recognition. In the evaluation of group activity recognition, we
follow the detection-based settings [5, 13, 35, 44] and use classification accuracy
as an evaluation metric. Because our method is designed to predict multiple
group activities, we need to select one from them for group activity recognition.
We choose the predicted activity of the highest probability and compare it with
the ground truth activity. In the evaluation of social group activity recognition,
different metrics are used for each dataset because each scene in the Volleyball
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dataset contains only one social group activity, while that in the Collective Activ-
ity dataset contains multiple social group activities. For the Volleyball dataset,
group identification accuracy is used as an evaluation metric. One group predic-
tion is first selected in the same way as group activity recognition, and then the
predicted bounding boxes of the group members are compared with the ground
truth boxes. The selected prediction results are correct if the predicted activity
is correct and the predicted boxes have IoUs larger than 0.5 with the correspond-
ing ground truth boxes. For the Collective Activity dataset, mAP is used as an
evaluation metric. Prediction results are judged as true positives if the predicted
activities are correct, and all the predicted boxes of the group members have
IoUs larger than 0.5 with the corresponding ground truth boxes.

4.2 Implementation Details

We use the RGB stream of I3D [7] as a backbone feature extractor and in-
put features from Mixed 3c, Mixed 4f, and Mixed 5c layers into the deformable
transformers. The hyper-parameters of the deformable transformers are set in
accordance with the setting of Deformable DETR [52], where Lf = 3, Dp = 256,
and Nq = 300. We initialize I3D with the parameters trained on the Kinetics
dataset [20] and deformable transformers with the parameters trained on the
COCO dataset [30]. We use the AdamW [31] optimizer with the batch size of
16, the initial learning rate of 10−4, and the weight decay of 10−4. Training
epochs are set to 120, and the learning rate is decayed after 100 epochs. We set
the length of the sequence T to 9. Ground truth labels of the center frame are
used to calculate the losses. To augment the training data, we randomly shift
frames in the temporal direction and use bounding boxes from visual trackers
as ground truth boxes when a non-annotated frame is at the center. We also
augment the training data by random horizontal flipping, scaling, and cropping.
Following the DETR’s training [6], auxiliary losses are used to boost the perfor-
mance. The maximum group size M is set to 12. The hyper-parameters are set
as ηv = λv = 2, ηs = λs = 1, and ηu = λu = 5.

While evaluating performances with the Collective Activity dataset, some
specific settings are used. For the evaluation of group activity recognition, train-
ing epochs are set to 10, and the learning rate is decayed after 5 epochs because
the losses converge in a few epochs due to the limited diversity of the scenes in
the dataset. For the evaluation of social group activity recognition, the length
of the sequence T is set to 17 following the setting of Ehsanpour et al . [13].

4.3 Group Activity Recognition

Comparison against State-of-the-Art. We compare our method against
state-of-the-art methods on group activity recognition. Table 1 shows the com-
parison results. The values without the brackets demonstrate the detection-based
performances, while those inside the brackets indicate the performances with
ground truth bounding boxes. We show the performances of individual action
recognition for future reference. Several detection-based performances are not
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Table 1: Comparison of group activity recognition. The values w/ and w/o the
brackets show the performances in the ground-truth-based and detection-based
settings, respectively. Full comparison results are in the supplementary material.

Volleyball Collective Activity

Method Activity Action Activity Action

SSU [5] 86.2 (90.6) – (81.8) – ( – ) – ( – )
stagNet [35] 87.6 (89.3) – ( – ) 87.9 (89.1) – ( – )
ARG [44] 91.5 (92.5) 39.8 (83.0) 86.1 (88.1) 49.6 (77.3)
CRM [4] – (93.0) – ( – ) – (85.8) – ( – )
Actor-Transformers [14] – (94.4) – (85.9) – (92.8) – ( – )
Ehsanpour et al . [13] 93.0 (93.1) 41.8 (83.3) 89.4 (89.4) 55.9 (78.3)
Pramono et al . [34] – (95.0) – (83.1) – (95.2) – ( – )
P2CTDM [45] – (92.7) – ( – ) – (96.1) – ( – )
DIN [49] – (93.6) – ( – ) – (95.9) – ( – )

GroupFormer [27] 95.0* (95.7) – (85.6) 85.2* (87.5†/96.3) – ( – )

Ours 96.0 ( – ) 65.0 ( – ) 96.5 ( – ) 64.9 ( – )

* We evaluated the performance with the publicly available source codes.
† We evaluated but were not able to reproduce the reported accuracy because the
configuration file for the Collective Activity dataset is not publicly available.

reported because existing works typically use ground-truth boxes for the evalua-
tion. To compare the effectiveness of our method with these methods, we evaluate
GroupFormer [27], which is the strongest baseline of group activity recognition,
with predicted boxes of Deformable DETR [52]. Note that Deformable DETR is
fine-tuned on each dataset for a fair comparison, which demonstrates 90.8 and
90.2 mAP on the Volleyball and Collective Activity datasets, respectively.

