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Abstract. Human-Object Interaction (HOI) detection plays a crucial
role in activity understanding. Though significant progress has been
made, interactiveness learning remains a challenging problem in HOI
detection: existing methods usually generate redundant negative H-O
pair proposals and fail to effectively extract interactive pairs. Though
interactiveness has been studied in both whole body- and part- level and
facilitates the H-O pairing, previous works only focus on the target per-
son once (i.e., in a local perspective) and overlook the information of
the other persons. In this paper, we argue that comparing body-parts of
multi-person simultaneously can afford us more useful and supplemen-
tary interactiveness cues. That said, to learn body-part interactiveness
from a global perspective: when classifying a target person’s body-part
interactiveness, visual cues are explored not only from herself/himself but
also from other persons in the image. We construct body-part saliency
maps based on self-attention to mine cross-person informative cues and
learn the holistic relationships between all the body-parts. We evalu-
ate the proposed method on widely-used benchmarks HICO-DET and
V-COCO. With our new perspective, the holistic global-local body-part
interactiveness learning achieves significant improvements over state-of-
the-art. Our code is available at https://github.com/enlighten0707/Body-
Part-Map-for-Interactiveness.

Keywords: Human-Object Interaction, Interactiveness Learning, Body-
Part Correlations

1 Introduction

Human-Object Interaction (HOI) detection retrieves human and object locations
and infers the interactions simultaneously from still images. In practice, an HOI
instance is represented as a triplet: (human, verb, object). As a sub-task of visual
relationship [12,28], it is crucial for activity understanding, embodied AI, etc.
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Fig. 1: a) Statistics of hard cases in HOI datasets HICO-DET [1]. The images
containing tiny persons, crowded scenes, and occlusion are considered. b) Our
idea of learning body-part interactiveness from the same/different body-parts of
other persons in the image.

Though significant progress has been made, HOI detection is still bottle-
necked by interactiveness learning [22]: they fail to effectively extract interacted
pairs while generating redundant negative pairs. The problem is first raised in
TIN [22], where a pairwise interactiveness classifier is inserted into the HOI de-
tection framework and the interactiveness prediction is used for non-interaction
suppression. The decent gain on HOI detection performance verifies the great
potential and importance of interactiveness learning.

Recently, TIN++ [17] is further proposed to utilize body-part level features
to improve instance-level interactiveness learning via a hierarchical diagram. De-
spite the improvement in detecting positive pairs, it focuses on local body-part
features from the targeted person only, which is not enough. We argue that when
classifying the target person’s body-part interactiveness, visual cues can be ex-
plored not only from himself/herself but also from other persons in the image.
First, aside from the targeted person and object, it is also important to exploit
contextual cues from the whole image [5]. Existing methods [5,32] have made
efforts to learn relevant context to facilitate HOI learning. However, it is hard
and unstable to retrieve useful information from various backgrounds with-
out restriction. Therefore, we argue to better utilize contextual information by
highlighting all the persons in the image because regions containing persons are
usually more informative according to our prior. For instance, when recognizing
a speaker giving a lecture, the audience is evidence more obviously than the
stage decoration. Furthermore, as is shown in Fig. 1a, there are a large propor-
tion of hard cases in HOI datasets [1], e.g., tiny interactive persons, crowded
scenes, and occlusion. In these cases, the cue carried by body parts of the local
targeted person is very limited, while mining cues from a global multi-person
perspective with other persons as a reference would be a good choice to alleviate
the difficulty.
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Following this insight, we propose to learn body-part interactiveness from
the same/different body-parts of other persons in the image, which is illustrated
in Fig. 1b. In the upper image, a crowd of tiny persons is rowing boats, and
their lower bodies are occluded. When classifying a targeted H-O pair, aside
from the targeted object, TIN++ [17] only focuses on the targeted person from
the body-part level (e.g., hand), which is highlighted in the image. Nevertheless,
we also emphasize other persons’ hands even when classifying the targeted per-
son’s hand interactiveness, which provides a supplementary and contrastive
viewpoint for interactiveness learning. Suppose another person B’s hands are
given as a reference which is easier to identify interactiveness, then the similar-
ity between B’s and targeted person A’s hands will lead to the same prediction
(both interactive or non-interactive), while discernable difference will lead to an
opposite conclusion. Further, attention to different body-parts of multi-person
also matters. In the bottom image, the left person is kicking a football while the
right person is defending. When classifying the left person’s feet interactiveness,
the right person’s arms would provide useful cues, since he is stretching out
his arms and trying to intercept the ball. Thus, the relationship between dif-
ferent body-parts of different persons overlooked by previous works also offers
supplementary information to interactiveness inference.

