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Abstract. To avoid time-consuming annotating and retraining cycle in
applying supervised action recognition models, Zero-Shot Action Recog-
nition (ZSAR) has become a thriving direction. ZSAR requires models
to recognize actions that never appear in training set through bridging
visual features and semantic representations. However, due to the com-
plexity of actions, it remains challenging to transfer knowledge learned
from source to target action domains. Previous ZSAR methods mainly
focus on mitigating representation variance between source and target
actions through integrating or applying new action-level features. How-
ever, the action-level features are coarse-grained and make the learned
one-to-one bridge fragile to similar target actions. Meanwhile, integra-
tion or application of features usually requires extra computation or an-
notation. These methods didn’t notice that two actions with different
names may still share the same atomic action components. It enables
humans to quickly understand an unseen action given bunch of atomic
actions learned from seen actions. Inspired by this, we propose Jigsaw
Network (JigsawNet) which recognizes complex actions through unsu-
pervisedly decomposing them into combinations of atomic actions and
bridging group to group relationships between visual features and seman-
tic representations. To enhance the robustness of learned group-to-group
bridge, we propose Group Excitation (GE) module to model intra-sample
knowledge and Consistency Loss to enforce the model learn from inter-
sample knowledge. Our JigsawNet achieves state-of-the-art performance
on three benchmarks and surpasses previous works with noticeable mar-
gins.
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1 Introduction

Supervised action recognition has been a heated computer vision task and makes
continuous progress thanks to the development of spatio-temporal modeling[32,
39, 28] and release of large datasets[18,36]. However, while the performance of
models has been boosted, the models also become deeper and deeper and require
more and more annotated data for training. Meanwhile, the target actions vary
in different scenes and may change or increase in real-world applications. Thus,
the time-consuming cycle of gathering data, annotating, and retraining becomes
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Fig. 1. The majority of actions in daily life are complicated and can be regarded as
combinations of atomic actions. Complex actions with different name may still share
the same atomic actions. (e.g. “hand stand” exists commonly in complex actions such
as capoeira, cartwheeling, and vault.) To better understand the ZSAR procedure, we
could regard target actions as “assembled puzzles” picture drawn on puzzle boxes,
atomic actions are “puzzle pieces” and the videos are stacks of puzzle pieces. JigsawNet
is determining which boxes the stacks belong to through matching the puzzle pieces in
stack with the ones drawn on boxes.

inevitable to use these supervised action recognition models. To alleviate such
burden, Zero-Short Action Recognition (ZSAR) has become a vigorous direction
which enables models the capability of recognizing actions that never appear in
the training set.

These years have witnessed many successful explorations[29, 46, 4, 8] in ZSAR.
The task requires models to bridge semantic representations of actions and vi-
sual features extracted from videos. However, it remains challenging due to the
complexity of videos and semantic variance between source and target actions.
Previous methods mainly focus on mitigating the representation variance be-
tween source and target actions through integrating or applying new action-
level features. The first series of works[29,46] use manually designed attributes
to represent video features and action semantics. Another series of works[22, 17]
introduce the existence of objects as attributes. Features are generated through
embedding verbal objects detected in action descriptions and visual objects rec-
ognized in video clips. The last series of works [44, 4] use embedding of label name
as action semantics and end-to-end train a spatio-temporal modeling network
to extract visual features. The most recent work|[8] uses description instead of
label name for semantic extraction. It also integrates both spatio-temporal fea-
tures and semantics of detected verbal objects as visual representations. To the
best of our knowledge, all the previous methods regard the videos and actions
as single entities and enforce the model to build a one-to-one bridge between
visual features and semantic representations. They project the visual features
extracted from videos and semantic representations extracted from actions to
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a shared sphere. The models are then optimized through minimizing distance
between visual features and corresponding action semantics.

Although both visual and semantic variance between source and target ac-
tions will be mitigated to a extent, the features are still coarse-grained and may
not as distinct on target actions domain as learned among source actions do-
main. It makes the the one-to-one bridge fragile and make the action classifier
difficult to distinguish similar target actions. What’s more, integration or appli-
cation of new attributes usually requires extra computation or annotation which
may limit the usage in real world scenes. In this work, we take the inspiration
from how humans quickly understand a brand new action through factorizing it
into combinations of atomic actions.