As seen from the table, our method outperforms state-of-the-art methods in
the detection-based setting. We confirm that GroupFormer shows the perfor-
mance degradation as well as the previous methods [5,13,35,44] when predicted
bounding boxes are used. These results indicate that the latest region-feature-
based method still suffers from incomplete person localization and that our
feature generation has advantages over these methods. Even compared to the
ground-truth-based performances, our method shows the best performance. It is
worth noting that our method uses only RGB images as inputs, while Group-
Former utilizes optical flows and poses in addition to RGB data. These results
suggest that our features are more effective than region features and that it is
not optimal to restrict regions of features to bounding boxes.

Analysis of Group Annotations. As described in Sec. 4.1, we use the ad-
ditional group annotations to fully leverage our social group activity recogni-
tion capability. We analyze the effect of the group annotations on group activity
recognition by investigating the performances of both GroupFormer [27] and our
method with and without the group annotations. Note that hereinafter we use
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Table 2: Analysis of the effect of the group annotations with Volleyball. The
values w/ and w/o the brackets demonstrate the performances in the ground-
truth-based and detection-based settings, respectively.

Method Annotation type Activity

GroupFormer [27]
Original 95.0* (95.7)

Group 93.2‡ (96.1*)

Ours
Original 95.0 ( – )
Group 96.0 ( – )

* We evaluated the performance with the publicly available source codes.
‡ We trained a group member detector and evaluated the performance with
publicly available source codes.

the Volleyball dataset for analyses because the diversity of the scenes in the Col-
lective Activity dataset is limited. To evaluate GroupFormer with the group an-
notations in the detection-based setting, we trained Deformable DETR [52] with
bounding boxes of only group members, which is intended to detect only people
involved in activities. The detector shows the performance of 87.1 mAP. Among
all the results, GroupFormer with the group annotations in the ground-truth-
based setting demonstrates the best performance. However, the performance
is substantially degraded when the predicted boxes are used. This is probably
because group member detection underperforms and degrades the recognition
performance. As our method does not rely on bounding boxes to predict group
activities, the performance does not degrade even if group members cannot be
identified correctly. Accordingly, our method demonstrates the best performance
in the detection-based setting.

4.4 Social Group Activity Recognition

Comparison against State-of-the-Art. To demonstrate the effectiveness, we
compare our method against Ehsanpour et al .’s method [13], which is a state-
of-the-art method that tackles social group activity recognition, and Group-
Former [27], which is the strongest baseline on group activity recognition. Due
to the unavailability of both Ehsanpour et al .’s source codes and their perfor-
mance report on the Volleyball dataset, we implemented their algorithm based
on our best understanding and evaluated the performance on the dataset. To de-
tect group members in the evaluation of GroupFormer, we trained Deformable
DETR [52] as described in the group annotation analysis section. Because this
group member detection cannot be applied to multi-group detection, we evaluate
GroupFormer only on the Volleyball dataset.

Table 3 shows the results of the Volleyball dataset. As shown in the ta-
ble, our method yields significant performance gains over the other methods,
which demonstrates the improvement in group member identification as well as
in activity recognition. Our method aggregates features that are embedded with
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Table 3: Comparison of social group activity recognition with Volleyball.

Right Left

Method Accuracy Set Spike Pass Winpoint Set Spike Pass Winpoint

Ehsanpour et al . [13]§ 44.5 17.2 74.0 49.0 29.9 19.7 79.6 25.0 28.4

GroupFormer [27]‡ 48.8 25.0 56.6 59.0 51.7 31.5 55.3 58.8 51.0

Ours 60.6 35.9 68.2 81.9 50.6 50.6 53.6 74.3 56.9

§ Because the source codes are not publicly available, we implemented their algorithm
based on our best understanding and evaluated the performance.

‡ We trained a group member detector and evaluated the performance with publicly
available source codes.

Table 4: Comparison of social group activity recognition with Collective Act.

Method mAP Crossing Waiting Queueing Walking Talking

Ehsanpour et al . [13] 51.3 – – – – –

Ours 46.0 49.2 64.5 54.1 55.6 6.56

clues for grouping people from feature maps. It is highly likely that this feature
aggregation contributes to the high accuracy of identifying activities with differ-
ent distributions of group members in an image. We qualitatively analyze how
features are aggregated depending on the distribution of group members and
discuss the analysis results towards the end of the qualitative analysis section.