In light of these, we utilize a transformer for body-part interactiveness detec-
tion, where self-attention helps to capture informative cross-person visual cues.
First, body-part saliency maps are constructed via image patches (i.e., trans-
former tokens) masking, where patches not containing interested body-parts are
masked and blocked from the computation. Second, to encode diverse visual
patterns more flexibly, body-parts are progressively masked, where different at-
tention mask is applied in successive transformer layers and more tokens are
dropped in the late layers. Third, motivated by the sparsity property [21,17]
of body-part interactiveness [17], the model classifies interactiveness of different
body-parts via one-time passing to improve computation efficiency. An early fil-
ter is inserted to drop unimportant body-parts, and then the remaining saliency
maps are merged. Fourth, we also propose a sparsity adaptive sampling strategy
on the train set to put more emphasis on crowded scenes and guide better inter-
activeness knowledge. In extensive experiments, the proposed method achieves
state-of-the-art. We firstly achieve all 33+ mAP on three sets of HICO-DET [1],
especially the impressive improvement on Rare HOIs (6.16 mAP improvement
upon the SOTA CDN [36]) thanks to our holistic global-local interactiveness
learning. Meanwhile, on the HOI hard cases, we also show our significant supe-
riority.

Our contribution includes: 1) We propose to learn body-part interactiveness
from a global perspective as an effective supplement for existing local-based
methods, thus boosting interactiveness learning; 2) To mine cross-person cues,
we construct body-part saliency maps based on self-attention computation and
propose the progressively mask and one-time passing strategies to improve flex-
ibility and efficiency; 3) With our proposed interactiveness detector, we achieve
state-of-the-art on widely-used benchmarks HICO-DET [1] and V-COCO [8].
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2 Related Work

Human-Object Interaction. Human-Object Interaction is essential to under-
stand human-centric interaction with objects. Rapid progress has been made in
HOI learning. Many large datasets [1,8,21,13] and deep learning based meth-
ods [1,30,6,5,22,17,16,9,18,23,35,32,36,25,26] have been proposed. They usually
followed the two-stage pipeline, i.e., first H-O pair detection, and then HOI
classification. Chao et al. [1] proposed the widely-used multi-stream framework
combining visual features and spatial locations, while GPNN [30] incorporated
DNN and graph model to model the HOI relationship. InteractNet [6] utilized
an action-specific density map to estimate the interacted object locations. DJ-
RN [16] introduced 3D information and proposed a 2D-3D joint representation
learning method. PaStaNet [21] inferred human part states [29] first and then
reason out the activities based on part-level semantics. IDN [18] analyzed HOI
from an integration and decomposition perspective. Recently, several one-stage
methods have been proposed [23,35,32,36], where HOIs triplets are directly de-
tected by parallel HOI detectors. PPDM [23] and IP-Net [35] adopted a variant
of one-stage object detector for HOI detection. QPIC [32] utilized the recent
transformer-based object detector DETR [38] to aggregate image-wide contex-
tual information and facilitate HOI learning.
Interactiveness Learning. Though significant progress has been made, inter-
activeness learning remains challenging in HOI detection. Existing methods fail
to pair interactive human and object effectively but generate redundant negative
pairs. TIN and TIN++ [22,17] first raised this problem and tried to address it
via an inserted pairwise interactiveness classifier. In TIN++ [17], the framework
is extended to a hierarchical paradigm with jointly learning instance-level and
body part-level interactiveness. Recently, CDN [36] proposed to accurately locate
interactive pairs via a one-stage transformer framework disentangling human-
object pair detection and interaction classification. However, it still performs not
well on interactiveness detection (Sec. 5.3). Here, we point out the previously
overlooked global perspective and utilize it to improve interactiveness learning.
Part-based Action Recognition. The part-level human feature provides finer-
grained visual cues to improve HOI detection. Based on the whole person and
part boxes, Gkioxari et al. [7] developed a part-based model to make fine-grained
action recognition. Fang et al. [3] proposed a pairwise body-part attention model
which can learn to focus on crucial parts and their correlations, while TIN++ [17]
utilized the human instance and body-part features together to learn interactive-
ness in a hierarchical paradigm and extract deeper interactive visual clues.

3 Method

3.1 Overview

As is shown in Fig. 2, our pipeline consists of three main modules: a box detector,
an interactiveness classifier, and a verb classifier. They are all implemented as
stacked transformed decoder.
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Fig. 2: The overall framework of our proposed method.