We use puzzles as an example to introduce the difference between our Jig-
sawNet and previous works. As is shown in Figure 1, complex actions like
“capoeira”, “cartwheeling”, and “vault” can be regarded as “assembled puzzles”
drawn on boxes, atomic actions like “bent over”,“hand stand”, and “stretch arms
over head” can be regarded as “puzzle pieces”, and videos can be regarded as
stacks of these puzzle pieces. Then, a ZSAR task is to determine which boxes the
stacks should be placed in. Previous methods[8] are trying to make the decision
based on stack-level (action-level) features. For example, the number of edge
puzzle pieces in stacks (number of people in videos) is a distinct stack-level fea-
ture between capoeira and cartwheeling. However, it’s not as distinct between
cartwheeling and vault. JigsawNet, instead, looks deeper and makes decision
through matching the pieces in stacks with the ones drawn on boxes. It notices
that different assembled puzzles still share the same pieces. Such piece-level fea-
tures are easier to recognize and stable among different assembled puzzles. In
other words, these atomic actions can be regarded as joint latent features shared
by source and target actions, which are fine-grained and won’t change drastically.

Given videos and descriptions of target actions crawled from wiki, the videos
are split into groups of segments and the descriptions are separated into groups
of verb phrases through dependency parsing. JigsawNet then recognizes unseen
actions through unsupervisedly bridging a group-to-group relationship among
video segments and semantics of atomic actions. JigsawNet can learn the re-
lationship only based on target action labels assigned to the entire videos and
require no extra annotation of atomic action label assigned to each segment.
Meanwhile, to better model the latent features of atomic actions, we propose the
Consistency Loss to learn from inter-sample knowledge and Group Excitation
(GE) module to adaptively aggregate intra-sample representations. Consistency
Loss enforces the model to extract similar features from segments which are pre-
dicted as the same atomic action but split from different videos. It also enforces
the model to enlarge distance of similar features which are extracted from seg-
ments that are predicted as different atomic actions. For computation efficiency,
a memory cache is implemented to remember past visual features grouped by
atomic action labels. Visual features extracted from single segment has limited
temporal receptive field. Thus, GE module will adaptively aggregate contextual
spatio-temporal and object features and enables the model a better capability of
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understanding latent atomic actions. To the best of our knowledge, the proposed
algorithm is the first to explore atomic actions as joint latent features and build
group-to-group bridge between visual features and semantic representations. It
is also the first exploration in making full usage of both inter and intra sample
knowledge in ZSAR.

In a nutshell, the contributions of our paper are summarized as follows:

1. We propose a novel view to implement atomic actions as joint latent features
which is fine-grained and stable between source and target actions for ZSAR.

2. We propose JigsawNet which recognizes unseen actions through unsuper-
visedly decomposing them into combinations of atomic actions and then
bridging a group-to-group relationship between visual features and semantic
representations.

3. We propose the Consistency Loss and the Group Excitation (GE) module
to make full usage of both inter and intra sample knowledge for ZSAR.

4. Our method achieves state-of-the-art (SOTA) performance on three ZSAR
benchmarks (i.e. KineticsZSAR, HMDB51, and UCF101) which demon-
strates the superiority of our work.

2 Related Work

Supervised Action Recognition Action Recognition has been a heated task
in computer vision given its wide application in real world scenes. Given a target-
centered action clip, supervised action recognition models can recognize the ac-
tions that it has seen in the training set. There are three major series of solutions.

The earliest works operate spatial-convolution independently over the tem-
poral dimension and resort to temporal motion information like optical flow or
RGB diff of adjacent frames for temporal modeling [23, 35,41, 49]. However, the
extraction of motion features is time consuming and limits the usage in real
world applications.

Later works [21, 20,11, 12] resort to 3D CNNs which can model spatial and
temporal information simultaneously. They have achieved state-of-the-art (SOTA)
results on many data sets, especially after the release of large video action data
sets like Kinetics[24] and Activity Net[5]. For example, Du proposes a simple, yet
effective approach for spatio-temporal feature learning using deep 3D CNN(38].
Carreira implements a two-stream inflated 3D convolution network [7]. However,
3D CNNs contain much more parameters and will easily overfit and still time
consuming.