The comparison results on the Collective Activity dataset are listed in Ta-
ble 4. As seen from the table, Ehsanpouret al .’s method shows better perfor-
mance than our method. We find that our method demonstrates relatively low
performance on the activity “Talking”. This low performance is probably at-
tributed to the number of samples in the training data. In the test data, 86%
of the samples with the activity “Talking” have group sizes of four, while the
training data has only 57 samples whose group sizes are four, which is 0.8% of
the training data. As our method learns to predict group sizes, the number of
samples in training data for each group size affects the performance. We analyze
this effect in the subsequent section.

Analysis of Group Sizes. The group size prediction is one of the key factors to
identify group members and thus affects social group activity recognition perfor-
mance. To analyze this effect, we evaluate the performance of each group size and
compare the results with Ehsanpouret al .’s method [13] and GroupFormer [27].
Table 5 shows the results. As shown in the table, the performances of our method
are moderately correlated to the training data ratios, while the other two meth-
ods do not show the correlation. This is the drawback of our method that relies
on group-size learning. However, our method shows competitive performances in
both small and large group sizes if there are a certain amount of training data.
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Table 5: Analysis of group sizes with Volleyball.

Group size (Training data ratio)
Method 1 (36%) 2 (21%) 3 (19%) 4 (6%) 5 (5%) 6 (12%)

Ehsanpour et al . [13]§ 45.3 48.2 61.2 27.3 15.8 32.5

GroupFormer [27]‡ 57.3 29.6 58.4 28.4 44.7 54.4

Ours 83.6 42.9 52.4 26.1 39.5 63.8

§ Because the source codes are not publicly available, we implemented their algo-
rithm based on our best understanding and evaluated the performance.

‡ We trained a group member detector and evaluated the performance with pub-
licly available source codes.

Table 6: Analysis of the order of member points with Volleyball.

Order of the group member points Probability of changes in order Accuracy

Ascending order in X coordinates 7.4% 60.6
Ascending order in Y coordinates 13% 55.5

In contrast, each of the other two methods shows competitive performances only
in either large or small group sizes. These results imply that our method does
not have the performance dependence on group sizes and thus can achieve high
performance with large-scale training data.

Analysis of Group Member Point Order. As described in Sec. 3.2, group
member points in a ground truth point sequence are sorted in ascending order
along X coordinates. To confirm the effectiveness of this arrangement, we com-
pare the performances with two arrangements. Table 6 shows the comparison
results. As shown in the table, our method demonstrates better performance
when group member points are sorted in ascending order along X coordinates
than in ascending order along Y coordinates. The probabilities in the table in-
dicate the ratio of the changes in the point order when small perturbations are
added to ground-truth bounding box positions. The higher probability implies
that the order of group member points changes more frequently when group
members move. These results suggest that the order changes more frequently
when group member points are sorted in ascending order along Y coordinates
and that the order is difficult to predict with slight differences in box positions.

Qualitative Analysis. The deformable attention modules are the critical com-
ponents to aggregate features relevant to social group activity recognition and
generate social group features. To analyze how the attention modules aggregate
features for various social group activities, we visualize the attention locations of
the transformer decoder in Fig. 3. We show locations with the top four attention
weights in the last layer of the decoder. The purple bounding boxes show the
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Right pass Right spike

Left set Left winpoint

Fig. 3: Visualization of the attention locations in the deformable transformer
decoder. We show the locations of the top four attention weights. The large
circles mean that the locations are in the low-resolution feature maps.

group members, the red circles show the predicted group member points, and
the yellow circles show the attention locations. The small and large yellow circles
mean that the locations are in the high and low-resolution feature maps, respec-
tively, showing a rough range of image areas affecting the generated features.
The figure shows that features are typically aggregated from low-resolution fea-
ture maps if group members are located in broad areas, and vice versa. These
results indicate that the attention modules can effectively aggregate features de-
pending on the distribution of group members and contribute to improving the
performance of social group activity recognition.

5 Conclusions

We propose a novel social group activity recognition method that leverages de-
formable transformers to generate effective social group features. This feature
generation obviates the need for region features and hence makes the effective-
ness of the social group features person-localization-agnostic. Furthermore, the
group member information extracted from the features is represented so concisely
that our method can identify group members with simple Hungarian matching,
resulting in high-performance social group activity recognition. We perform ex-
tensive experiments and show significant improvement over existing methods.
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