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Abstract. Recent contrastive based 3D action representation learning
has made great progress. However, the strict positive/negative constraint
is yet to be relaxed and the use of non-self positive is yet to be explored.
In this paper, a Contrastive Positive Mining (CPM) framework is pro-
posed for unsupervised skeleton 3D action representation learning. The
CPM identifies non-self positives in a contextual queue to boost learn-
ing. Specifically, the siamese encoders are adopted and trained to match
the similarity distributions of the augmented instances in reference to
all instances in the contextual queue. By identifying the non-self positive
instances in the queue, a positive-enhanced learning strategy is proposed
to leverage the knowledge of mined positives to boost the robustness of
the learned latent space against intra-class and inter-class diversity. Ex-
perimental results have shown that the proposed CPM is effective and
outperforms the existing state-of-the-art unsupervised methods on the
challenging NTU and PKU-MMD datasets.

Keywords: Unsupervised learning, 3D action representation, Skeleton,
Positive mining.

1 Introduction

Human action recognition is an active research in recent years. Due to being light-
weight, privacy-preserving and robust against complex conditions [26,27,2,28],
3D skeleton is becoming a popular modality for capturing human action dy-
namics [10,39,31,43]. Majority of previous skeleton-based action recognition ap-
proaches [18,35,38,42] are developed with a fully-supervised manner. However,
in order to learn a good action representation, supervised methods require a
huge number of labeled skeleton samples which is expensive and difficult to ob-
tain. It impels the exploration of learning skeleton-based action representation in
an unsupervised manner [15,24,30,14]. Often unsupervised methods use pretext
tasks to generate the supervision signals, such as reconstruction [7,44], auto-
regression [12,30] and jigsaw puzzles [22,36]. Consequently, the learning highly
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relies on the quality of the designed pretext tasks, and those tasks are hard
to be generalized for different downstream tasks. Recent unsupervised methods
employ advanced contrastive learning [15,24,14] for instance discrimination in
a latent space and have achieved promising results.

Fig. 1. Illustrations about the proposed CPM and previous contrastive methods. (a)
contrastive learning methods with negative [15,24]. (b) contrastive learning methods
without negative [4,6]. (c) the proposed Contrastive Positive Mining (CPM) method.

Although contrastive methods can improve the learning of skeleton represen-
tation, there are several issues, as illustrated in Fig. 1, in the current methods.
Fig. 1(a) shows that the conventional contrastive learning methods require neg-
atives [15,24]. They only regard different augmentations of the same instance
as positives to be drawn close during the learning, while other instances in the
queue, usually formed by training samples in the previous round of epochs or
batches, are all regarded as negatives and pushed apart from the current instance.
Although these methods consider the correlation of current instance with others,
there are inevitably instances in queue that belong to the same category as the
current instance (marked with red rectangular box) and these instances are mis-
taken as negatives, which could degrade the learned representation. To address
this issue, as shown in Fig. 1(c), this paper proposes to search for the instances
in queue that are likely to be the same class of the current instance, then to
consider those instances as non-self positives (marked with green rectangular
box) and draw them close to current instance so as to improve the learning.

Fig. 1(b) shows the conventional contrastive learning methods without neg-
atives [4,6]. The positive setting is similar to the previous methods illustrated
in Fig. 1(a). Only different augmentations of individual instance are used as
positive, consistency among current instance and the non-self instances with
the same class are ignored during learning, limiting the representation ability
for intra-class diversity. Besides, although non-negative manner avoids the in-
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stances of same class being pushed apart, the correlation of different instances
are not considered.

Notice that contrastive objective of both methods (i.e. with or without nega-
tives) is on individual instances, which challenges learning a feature space for all
instances. To overcome the above shortcomings, as illustrated in Fig. 1(c), the
proposed method extends the contrastive objective from individual instances by
keeping a queue of instances and mining the non-self positives in the queue to
boost learning. Specifically, a novel Contrastive Positive Mining (CPM) frame-
work is proposed for unsupervised skeleton 3D action recognition. The proposed
CPM is a siamese structure with a student and a target branch, which follows
the SimSiam [4]. The student network is trained to match the target network
in terms of the similarity distribution of the augmented instance in reference to
all instances in a contextual queue, so that the non-self positive instances with
high similarity can be identified in the queue. Then a positive-enhanced learning
strategy is proposed to leverage the mined non-self positives to guide the learn-
ing of the student network. This strategy boosts the robustness of the learned
latent space against intra-class and inter-class diversity. Experimental results on
NTU-60 [25], NTU-120 [17] and PKU-MMD [16] datasets have validated the
effectiveness of the proposed strategy.