Given the drawbacks of traditional 2D CNN and 3D CNN mentioned above,
most recent works[39, 47, 13, 34, 13] focus on factorizing the spatial and temporal
modeling operations. For example, Du proposed R(2+1)D which factorizes the
3D convolutional filters into 2D spatial convolution kernel and 1D temporal
convolution kernel[39].
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Zero-shot Action Recognition The earliest works take manual-defined at-
tributes[29,46] to represent the action. For example, Gan et al. propose multi-
source domain generalization method for attribute detection. However, the at-
tributes of actions are numerous and harder to define compared with static
images. Later works[16, 17, 22] resort to objects as attributes. For example, Jain
et al. [22] detect objects in videos then project the object features and action
labels to a shared sphere and calculate the similarity. Gao et al. propose a graph
networks based model to learn the relationship between action and objects and
match them according to action prototypes. These works are pretty efficient,
however, they ignore the spatio-temporal information inherited in videos. Most
recent works use word embeddings of action names[4,31,33,44] or action de-
scriptions[8] to extract semantic representations. For example, Brattoli et al
[4] propose an end-to-end pipeline which directly projects the extracted spatio-
temporal features from videos and semantic representations extracted from word
embeddings of action names to a shared sphere. The most similar work to ours
is ER [8] which also uses description, objects, and videos as input. However ER
is different from ours in that, it still recognizes the videos and actions as single
entities and enforces the model to build one-to-one bridge between visual fea-
tures and semantic representations. The action-level features are coarse-grained
and may not as distinct among target action as learned among source actions.

3 Proposed Approach

ZSAR task requires the model to recognize actions that never appears in training
set. In the rest subsections, we will present our novel Group Alignment Module,
Consistency Loss, and Group Excitation Module. We will then show how to
combine these modules together as Jigsaw Network.

3.1 Group Alignment (GA) Module

For each action label 3, we crawled a short description and split it into group
of verb phrases through dependency parsing. Manual correction is applied to re-
move typos and modify incorrect descriptions. The action y° is then represented
as d' = {wy,...,wy}, where each w; is a verb phrase and represents an atomic
action. We implement a spatio-temporal extraction backbone N,;q to extract vi-
sual features from i'" video v'. F; = Nyiq(v?), where F; = {f{, ..., fi,} € Rm™*4,
m represents the number of segments the v* is split into, and d is the dimen-
sion of features extracted from each video segment. A semantic extraction back-
bone Njez: is implemented to extract semantic representations from group of
verb phrases G; = Nyeat(d'), where G; = {gi, ..., gi} € R**4. Besides extracting
spatio-temporal features, we also use object types in videos as a kind of video
attribute. An object classification backbone Nop; is implemented to recognize
object classes Wi,: = Nop;j(v'), and W, = {w})bj,...,wf)bj}. Each w’;bj repre-
sents the name of a recognized object. The object names are concatenated and
forwarded to Niez: to extract verbal features O; = ./\/text(Wibj), and O; € R%.

O
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Fig. 2. Architecture of Jigsaw Network. Given videos and short descriptions of target
actions, Jigsaw Network will adaptively learn to build group-to-group bridges. Nyiqa
is the spatio-temporal extractor backbone, Ny, is the semantic extractor backbone,
and Nop; is the object recognition backbone. Green represents verbal features, blue
represents visual features, and red represents fused features.

Current spatio-temporal feature f¢ extracted from each segment has limited
temporal receptive field, and the complete atomic action may be split into two
segments. To solve this, we propose the Group Excitation (GE) Module M to
adaptively aggregate intra sample features.

Fi,Oi = M(F; @ 0;) (1)
Fi={fi,..fi} eR™1 O, e R? (2)

where @ represents concatenate. Each output f; € F; will contain spatio-
temporal features extracted from contextual segments and object feature O; of
the whole video sample. The details of M will be presented in later subsections.
We then build the group-to-group bridge between the group of video segments
and the group of atomic actions.

P = Jo ()" 3)
- Zelomsl) "
Py = max(0; - (g)") (5)
p" = p + max(pl,0) (6)

where pfgy represents the cosine similarity between the visual feature f; extracted
from the z'* video segment of v*, and semantic representations gi of the yt"
verb phrase of d*, p¥/ is the probability that v is recognized as j* target action
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Fig. 3. Illustration of Consistency Loss. Although the first segments of the left and right
video are both predicted as “arrange hair”, their visual features may approaching the
semantic representation in two directions and Consistency Loss will further minimize
their distance. The visual features extracted from the second segments of left (seg:)
and right (seg,) videos are similar. However, “apply color on hair with brush” is not a
component of “blowdrying hair”. Thus the seg, is a hard negative sample of seg; and
there distances will be enlarged by Consistency Loss as well