Given an input image x ∈ R3×H0×W0 , we first adopt a ResNet-50 followed by
a transformer encoder as our visual feature extractor. The output feature map
is obtained as z ∈ RDc×H×W , where Dc is the number of channels and H,W
is the size. A fixed positional embedding pos ∈ RDc×H×W is additionally input
to the transformer to supplement the positional information. Then based on the
feature map z, the three main components are used for HOI detection.

An interactive human-object pair is mathematically defined following [32]:
1) a human bounding box vector b(h) ∈ [0, 1]4 normalized by the image size,
2) an object bounding box vector b(o) ∈ [0, 1]4 normalized by the image size,
3) an object class vector c ∈ {0, 1}Nobj , where Nobj is the number of object
classes, 4) an interactiveness prediction pint ∈ [0, 1], and 5) a verb prediction
pverb ∈ {0, 1}Nv , where Nv is the number of verb classes. For box detection, a
transformer decoder fdec1(·, ·, ·) transforms a set of learnable query vectors Q =

{qi|qi ∈ RDc}Nq

i=1 into a set of decoded embeddings D = {di|di ∈ RDc}Nq

i=1, which
is obtained as D = fdec1(z,Q, pos). The subsequent three small feed-forward
networks (FFNs): human bounding box FFN fh, object bounding box FFN fo,
and object class FFN fc further process the decoded embeddings D to produce

Nq prediction results {b(h)i}Nq

i=1, {b(o)i}Nq

i=1, {ci}Nq

i=1, respectively. The decoded
embeddings D are then fed into the interactiveness classifier and verb classifier as
their query embeddings. For verb classification, another transformer decoder

fdec3(·, ·, ·) takes D as input and outputs V = {vi|vi ∈ RDc}Nq

i=1. With the verb
class FFN fv, the classification results is obtained as piverb = Sigmoid(fv(vi)).

Our main contribution is global-local interactiveness learning based on the
proposed body-part saliency map. Thus, we focus on the design of the new
proposed interactiveness classifier (Fig. 3). In Sec. 3.2, we introduce the con-
struction of body-part saliency map based on self-attention computation, and
provide an intuitive scheme to validate its effectiveness (Fig. 3a). Then, we im-
prove the intuitive scheme from two aspects: progressively masking to encode
diverse visual patterns flexibly (Sec. 3.3), and one-time passing to improve effi-
ciency (Sec. 3.4). The final improved model is shown in Fig. 3b.

3.2 Constructing Body-Part Saliency Map

We divide a person into six body-parts: feet, legs, hip, hands, arms, and head
following HAKE [20]. To construct the body-part saliency map, e.g., for hands,
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Fig. 3: The design of interactiveness classifier. a) Body-part saliency map con-
struction and the intuitive scheme. We use legs and arms as examples. b) The
final improved model. Here, we use the images to show the masking process
for clarity instead of masking real images. The decoded embedding di is gener-
ated from the box detector and fed into the interactiveness classifier as query
embeddings.

we utilize the attention mask matrix in the transformer. Only image patches
(or equally, transformer tokens) containing hands are remained for attention
calculation, while other patches are masked. The attention mask is pre-calculated
from body-part boxes detection results.

An Intuitive Scheme In implementation, a transformer decoder fdec2(·, ·, ·, ·)
is used to transform input query embeddings D into E = {ei|ei ∈ RDc}Nq

i=1.
Body-part saliency map is applied in fdec2 by masking partial of the feature map

z via a masking matrix M = {mi|mi ∈ {0, 1}H×W }Nq

i=1 (1 for effective tokens
and 0 for masked tokens). First, to integrate image-wide contextual information,
a set of decoded embeddings are obtained as E0 = fdec2(z,D, pos,M0), where
M0 is an all-one matrix, i.e., applying no mask. Next, the finer-grained body-
part level features are used. The input query embeddings Dk

part for the k-th
(1 ≤ k ≤ 6) body-part is transformed from the original query embeddings D
via FFNs {fkpart}6k=1, i.e., Dk

part = fkpart(D). Then the decoded embeddings are

calculated via Ek = fdec2(z,Dk
part, pos,M

k), where Mk is the corresponding
mask matrix. In fdec2, the attention masks are different for each body-part,
while the learned parameters are shared. Finally, based on decoded embeddings
E0 and {Ek}6i=1, an interactiveness FFN fint is used to generate body-part
interactiveness prediction. For the i-th proposal and the k-th body-part, its
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interactiveness score is obtained via pikint = Sigmoid(fint(concat(e
ik, ei0))). The

instance-level interactiveness score is then obtained as piint = maxk{pikint}.