To summarize, the key contributions include:

– A novel Contrastive Positive Mining (CPM) framework for unsupervised
learning of skeleton representation for 3D action recognition.

– A simple but effective non-self positive mining scheme to identify the posi-
tives in a contextual queue.

– A novel positive-enhanced leaning strategy to guide the learning of the stu-
dent network via the target network.

– Extensive evaluation of the CPM on the widely used datasets, NTU and
PKU-MMD, with state-of-the-art results obtained.

2 Related Works

2.1 Unsupervised Contrastive Learning

Contrastive learning is derived from noise-contrastive estimation [8], which con-
trasts different type of noises to estimate the latent distribution. It has been ex-
tended in different ways for unsupervised learning. Contrastive Prediction Cod-
ing (CPC) [23] develops the info-NCE to learn image representation, with an
auto-regressive model used to predict future in latent space. Contrastive Multi-
view Coding (CMC) [34] leverages multi-view as positive samples, so that the
information shared between multiple views can be captured by the learned repre-
sentation. However, there often lacks of negative instances for the above methods.
To solve this issue, a scheme called memory-bank [37] is developed in which the
previous random representations are stored as negative instances, and each of
them are regarded as an independent class. Recently, MoCo [9] utilizes a dy-
namic dictionary to improve the memory-bank, and introduces the momentum
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updated encoder to boost the representation learning. Another way to enrich
the negative instances is to use large batch-size such as in SimCLR [3]. Partic-
ularly, SimCLR samples negatives from a large batch and shows that different
augmentation, large batch size, and nonlinear projection head are all important
for effective contrastive learning. However, these methods all regard different
augmentations of the same instance as the only positives, while other instances
in the queue including the ones with same category are all considered as nega-
tives which cannot fully leverage capability of contrastive learning due to highly
likely mixture of positives in the negatives.

To deal with this issue, some negative-sample-free approaches are recently
developed. SimSiam [4] shows that simple siamese twin networks with a stop-
gradient operation to prevent collapsing can learn a meaningful representation.
Barlow Twins [41] proposes an unsupervised objective function by measuring the
cross-correlation matrix between the outputs of two identical networks. BYOL [6]
learns a potentially enhanced representation from an online network by predict-
ing the representation from a given representation learned from a target network
with slow updating. However, these methods do not consider consistency learn-
ing among current instances and the non-self instances with the same class.

2.2 Unsupervised 3D Action Recognition

Unsupervised methods [29,20,13] for video based action recognition are well de-
veloped, while few works are specifically for skeletons. LongT GAN (Generative
adversarial network) [44] is an auto-encoder-based GAN for skeleton sequence
reconstruction. P&C [30] employs an encoder-decoder learning structure, the en-
coder is weakened compared with decoder to learn more representative features.
ASCAL [24] is a momentum LSTM with a dynamic updated memory-bank, aug-
mented instances of the input skeleton sequence are contrasted to learn repre-
sentation. MS2L [15] is a multi-task learning framework, with both pretext tasks
and contrastive learning. CrosSCLR [14] adopts a cross-view contrastive learn-
ing scheme and leverages multi-view complementary supervision signal. However,
these methods either require pretext tasks or a large amount of negative samples,
or rely on the reconstruction.