(y'=j), - denotes vector-matrix multiplication. We implement a cross entropy
loss to train the GA module. P! = {p‘ p?? .. .pP} € RP is the probability
vector of video v' to B source actions. Y = {yi, 4%, ...,y5} € RP is the one-hot
label vector extended from %°. The cross entropy loss is shown as:

L(P, YY) log —_XP(@7/A) 7
( Zy ST exp (/) ™

where A is a temperature parameter. Although P? is already calculated by
both ]:'i and @i, we intend to enforce these two features Similar to the seman-
tic representation of target action as well. P! = {pil pi2 .. ,pa Bl € RE and
Pl = {pt,p2 ... pL } € RP are probability vectors of video v’ to B source ac-
tions calculated by F; and O; independently. Thus, the matching loss is shown
as:

m_ﬁz L(P,Y") + L(PLY") + L(PL YY) (®)

During inference stage, only P? is used as the probability scores of v* to C target
actions.

3.2 Consistency Loss

Ly only uses B semantic representations of source actions for training which
makes the model easily overfit. To enhance the robustness of group-to-group
bridge, we propose Consistency Loss which optimizes the model unsupervisedly
with inter sample knowledge. As is shown in Figure 3, although the model doesn’t
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have the ground truth atomic action label of each video segment, the segments
should only contain atomic actions which are components of the aligned source
action. Meanwhile, the same atomic action will be a joint latent feature shared by
different source actions. Generally, the consistency regularization is two folded.
Features extracted from segments of different videos but aligned to the same
atomic action should be consistently similar. Segment features aligned to certain
atomic action should be consistently different from those aligned to other atomic
actions. The loss can be represented as:

fmem = {fnlzem7f72nem7"'7f£em} GRAXd (9)
j = argmax p* (10)
je{l,...B}

st = @(argmaxp?y) (11)
y

ni = argmax f - {7, (12)
m¢W~3

) 1— £i ) £i A”i 0
Logns = > Dy max( [z ]\?mem + fa - fmem,0) (13)

where Fem is the memorized visual feature buffer grouped by atomic action
types, and A is the number of unique atomic actions of all source actions. 3 is
the predicted action id of video v'. si € {1,2,..., A} represents the predicted
atomic action id of the z'" segment of v'. @ is a wrap function which projects
the inner group id y to its global unique id in F,ep. W7 :A{w{v, wl, ..., wi} is the
ids of atomic actions belonging to source action j, and w) € {1,2,..., A}. Thus
nl represents the atomic action whose memorized feature is mostly similar to f;
but not a component of source action j Lcons minimizes the distance between

fA}c and fﬁ}'em and maximizes the distance between f; and fl,i@m The rule of
updating Fiem is:

As; ng: f;lc ° ngem > frsnmem . g:rsr%em
friem = psl i ast pst s (14)
fnfem fm * Gmem § fn@mem * Gmem
where Grem = {0t ems - G } is the memorized verbal feature buffer of atomic
actions. Meanwhile, we also implemented the ER Loss[8] L., which resorts to
recognized objects as weak supervision. Thus, the full loss function L is:

L= Lact + Ler + Lcons (15)

3.3 Group Excitation (GE) Module

Different from previous methods which extract spatio-temporal features from
entire videos, our NV,;4 only extracts spatio-temporal features from video seg-
ments with limited temporal receptive field. Meanwhile, each segment may not
cover the complete atomic action. To better understand each atomic action, we
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propose the GE module to adaptively aggregate intra sample features. Inspired
by recent success of implementing transformer[40] for both computer vision[30,
3] and NLP[10, 14] tasks, we propose GE, a multi-head transformer based aggre-
gation module to fuse intra sample features F; and O;. It enables the feature f;
of each video segment to contain contextual spatio-temporal feature of all other
inter sample segments. GE is functioned as:

H =concat(F;, 0;)

={fl,., [, O} € R(m+1)xd (16)
HWC - (HW)T
e = \(/& oy (17)
M(I) =concat(heady, ..., headh)WO
B (18)

={F;, 0;}

where W € R WK € R4 WY € RIXH and WO € RI*.