Attention Mask To calculate the attention mask of all persons in the image,
we first obtain the body-part boxes from the pose estimation [4,15,14] results
following [17]. For the failure cases of pose estimation, we use the whole-body
detection boxes from [31] as body-part boxes. With the k-th body-part boxes as
b(p)k = {b(p)kl|b(p)kl = [wkl

1 , h
kl
1 , w

kl
2 , h

kl
2 ], 1 ≤ l ≤ L} (L is the persons count

in the image), the global body-parts mask matrix mik
part (∀i,mik

part = mk
part) is

calculated as:

m
k(xy)
part =

{
1 ∃ l, hkl1 ≤ x ∗ (H0/H) ≤ hkl2 , wkl

1 ≤ y ∗ (W0/W ) ≤ wkl
2

0 otherwise
, (1)

where x, y is the index of the matrix. The scaling factor H0/H and W0/W are
used here because the size of the feature map z is scaled down from that of the
original image, e.g., H0/H = W0/W = 32 with ResNet-50 backbone.

Notably, although one proposal corresponds to only one targeted H-O pair,
its body-part saliency map contains the body-parts of all persons in the image.
Thus, the relationship between body-parts of all persons is learned from a global
perspective. Here mik

part is a core component of the final mask mik. We briefly

set mik = mik
part for the intuitive scheme in this section, and will further modify

mik in the next sections.

3.3 Progressively Body-Part Masking for Flexibility

In Sec. 3.2, an intuitive scheme with body-part saliency map is introduced, and
its effectiveness is validated by experiments (Sec. 5). However, it lacks flexi-
bility to simply construct body-part saliency maps to highlight all the same
body-parts. As aforementioned in Fig. 1b, it also matters to learn attention
from different body-parts of different persons. Thus, we develop a progres-
sively masking strategy, where different attention masks are applied in successive
transformer layers. Considering that the token representations are encoded more
and more sufficiently throughout the whole network, fewer tokens are dropped
in the early layers while more tokens are dropped in the late layers. In other
words, the “receptive field” gradually becomes more focused as the computa-
tion proceeds. Attention to different body-parts of different persons is learned
in the early layer, then comes the same body-parts of different persons. After
encoding useful information from a global perspective, our model focuses on the
targeted person in the final layer, which is similar to TIN++ [17].

Implementation We construct the progressive masks from three components:
body-part mask mk

part (1 ≤ k ≤ 6, Sec. 3.2) shared by proposals, detected human

mask mi
hum (1 ≤ i ≤ Nq) dynamically calculated from the box detection of the

i-th proposal, and detected object mask mi
obj (1 ≤ i ≤ Nq) similar to mi

hum. For
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the i-th proposal and its detected human bounding box b(h)i ∈ [0, 1]4, the box
is first unnormalized by the image size as b(h)i = [wi

1, h
i
1, w

i
2, h

i
2]. Then

m
i(xy)
hum =

{
1 hi1 ≤ x ∗ (H0/H) ≤ hi2, wi

1 ≤ y ∗ (W0/W ) ≤ wi
2

0 otherwise
, (2)

The detected object mask mi
obj is obtained from b(o)i in a similar way.

The transformer decoder fdec2 for interactiveness inference has three stacked
layers. The attention mask mik

j ∈ {0, 1}H×W for the i-th proposal, the j-th
(j = 1, 2, 3, larger for later layer) layer and the k-th body-part is:

mik
1 = max(mi

hum′ ,mk
part,m

i
obj),m

i
hum′ = max(max

k
(mk

part)−mi
hum), 0), (3)

mik
2 = max(mk

part,m
i
obj), (4)

mik
3 = max(min(mk

part,m
i
hum),mi

obj). (5)

An example is given in Fig. 3b. The targeted object is highlighted in all layers.
Specifically, the 1-st layer highlights the k-th body-part of the detected human,
and the whole body of the other humans in the image (mi

hum′), which allows
attention computation from different body-parts of different persons. The 2-
nd layer emphasizes the k-th body-part from all persons in the image, while
the 3-rd layer focuses on the k-th body-part of the targeted person. With the
progressive mask throughout transformer layers, different visual patterns are
flexibly encoded to facilitate body-part interactiveness learning.