3 Proposed Method

3.1 Overview

Fig. 2 shows the basic framework of CPM. CPM adopts siamese twin networks
as inspired by SimSiam [4]. 3D skeleton sequences are randomly augmented.
Assume that a skeleton sequence s has T frames, V joints, and C coordinate
channels, which can be represented as s ∈ RC×T×V . To augment s into different
versions x and x′, a skeleton-specific augmentation strategy is needed. Differ-
ent from the augmentations implemented for images, augmentation of skeleton
sequences needs to be effective for learning spatial-temporal dynamics. In this
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Fig. 2. Overview of the CPM framework. CPM includes two stages. In the first stage,
the student branch is trained to predict the inter-skeleton similarity distribution in-
ferred by the target network, so as to excavate non-self positive. Then in the second
stage the information of mined positives is injected into the target branch through
similarity distribution regularization to guide the learning of student, which achieves
positive-enhanced learning (different colors in distribution and contextual queue rep-
resent the embeddings of different instances, ’+’ means mined positive).

paper, shear and crop in the spatial and temporal domain are to augment sam-
ples. Specifically, shear is applied as a spatial augmentation and is implemented
as a linear transformation that displaces the skeleton joint in a fixed direction.
Skeleton sequences are multiplied by a transformation matrix on the channel
dimension, so as to slant the shape of 3D coordinates from body joints at a
random angle. Crop is to pad a number of frames to a sequence symmetrically,
then the sequence is randomly cropped into a fixed length [24,14].

The siamese encoders with identical network structure are to encode the
augmented skeleton sequences, as shown in Fig. 2, in a latent feature space. One
branch is referred to as the student and the other serves as the target [32]. ST-
GCN [39] is adopted as the encoder networks. The siamese encoders consist of
several GCN layers and embed the two augmented skeleton sequences x and x′

into a latent space. In each layer, human pose in spatial-dimension and joint’s
motion in temporal-dimension are alternatively encoded, i.e. a spatial graph
convolution is followed by a temporal convolution.

After the siamese encoders, a projection MLP g is attached to project the
vector h and h′ in the encoding space: z = g(h), z′ = g(h′), where z and z′ are
assumed to be mean-centered along the batch dimension so that each unit has 0
mean output over the batch. The projection MLP consists of two layers, the first
one is followed by a batch normalization layer and rectified linear units. After
the projection MLP, a prediction MLP p with same architecture of g is attached
to the student branch to produce the prediction p(z), while the stop-gradient
operation is used in the target branch with the output sg(z′). In addition, a
“first-in first-out” [9] contextual queue Q = [a1, ..., aN ] is used to measure how
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well the encoded augmented instance by student network matches that by the
target network with respect to the instances in the queue.

The key idea of the proposed method is to use the output of the student net-
work to predict the output of the target network. More specifically, our objective
is to train the siamese encoders such that the student network matches the tar-
get network in terms of the similarity distribution of the augmented instance in
reference to all instances in the queue.

3.2 Similarity Distribution and Positive Mining

Similarity between the encoded feature of the augmentations and the instances
in queue is first calculated and similarity distribution for the student network
and the target network are calculated through softmax. The learning process
is to train the network so that the similarity distribution of x with respect to
the instances in the queue can predict the distribution of x′. Compared with the
previous methods, this strategy has the following advantages. No strict definition
of positives/negatives is required and the match on similarity distribution over
the instances in the queue is more reliable than that over individual instances.
Since the similarity between the augmented instances and instances of the same
class in the queue is expected to be high, resulting in an implicit mining of
non-self positive instances in the queue.

Let Q = [a1, ..., aN ] be the queue of N instances, where ai is the embedding
of the i-th instance. The contextual queue comes from the preceding several
batches of target network, which is updated in “first-in first-out” [9] strategy.
Similarity distributions, di and d′i, between p̄(z) and ai and between z̄′ and ai
are computed as follows, respectively,

di =
ep̄(z)·ai/τ

N∑
j=1

ep̄(z)·aj/τ
(1)

d′i =
ez̄
′·ai/τ ′

N∑
j=1

ez̄
′·aj/τ ′

(2)

where p̄(z) and z̄′ are l2 normalization of p(z) and z′. The overall similarity
distributions, D and D′ of the two arguments in the latent space with respect
to the instances in the queue are,

D = {di} , D′ = {d′i} , i ∈ N (3)

The idea is to training siamese encoders to match D with D′. In this paper,
we adopt to minimize the Kullback-Leibler divergence between D and D′, i.e.,

L = DKL(D′||D) = H(D′, D)−H(D′) (4)
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By minimizing L, prediction p(z) can be aligned with z′. Meanwhile, instances
that belong to the same class could be pushed close in the latent space, while
those from different classes are pushed apart.