3.4 Jigsaw Network (JigsawNet)

As is shown in Figure 2, we implement the JigsawNet with modules introduced
above. For efficiency, JigsawNet has an action cache to memorize semantic rep-
resentations extracted from verb phrases grouped by atomic actions. In each
training iteration, NV;e,: only extracts semantic representations from verb phrases
belonging to labeled source actions and concatenated verbal objects of videos in
batch. Before each training or validation epoch starts, the action cache will be
initialized through extracting features from all A verb phrases of atomic actions
with Mezs. In each validation iteration, since the MN;e,; won’t be updated, so
the model will directly pick semantic representations from the action cache. Jig-
sawNet also contains a vision cache to memorize visual features extracted from
video segments. The memorized visual features are also grouped by predicted
atomic action types. Different from the action cache, it’s difficult to initialize the
vision cache, in that the model doesn’t have ground truth atomic action label
for each video clip. Since the model aims to bridge between visual features and
semantic representations, gi will then become a “perfect” expected output for

initialization. A threshold € is set as current distance of fﬁ;‘em . g;ifem, it enables
the memorized feature get replaced by the real extracted visual features after
several iterations. The vision cache is only used for optimization during training
stages.

4 Experiments

4.1 Datasets

HMDBS51 and UCF101 HMDB51[26] is a human motion benchmark. It con-
tains 6,849 videos divided into 51 action categories, each category contains a
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minimum of 101 clips. UCF101[37] contains 13320 videos divided into 101 sports
related actions. For robust and fair comparison, we followed the evaluation proce-
dure proposed in [44]. The model is tested 50 times with 50 randomly generated
splits, the average rankl accuracy and standard deviation are reported for eval-
uation. In each split, 50% classes are used for training and the rest 50% classes
are preserved for testing.

KineticsZSAR Given the size limit of previous ZSAR protocols, [8] proposes
a new benchmark with videos and annotations selected from Kinetics400[7] and
Kinetics600[6]. The 400 classes of Kinetics400[7] are selected as seen actions and
the rest 220 actions from Kinetics600[6] are used as unseen actions for validation
and testing. To be specific, we followed [8] to generate three splits. In each split,
60 actions are used for validation and the rest 160 actions are used for testing.
The model will be tested three times. Many videos in the original val and test
split can’t be accessed, so we re-select the videos and preserve the same number
of videos for each action to make a fair comparison. The average rankl accuracy
and standard deviation are reported for evaluation.

4.2 Implementation Details

For spatio-temporal extractor backbone N5, we use a pretrained 34 layers
R(2+1)D[39] model, and remove the temporal pooling layers. If not specified,

Table 1. ZSAR performance comparison on HMDB51 and UCF101. F'V represents
fisher vetor, BoW represents bag of words, O represents the model uses object as video
attributes, V represents the model uses spatio-temporal features of videos, A repre-
sents manually designed attributes, W represents class label names, Wp represents
descriptions of classes. For fair comparison, the rankl accuracy (%) and standard de-
viation (£) are reported. We only list the average rankl accuracy in table for several
methods whose deviations are not provided

Method  Video Input Action Input HMDB511 UCF1011

DAP[27] FV A N/A 159+ 12
IAP[27] FV A N/A 167+ 1.1
HAA[29] FV A N/A 149 4+ 0.8
SVE[43] BoW Wy 13.0 £ 2.7 109 + 1.5
ESZSL[43] FV Wy 185+ 2.0 15.0 + 1.3
SJE[2] FV Wi 133424 99+ 14
SJE[2] FV A N/A 120+ 12
MTE[45] FV Wy 19.7+ 1.6 158 + 1.3
ZSECOC[33]  FV Wy 226 +1.2 151+ 1.7
UR([50] FV Wy 244+ 1.6 17.5 + 1.6
02A[22] o) Wy 15.6 30.3
ASR[42] \% Wp 21.8 + 0.9 24.4 + 1.0
TS-GCNJ[17] 0 Wy 232 4+ 3.0 34.2 + 3.1
E2E[4] \Y% Wy 29.8 44.1
ER[8] V+0 Wp 35.3 £ 4.6 51.8 + 2.9