3.4 One-Time Passing via Body-Parts Filtering and Merging

In the intuitive scheme, six repeated calculations are needed for each body-part
because their saliency maps are not shared. However, this is computationally
redundant since body-part interactiveness has a notable property: sparsity.
Namely, only several body-parts will get involved when people are interact-
ing with daily objects. For instance, in “eat apple”, the head and hands have
stronger relationships with the apple than the lower body. Therefore, we can
select the most important body-parts and only feed their visual feature into
the network to classify interactiveness, i.e., the filtering process. Then, for the
selected body-parts, there are still repeated calculations although fewer times.
Thus, we spatially merge the saliency maps of the selected body-parts, feed
them into the network, and obtain the whole-body interactiveness prediction via
a one-time calculation. The rationality of merging is validated from the follow-
ing two aspects. First, it seems that the spatial merging leads to “mixed-up”
body-part feature, since merging all the six body-parts is equal to instance-
level learning instead of body-part level. However, we emphasize that body-part
level finer-grained feature remains in our model because only several body-parts
are merged. Second, here the whole-body interactiveness prediction is directly
calculated, while in the intuitive scheme we obtain it from six body-part interac-
tiveness predictions. This does not impede interactiveness learning because most
important body-parts are used for calculation.



Mining Cross-Person Cues for Body-Part Interactiveness Learning 9

Implementation The implementation is illustrated in Fig. 3b. First, the im-
portance of body-parts is calculated via a one-layer transformer decoder layer
h(·, ·, ·) without mask. For the i-th proposal, it transforms di into dipart =

h(z, di, pos), and a subsequent FFN is applied to get body-part attention score
{pikpart}6k=1 = Sigmoid(FFN(dipart)). Then, body-parts with relatively higher

scores (top 25% of {pikpart|1 ≤ i ≤ Nq, 1 ≤ k ≤ 6}) are chosen for the fol-
lowing computation and others are filtered out. The result is represented as
{nik ∈ {0, 1}} (1 for chosen and 0 for dropped). After the filtering, both the
mask matrix and query embeddings are merged as:

mi
j = maxk(mik

j ∗ nik), (6)

dimer = di +
∑
k

(dikpart ∗ nik ∗ pikpart). (7)

For the mask matrix, the spatial merge is equivalent to the elementwise max-
imum operation. For the query embeddings, the weighted sum of query em-
beddings dikpart of the selected body-parts is added to the whole-image query

embeddings di to generate the merged embeddings dimer. Then the decoder fdec2
with progressively masking transforms dimer into embedding eimer. Finally, the
interactiveness score is obtained by a FFN via piint = Sigmoid(FFN(eimer)).
Compared with the intuitive scheme, the one-time passing strategy drops un-
necessary computation and improves computation efficiency.

3.5 Training and Inference

When training our model, following the set-based training process of QPIC [32],
we first match predictions and ground-truths via bipartite matching, then cal-
culate the loss for the matched pairs. For box detection, the loss is composed by
three parts: box regression loss Lb, intersection-over-union loss Lu and object-
class loss Lc. The loss Ldet is obtained via Ldet = λ1 ∗ Lb + λ2 ∗ Lu + λ3 ∗ Lc,
where λ1, λ2, λ3 are hyperparameters for adjusting the weights. The interactive-
ness classifier and verb classifier are supervised with classification loss Lint and
Lverb respectively.

The training is divided into two stages. First, we train the box detector
and interactiveness classifier along with the visual feature extractor with loss
L1 = Ldet + Lint. Then, the box detector and verb classifier are trained along
with the visual feature extractor and the loss is L2 = Ldet+Lverb. In inference, we
use the interactiveness results to improve verb classification via non-interaction
suppression (NIS) [17], where H-O pairs with lower interactiveness scores are
filtered out.

4 Discussion: Sparse vs. Crowded Scene

In this section, we discuss a naturally raised question: our method focuses on
crowded scenes with multi interactive pairs or multi persons/objects, then what
about the sparse scenes?
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First, our model is adapted to both crowded and sparse scenes. Under crowded
scenes, mining cross-person cues provides more useful information of interac-
tiveness. While for sparse scenes, our method would be operated similar to
TIN++ [17]. However, our model is still superior to TIN++ [17] thanks to the
integration body-part feature and DETR [38] backbone.