The similarity measures provide information for mining the positive instance
in the queue. Specifically, given one instance’s embedding z and the correspond-
ing queue Q, instances in queue with top-k high similarity are considered as
positives, i.e.,

Γ (Q) = Topk (Q) (5)

which generates the index set of positive instances,

D′+ = {d′i} , i ∈ N+ (6)

where N+ is the index set of non-self positive instances. These positives can be
used to facilitate a positive-enhanced learning as described below.

3.3 Positive-enhanced Learning

The non-self positives can be used to boost the representation learning. Intu-
itively, it is reasonable to inject the information of mined positives into the target
branch to guide the learning of the student encoder. To do this, it is proposed to
regularize the similarity distribution of the target branch D′ in each batch, so as
to make use of the non-self positives iteratively. Specifically, we set the similari-
ties of the K mined positive instances in target branch to 1, which means those
instances are considered the same action category with current instance. This
strategy is referred to as “positive-enhanced leaning”. The positive-enhanced
similarity distribution can be expressed as,

dei =


e1/τ

′

N∑
j=1

ez̄
′·aj/τ′

, i ∈ N+

d′i, otherwise

(7)

Then we train distribution of student to continue predicting the regularized
target distribution, so that the student is guided to learn more informative intra-
class diversity brought by the non-self skeleton positives knowledge we inject,

L′ = H(D′NP , D)−H(D′NP ) (8)

where D′NP = {dei} is the non-self positive-enhanced target distribution. Com-
pared to Eq.(4), Eq.(8) intends to pull positive instances closer.

3.4 Learning of CPM

In the early training stage, the model is likely not stable and capable enough
of providing reasonable measures of the similarity distribution to identify the
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positives in the queue. Therefore, a two-stage training strategy is adopted for
CPM: the student branch is first trained to predict the similarity distribution
inferred by the target network without enhanced positives in Eq.(4). When it
is stable, the model is trained using the positive-enhanced learning strategy in
Eq.(8).

4 Experiments

4.1 Datasets

NTU RGB+D 60 (NTU-60) Dataset [25]: NTU-60 is one of the widely
used indoor-captured datasets for human action recognition. 56880 action clips
in total are performed by 40 different actors in 60 action categories. The clips
are captured by three cameras simultaneously at different horizontal angles and
heights in a lab environment. Experiments are conducted on the Cross-Subject
(X-Sub) and Cross-View (X-View) benchmarks.

NTU RGB+D 120 (NTU-120) Dataset [17]: NTU-120 is an extended
version of NTU-60. There are totally 114480 action clips in 120 action categories.
Most settings of NTU-120 follow the NTU-60. Experiments are conducted on the
Cross-Subject (X-Sub) and Cross-Setup (X-Set) benchmarks.

PKU-MMD Dataset [16]: There are nearly 20,000 action clips in 51 ac-
tion categories. Two subsets PKU-MMD I and PKU-MMD II are used in the
experiments. PKU-MMD II is more challenging than PKU-MMD I as it has
higher level of noise. Experiments are conducted on the Cross-Subject (X-Sub)
benchmark for both subsets.

4.2 Implementation

Architecture: The 9-layer ST-GCN [39] network is chosen as the encoders. In
each layer, the spatial graph convolution is followed by a temporal convolution,
the temporal convolutional kernel size is 9. A projector of 2-layer MLP is at-
tached to the output of both networks. The first layer is followed by a batch
normalization layer and rectified linear units, with output size of 512, while the
output dimension of the second layer is 128. A predictor with the same architec-
ture is used in the student branch, while the stop-gradient operation is applied
in target branch. The contextual queue size N is set to 65536, 32768 and 16384
for NTU-60/120, PKU-MMD I and PKU-MMD II datasets, respectively.

Unsupervised Pre-training: LARS [40] is utilized as optimizer and trained
for 400 epochs with batch size 512, note that the positive-enhanced learning is
conducted after 300 epochs. The learning rate starts at 0 and is linearly increased
to 0.5 in the first 10 epochs of training and then decreased to 0.0005 by a cosine
decay schedule [19]. All experiments are conducted on one Nvidia RTX3090 GPU
using PyTorch.