Ours V+0O Wp 38.7 + 3.7 56.0 + 3.1
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Nyis is initialized with weights pretrained on Kinetics400[7] and IG65M][18]
for experiments on KineticsZSAR benchmark, and initialized with weights pre-
trained on Kinetics605[4] which removes all overlapped actions that appears in
HMDB51 and UCF101 for experiments on these two benchmarks. For seman-
tic extractor backbone N;ert, we use a pretrained 12-layer Bert[10] model. For
object recognition backbone Ny;, we use a BiT model [25] pretrained on Im-
ageNet21K[9]. The top 5 recognized verbal objects are selected and forwarded
t0 Niept to extract semantic representations. Nobj is frozen during the training
stage. All layers of NV;, and last two layers of Niey: are finetuned during training
stages on KineticsZSAR. For experiments on HMDB51 and UCF101, only the
last layer of NV,;s and last two layers of N+ are finetuned. The dimension of
shared sphere is set as d = 768, the threshold € is set as 0.3, and the number of
self-attention head h = 8. We use SGD with Momentum algorithm for optimiza-
tion. The weight decay is 5e-4, the momentum is 0.9, and the initial learning
rate is le-5 on Kinetics ZSAR and le-4 on HMDB51 and UCF101. The learning
rate is updated with a plateau scheduler which monitors the rank-1 accuracy on
validation set, the patience is set as 1, and the min learning rate is set as le-9.
The model is trained 15 epochs on HMDB51 and UCF101, and 20 epochs on
KineticsZSAR. All experiments are made on four TITAN RTX gpus.

4.3 Comparison with State-of-the-art Methods

Table 2. ZSAR performance comparison on KineticsZSAR. O represents the model
uses object as video attributes, V represents the model uses spatio-temporal features
of videos, Wi represents class label names, Wp represents descriptions of classes

Method  Video Input Action Input Rankl Acct Rank5 Acct

DEVISE[15] \Y% Wi 23.8+ 0.3 51.0 + 0.6
DEM][48] \% Wi 23.6 + 0.7 49.5 + 0.4
ALE[1] \% Wy 234+ 0.8 50.3+ 1.4
ESZSL[43] \Y% Wi 22,94+ 1.2 48.3 + 0.8
SJE[2] \% W 2234+ 0.6 48.2 + 0.4
GCNJ[19] \% W 223+ 0.6 49.7 + 0.6
ER[8] V+0 Wp 421+ 1.4 731+ 0.3
Ours V+O Wp 45.9 + 1.6 78.8 1.0

We make experiments on three benchmarks to evaluate our method against
previous SOTAs. Since the N,;q needs to extract spatio-temporal features from
video segments which has a different temporal receptive field with all off-the-shelf
pretrained weights. We need to firstly pretrain the model on Kinetics605[4]. Ki-
netics605[4] removes the overlapped actions that also appears in HMDB51 or
UCF101, so there is no data leakage caused by the pretraining. As is shown in
Table 1, our model consistently outperforms previous SOTAs on both bench-
marks with noticeable margins. When compared with E2E[4], which also pre-
trains the spatio-temporal extractor backbone on Kinetics605[4], our method
achieves significant better performance with 8.9 and 11.9 gains on HMDB51 and
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Table 3. Comparing models w or w/o  Table 4. Comparing models w or w/o Con-

GA module sistency Loss
GA Module Rankl Acc Rank5 Acc Consistency Loss Rankl Acc Rank5 Acc
w/o 41.7+ 1.3 734 £ 0.5 w/o 432 +£19 762 £ 1.3
w 459 £ 1.6 78.8 £ 1.0 W 459 £ 1.6 78.8 £1.0

UCF101. When compared with ERJ[8], which uses the same video and action
input formats (Video,Object, and Description) as ours, JigsawNet still continu-
ously outperforms it with 3.4 and 4.2 gains on HMDB51 and UCF101.

We also compare our method against previous SOTASs on the recently released
KineticsZSAR([8] benchmark. The N, is initialized with weights pretrained on
Kinetics400, because the val and test set of KineticsZSAR have no overlap with
Kinetics400. We followed the procedures mentioned in [8] to test the model
three times on three splits of KineticsZSAR. The average mean and deviation
is provided in Table 2 for comparison. Our method consistently outperforms all
previous works in Table 2 with noticeable margins. When compared with ER[§],
which uses the same input types, our model performs better with 3.8 and 5.7
gains of rankl and rankb accuracy.

4.4 Ablation Studies

We also make ablation studies to analyze the contribution of each module to the
final performance. All experiments below in this subsection are made on Kinetics
ZSAR.