Next, we want to re-emphasize the importance of HOI detection in crowded
scenes, especially for interactiveness learning and interactive human-object pair
proposal detection. We find that crowded images occupy a large proportion
of the HOI dataset, validating the effects brought by our method. Meanwhile,
the performance of interactiveness learning under crowded scenes is inferior to
sparse ones. We split HICO-DET [1] test set into sparse/crowded scenes respec-
tively and evaluate the interactiveness AP: 16.96/9.64 AP (TIN++ [17]) and
43.62/33.10 AP (ours, Sec. 5). From the large performance gap between sparse
and crowded scenes (7.32 AP for TIN++ [17] and 10.52 AP for ours, Sec. 5), we
can see that interactiveness learning is mainly bottlenecked by crowded scenes,
where it is usually harder to effectively extract interactive pairs. Therefore, it
matters to focus on crowded scenes for interactiveness learning. Statistics are
detailed in the supplementary.

Then, we further propose a novel sparsity adaptive sampling strategy on
train set to put more emphasis on crowded scenes and facilitate interactiveness
learning. The sampling probability is modified as 1:α (α >1, in practice α = 3)
for sparse vs. crowded images, compared with the original 1:1, which guides bet-
ter interactiveness knowledge to identify interactive pairs under complex scenes.
Finally, the experiment (Sec. 5.3) proves that the proposed global perspective
indeed boosts interactiveness learning, especially for crowded scenes.

5 Experiment

In this section, we first introduce the datasets and metrics in Sec. 5.1, and
describe implementation details in Sec. 5.2. Next, we report the results on HICO-
DET [1] and V-COCO [8] in Sec. 5.3. Some visualization results are given in
Sec. 5.4. Finally, ablation studies are conducted in Sec. 5.5.

5.1 Dataset and Metric

Datasets. We adopt two datasets HICO-DET [1] and V-COCO [8]. HICO-
DET [1] includes 47,776 images (38,118 in train set and 9658 in test set), 600
HOI categories on 80 object categories (same with [24]) and 117 verbs, and
provides more than 150k annotated human-object pairs. V-COCO [8] provides
10,346 images (2,533 for training, 2,867 for validating, and 4,946 for testing) and
16,199 person instances. Each person has labels for 29 action categories (five of
them have no paired object).
Metrics. We follow the settings adopted in [1], i.e., a prediction is a true positive
only when the human and object bounding boxes both have IoUs larger than 0.5
with reference to ground truth, and the HOI classification result is accurate. The
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role mean average precision [8] is used to measure the performance. Additionally,
we measure interactiveness detection in a similar setting.

5.2 Implementation Details

We adopt ResNet-50 followed by a six-layer transformer encoder as our visual
feature extractor. The box detector and the verb classifier are both implemented
as a six-layer transformer decoder. The interactiveness classifier is implemented
as a three-layer transformer decoder, where selected tokens are masked. During
training, AdamW [27] with the weight decay of 1e-4 is used. The visual feature
extractor and box decoder are initialized from COCO [24] pretrained DETR [38].
The query size is set as 64 for HICO-DET [1] and 100 for V-COCO [8] following
CDN [36]. The loss weight coefficients λ1, λ2, λ3 are respectively set as 1, 2.5, 1,
exactly the same as QPIC [32]. In 1st stage, the model is trained for 90 epochs
with a learning rate of 1e-4 which is decreased by 10 times at the 60th epoch. In
2nd stage, the model is fine-tuned for 60 epochs. All experiments are conducted
on four NVIDIA GeForce RTX 3090 GPUs with a batch size of 16. In inference,
a pairwise NMS with a threshold of 0.6 is conducted.

5.3 Results

Interactiveness Detection. We evaluate our interactiveness detection on HICO-
DET [1] and V-COCO [8]. On HICO-DET [1], we adopt the interactiveness
detection AP proposed in TIN++ [17], while on V-COCO [8] we construct
the benchmark in a similar way. Tab. 1 shows our interactiveness detection
results compared with open-source state-of-the-art methods [17,23,32,36]. For
TIN++ [17], the output interactiveness score is used. For PPDM [23], QPIC [32],
and CDN [36], the mean of HOI scores (520 HOI categories for HICO-DET [1],
and 24 for V-COCO [8]) is used as an approximation.

Table 1: Interactiveness detection results on HICO-DET [1] and V-COCO [8].

Method HICO-DET [1] V-COCO [8]

TIN++ [17] 14.35 29.36
PPDM [23] 27.34 -
QPIC [32] 32.96 38.33
CDN [36] 33.55 40.13

ours 38.74 (+5.19) 43.61 (+3.48)

As is shown in Tab. 1, for the two-stage method TIN++ [17], the interac-
tiveness AP is unsatisfactory. We claim that it suffers from exhaustively gen-
erated negative H-O pairs from the detector in the first stage, despite the
non-interaction suppression [17]. Instead, the one-stage methods PPDM [23],
QPIC [32], and CDN [36] benefit from the avoidance of exhaustive pairing and
achieve better performance on interactiveness detection. With the insight of
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holistically modeling body-part level interactiveness, our method achieves a even
better interactiveness AP of 38.74 on HICO-DET [1] and 43.61 on V-COCO [8].