Linear Evaluation Protocol: The pre-trained models are verified by linear
evaluation. Specifically, a linear classifier (a fully-connected layer followed by a
softmax layer) is trained supervisedly for 100 epochs while the pre-trained model
is fixed.
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4.3 Results and Comparison

Unsupervised Results: The performance of the proposed CPM is compared
with the state-of-the-art supervised and unsupervised methods on the NTU and
PKU-MMD datasets and results are shown in Table 1. Following the standard
practice in literature the recognition performance in terms of top-1 classification
accuracy is reported. Note that, if not specified, the experiments including ab-
lation study are conducted on the joint data. 3S means the ensemble results of
joint, bone and motion data. The obvious performance improvement compared
with the recent advanced unsupervised counterparts [14,33] has been obtained
and demonstrates the effectiveness of CPM. In addition, CPM (3S) outperforms
the supervised ST-GCN [39] on both NTU and PKU-MMD datasets.

Table 1. Performance and comparison with the state-of-the-art methods on the NTU
and PKU-MMD datasets.

Architectures NTU-60 (%) NTU-120 (%) PKU-MMD (%)

X-Sub X-View X-Sub X-Set Part I Part II

Supervised
C-CNN + MTLN [11] 79.6 84.8 - - - -
TSRJI [1] 73.3 80.3 67.9 62.8 - -
ST-GCN [39] 81.5 88.3 70.7 73.2 84.1 48.2

Unsupervised
LongT GAN [44] 39.1 48.1 - - 67.7 27.0
ASCAL [24] 58.5 64.8 48.6 49.2 - -
MS2L [15] 52.6 - - - 64.9 27.6
P&C [30] 50.7 76.3 - - - -
ISC [33] 76.3 85.2 67.9 67.1 80.9 36.0
CrosSCLR (joint) [14] 72.9 79.9 - - - -
CrosSCLR (3S) [14] 77.8 83.4 67.9 66.7 84.9 -
CPM (joint) 78.7 84.9 68.7 69.6 88.8 48.3
CPM (3S) 83.2 87.0 73.0 74.0 90.7 51.5

Semi-supervised Results: The CPM is first pre-trained on all training data
in an unsupervised way, then the classifier is fine-tuned with 1% and 10% anno-
tated data respectively. Table 2 shows the semi-supervised results on the NTU-60
dataset. The results have shown the proposed CPM performs significantly better
than the compared methods. Compared with MS2L [15] and ISC [33], CPM im-
proves the performance by a large margin and shows its robustness when fewer
labels are available for fine-tuning.

Fully Fine-tuned Results: The model is first unsupervisedly pre-trained,
then a linear classifier is appended to the learnable encoder. Both the pre-trained
model and the classifier undergo a supervised training using all training data [41],
results are shown in Table 3. On both NTU-60 and NTU-120 datasets the fully
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Table 2. Semi-supervised performance and comparison with the state-of-the-art meth-
ods on the NTU-60 dataset.

Architectures Label fraction (%) X-Sub (%) X-View (%)

LongT GAN [44] 1 35.2 -
MS2L [15] 1 33.1 -
ISC [33] 1 35.7 38.1
CPM 1 56.7 57.5

LongT GAN [44] 10 62.0 -
MS2L [15] 10 65.2 -
ISC [33] 10 65.9 72.5
CPM 10 73.0 77.1

fine-tuned CPM outperforms the supervised ST-GCN [39], demonstrating the
effectiveness of the unsupervised pretraining.

Table 3. Fully fine-tuned performance and comparison on the NTU-60 and NTU-120
datasets.

Architectures NTU-60 (%) NTU-120 (%)

X-Sub X-View X-Sub X-Set

C-CNN + MTLN [11] 79.6 84.8 - -
TSRJI [1] 73.3 80.3 67.9 62.8
ST-GCN [39] 81.5 88.3 70.7 73.2
CPM 84.8 91.1 78.4 78.9

4.4 Ablation Study

On positive mining: To verify the effectiveness of positive-enhanced learning,
we pre-train the CPM (w/o. PM) without identifying the positive instances and,
hence, positive-enhanced learning, other settings are kept the same. Performance
of CPM and CPM (w/o. PM) is shown in Table 4. On the NTU-60 X-Sub
and X-View tasks, CPM improves the recognition accuracy by 3.1 percentage
points and 3.2 percentage points, respectively. On the NTU-120 X-Sub and X-
Set tasks, 3.9 percentage points and 4.9 percentage points improvements are
obtained by CPM. This demonstrates that identification of positive instances and
the positive-enhanced learning strategy do improve the representation learning.