Is group-to-group alignment necessary for zero-shot action recogni-
tion? Although our model already achieves SOTA performance on three bench-
marks, it’s natural for people to ask how much benefit it earns changing from
building one-to-one bridge to establishing gorup-to-group bridge? We design
a comparison experiment for evaluation. Instead of extracting visual features
from groups of video segments, the visual features are now directly extracted
from whole videos, which means F! = N,;q(V;), F* € R%. For action seman-
tic extraction, the semantics are also extracted from entire descriptions instead
of groups of verb phrases, G/ = Nie¢(d?),G? € R%. The one-to-one relation-
ship between i*" video v’ and j** action is represented as p/ = F' . (G/)T,

U =0 (GHT pY = p¥ + max(p¥,0). For fair comparison, Consistency Loss
and GE are preserved with slight modifications. For Consistency Loss, the mem-
orized cache are grouped by action types instead of atomic action types. For
GE, it will now directly aggregate F* and O'. As is shown in Table 3, the group-
to-group model earns 4.2 and 5.4 gains of rankl and rank5 accuracy, which is
pretty significant.

Is the Consistency Loss beneficial? In Table 4, we compare models trained
with or without Consistency Loss. As is shown by the results, the model trained
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Table 5. Comparing features optimized by Table 6. Comparing models w or
Consistency Loss w/o GE Module
Optimized Features Rankl Acc Rank5 Acc GE Rankl Acc Rank5 Acc
spatio-temporal 45.1 + 1.4 78.0 = 0.8 w/o 42.7 £ 2.0 72.9 £ 1.7
aggregated 459+ 1.6 788 £ 1.0 w 4594+ 1.6 788 £ 1.0

Table 7. Comparing improvements brought by backbone

Model Backbone Rankl Acc Rank5 Acc

R(2+1)D[39] ResNet18 42.9 + 1.7 73.0 + 1.3
R(2+1)D[39] ResNet34 45.9 + 1.6 78.8 + 1.0
TSM[28] ResNet50 45.3 + 1.8 78.4 + 1.2

with Consistency Loss builds a more robust bridge between vision features and
action semantics. It’s consistent with our expectation that the model can benefit
from modeling inter-sample knowledge.

Which vision feature should be memorized, spatio-temporal feature
or fused feature? We have shown the benefits brought by Consistency Loss,
however, we want to dig deeper and show why aggregated feature, instead of
spatio-temporal features are selected in Consistency Loss. Table 5 compares
models with Consistency Loss optimized on aggregated features f; and vision
features fi. According to the results, we can easily find that the aggregated
feature is a better option. We assume it because the integration of object features
enables the text extractor NVie,; also learn from inter-sample knowledge and get
optimized by gradients back propagated from Consistency Loss. Meanwhile, the
integration of object features enlarges the domain variance, which may also help
in this training procedure.

Is the GE module beneficial? Table 6 compares models with or without
GE module. According to the result, GE makes noticeable contributions to the
final performance. GE not only enlarges the temporal receptive field of visual
features extracted from video segments, but enables both spatio-temporal and
object features to gain knowledge from a different domain.

How much improvements are from the pretrained R(2+1)D model?
In Table7, we compare performance of models with different spatio-temporal ex-
tractor backbones. Compared with R(2+1)D-18, the deeper R(2+1)D-34 signif-
icantly boosts the performance and outperforms with 3.0 and 5.8 gains of rank1
and rankb accuracy. We also notice that, when using the same sptio-temporal fea-
ture extractor[28] and the same input information types with ERJ[8], our model
still achieves noticeable better performance with 3.2 and 5.3 gains of rankl and
rankb accuracy.
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Fig. 4. Visualization of predicted atomic action types of segments when recognizing
target actions

4.5 Visualization

To better understand the group-to-group bridge, we visualize the atomic actions
our model assigned to each segment. As is shown in Figure 4, the model suc-
cessfully learned the latent atomic actions unsupervisedly from source actions.
For example, the model may learn “hand stand” and “jump backward” from
gymnastics actions, and “push up body with arms” from fitness related actions
in training set. Meanwhile, we also noticed the benefits brought by intra and
inter samples modeling. In Figure 4(c), the model can successfully distinguish
between ”push up body with arms” and ”pull knee up to chest” whose visual
features are pretty similar. In Figure 4(d), the model still recognizes the second
segment as ”get out of the water” with the intra sample knowledge aggregated
from contextual frames. Of course, we also found several places which can be
improved by future works. For example, current strategy directly splits video
into sequential segments, however, the atomic actions may locate between two
segments. Although the model can still gain contextual information brought by
GE, a soft temporal localization module may further improve the performance.

5 Conclusion

We propose a novel ZSAR model, JigsawNet.
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