Next, we evaluate the effectiveness of our method in hard cases, as is dis-
cussed in Sec. 1. We split HICO-DET [1] test set and compare the interactive-
ness detection performance of TIN++ [17] and our method. Compared with the
local-based method TIN++ [17], our method improves an interactiveness AP
gain of 26.66 (157%) / 23.46 (243%) for sparse/crowded scenes, 23.74 (147%) /
23.53(263%) for normal/tiny-persons scenes, and 22.11 (134%) / 14.69 (182%)
for less/more-occlusion scenes. We can see that the proposed global perspective
indeed boosts interactiveness learning, especially for hard cases where interac-
tive persons are more difficult to identify. For detailed results, please refer to our
supplementary.

Body-Part Interactiveness Detection. To detail the analysis of body-part
level interactiveness learning, we evaluate body-part interactiveness AP from
the output body-part attention score. When trained without body-part interac-
tiveness supervision, our method still learns body-part interactiveness well. The
interactiveness APs on HICO-DET [1] are: 38.74 (whole body), 11.66 (feet),
5.31 (legs) , 23.83 (hip), 23.11 (hands), 1.38 (arms), 5.51 (head). Further, we
utilize annotations provided by HAKE [21,19] to apply body-part supervision,
i.e., {pikpart}6k=1 is bound with body-part level interactiveness labels, and the
loss is added to Lint. The results are: 38.83 (whole body), 34.89 (feet), 31.02
(legs) , 38.11 (hip), 34.18 (hands), 31.32 (arms), 24.94 (head). We can see that
the performance is further improved with body-part supervision, especially for
“legs”, “arms”, and “head”. Without supervision, the performance of “arms” and
“head” are inferior to other body-parts. One possible reason is that “arms” suf-
fer from relatively ambiguous definitions, and can sometimes be confused with
“torso” or “hands” due to occlusion. Additionally, “head” is related to HOIs
harder to identify such as “look”, “smell”.

HOI Detection Boosting. In Tab. 2 and Tab. 3, we evaluate how HOI learn-
ing can benefit from the interactiveness detection results of our method. Here
we use instance-level supervision without annotations from HAKE [21,19] for
interactiveness learning to compare with TIN++ [17]. In Tab. 2, the first part
adopted COCO pre-trained detector. HICO-DET fine-tuned or one-stage detec-
tor is used in the second part. All the results are with ResNet-50.

Our method outperforms state-of-the-arts with 35.15/37.56 mAP (Default
Full/ Known Object Full) on HICO-DET [1] and 63.0/65.1 mAP (Scenario
1/2) on V-COCO [8], verifying its effectiveness. For two-stage HOI methods, we
feed the representative method iCAN [5] (human-object pairs are exhaustively
paired) with our detected pairs. Tab. 4 reports the performance comparison on
HICO-DET [1] with different pair detection results. We find that with high-
quality detected interactive pairs, the performance of iCAN [5] is significantly
boosted, especially from the results of our method. We leave the detailed settings
in supplementary.
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Table 2: Results on HICO-DET [1].

Default Known Object
Method Full Rare Non-Rare Full Rare Non-Rare

iCAN [5] 14.84 10.45 16.15 16.26 11.33 17.73
TIN [22] 17.03 13.42 18.11 19.17 15.51 20.26
PMFNet [34] 17.46 15.65 18.00 20.34 17.47 21.20
DJ-RN [16] 21.34 18.53 22.18 23.69 20.64 24.60
PPDM [23] 21.73 13.78 24.10 24.58 16.65 26.84
VCL [9] 23.63 17.21 25.55 25.98 19.12 28.03
IDN [18] 26.29 22.61 27.39 28.24 24.47 29.37
Zou et al. [39] 26.61 19.15 28.84 29.13 20.98 31.57
AS-Net [2] 28.87 24.25 30.25 31.74 27.07 33.14
QPIC [32] 29.07 21.85 31.23 31.68 24.14 33.93
FCL [10] 29.12 23.67 30.75 31.31 25.62 33.02
GGNet [37] 29.17 22.13 30.84 33.50 26.67 34.89
CDN [36] 31.78 27.55 33.05 34.53 29.73 35.96
Ours 35.15 33.71 35.58 37.56 35.87 38.06

Table 3: Results on V-
COCO [8].