To further verify how well the non-self positives in the queue can be identified
for the positive-enhanced learning, Fig. 3 shows the precision of the positives
selected by CPM and CPM (w/o. PM) in one epoch in the top-100 identified
positive instances. The results show that even CPM (w/o. PM) is capable of
identifying many true positives. This is in significant contrast to the methods
in [15,24] where all instances in the queue would be considered as negatives.
When positive-enhanced learning is applied, the precision has been significantly
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Table 4. Benefit of positive mining.

Datasets CPM (w/o. PM) (%) CPM (%)

X-Sub (NTU-60) 75.6 78.7
X-View (NTU-60) 81.7 84.9
X-Sub (NTU-120) 64.8 68.7
X-Set (NTU-120) 64.7 69.6

Fig. 3. Precision of positive instances identified by CPM and CPM (w/o. PM) on
different datasets.

increased and so that the learned representation is more robust against the intra-
class diversity.

On the value of K: Hyper-parameter K refers to the number of positives
identified in the queue. This study shows how K affects the performance. Exper-
iments have shown that when K is 100, best results are obtained on the NTU-60
and NTU-120 datasets. Results on NTU-60 X-View are shown in Fig. 4. It is
found that too large or too small K both decreases the performance. A large
value of K could include unexpected false positives with low similarity that mis-
leads the learning. A small value of K might ignore too many true positives that
would potentially decrease representation ability to accommodate intra-class di-
versity. Good performance was observed when K is 50 and 25 for PKU-MMD I
and PKU-MMD II datasets, respectively. It is conjectured that choice of K may
depend on the scale of the dataset.

On the value of τ ′: Fig. 5 shows the performance of CPM (w/o. PM) using
different τ ′ with τ fixed to 0.1 [5], the optimal performance is obtained when τ ′

is 0.05. A large value of τ ′ could lead to a flatter target distribution so that the
learned representation becomes less discriminative. A small value of τ ′ would
suppress the difference in similarities between the positive and the negative,
leading to many false positives included in the positive-enhanced learning. If
τ ′ is too small, less positive instances could be identified and this would again
adversely affect the effectiveness of learning.



12 H. Zhang et al.

Fig. 4. Effect of the number K of top positives on the proposed CPM in the NTU-60
X-View task.

Fig. 5. Effect of different temperature τ ′ on the performance in the NTU-60 X-View
task.

Fig. 6. t-SNE visualization of embedding for (a) CPM (w/o. PM) and (b) CPM on
the NTU-60 X-View task (best view in color).
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Embedding Visualization: t-SNE [21] is used to visualize the embedding
clustering produced by CPM (w/o. PM) and CPM as shown in Fig. 6. Note
that embedding of 10 different action categories are sampled and visualized with
different colors. The visual results show how well the embedding of the same
type of actions form clusters while different types of actions are separated. By
comparing the t-SNE of CPM and CPM (w/o. PM), CPM has clearly improved
the clustering of actions, which indicates that the learned latent space is more
discriminative than the space learned without using positive-enhanced learning
strategy.

5 Conclusion

In this paper, a novel unsupervised learning framework called Contrastive Posi-
tive Mining (CPM) is developed for learning 3D skeleton action representation.
The proposed CPM follows the SimSiam [4] structure, consisting of siamese en-
coders, student and target. By constructing a contextual queue and identifying
non-self positive instances in the queue, the student encoder is able to learn a dis-
criminative latent space by matching the similarity distributions of individual
instance’s two augments with respect to the instances in the queue. In addi-
tion, by identifying positive instances in the queue, a positive-enhanced learning
strategy is developed to boost the robustness of the learned latent space against
intra-class and inter-class diversity. Experiments on the NTU and PKU-MMD
datasets have shown that the proposed CPM obtains the state-of-the-art results.
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