Method AProle(S1) AProle(S2)

iCAN [5] 45.3 52.4
TIN [22] 47.8 54.2
VSGNet [33] 51.8 57.0
PMFNet [34] 52.0 -
IDN [18] 53.3 60.3
AS-Net [2] 53.9 -
GGNet [37] 54.7 -
HOTR [11] 55.2 64.4
QPIC [32] 58.8 61.0
CDN [36] 62.3 64.4
Ours 63.0 65.1

Table 4: The performance compari-
son on HICO-DET [1] with different
pair detection results.

Method Full Rare Non-Rare
iCAN [5] 14.84 10.45 16.15

iCAN [5]
QPIC

20.36 11.14 23.11

iCAN [5]
CDN

21.09 11.20 24.04

iCAN [5]
Ours

24.38 16.27 26.80

Table 5: Results of ablation studies
on HICO-DET [1].

Method int AP HOI mAP

Ours 38.74 35.15
w/o body-part 36.46 32.16
w/o body-part saliency map 37.43 32.60
intuitive scheme 37.91 33.12
w/o progressive mask 38.06 34.05
w/o sparsity adaptive sampling 38.29 34.37
w/o one-time passing 38.51 34.90

5.4 Visualization

Fig. 4 shows some visualization results of the learned attention. Our model can
effectively learn body-part attention (Fig. 4b) and extract informative cues from
other persons in the image, either from the same (Fig. 4d, f) or the different
(Fig. 4a, c) body-parts. Learning holistic relationship between body-parts from
different persons alleviates the difficulties of interactiveness learning in hard
cases, e.g., tiny interactive persons (Fig. 4e, g), crowded scenes (Fig. 4e), and
occlusion (Fig. 4f). Also, our method benefits both interactive pairs and non-
interactive pairs (Fig. 4d, h). For more please refer to our supplementary.

5.5 Ablation Studies

We conduct ablation studies on HICO-DET [1] and list interactiveness AP and
corresponding HOI mAP results in Tab. 5.

We first validate the effectiveness of the body-part saliency map. In the intu-
itive scheme, the body-part saliency map is applied via an attention mask and
interactiveness is calculated for each body-part. The intuitive scheme achieves
37.91 interactiveness AP and 33.12 HOI mAP. In contrast, the interactiveness AP
falls to 37.43 when body-part saliency map is removed, i.e., for each proposal,
body-part and layer, the mask matrix is set as 1H×W . It validates the effec-
tiveness of introducing global-level visual cues and learning holistic body-part
relationship. Further, if trained with only instance-level visual features without
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block frisbee (1) no_interaction frisbee(2)hold sports_ball (1)

no_interaction chair(1)hold tennis racket(1)drive train(1) eat_at dining table(2)

hold sports_ball (3)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: Visualization results of learned attention. Number j (j = 1, 2, 3) in the
bracket represents which layer the attention results are obtained from.

emphasis on body-parts, the interactiveness AP falls to 36.46. Thus, learning
body-part interactiveness benefits instance-level interactiveness learning by in-
troducing fine-grained visual features.

Then we evaluate the proposed modules. (1) When progressively masking is
removed, all decoder layers are applied with the same attention mask of body-
part saliency map, which leads to an interactiveness AP drop to 38.06. The result
validates that our model indeed benefits from the progressively masking strategy,
where diverse body-part oriented visual patterns are combined and integrated to
facilitate interactiveness learning. (2) Without sparsity adaptive sampling, the
interactiveness AP falls to 38.29. We find that the sampling augmentation on
crowded-scene images helps to extract interactive pairs, especially in complex
scenes. (3) Finally, we evaluate the one-time passing strategy. If removed, the
interactiveness AP falls to 38.51, and computation speed is reduced by approx-
imately 20% from 28 min/epoch to 33 min/epoch. We can see that our model
benefits from it to improve performance as well as efficiency.

6 Conclusions

Currently, HOI detection is still bottlenecked by interactiveness learning. In this
paper, we focus on learning human body-part interactiveness from a previously
overlooked global perspective. We construct body-part saliency maps to mine
informative cues from not only the targeted person, but also other persons in
the image. Our method provides an effective supplement for existing local-based
methods and achieves significant improvements on widely used HOI benchmarks.
Despite the improvement, we believe there is still much room left to make further
progress on interactiveness learning.
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