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In this Supplementary, we provide more details about the optimal transport
problem (Sec. 1), the comparison between datasets (Sec. 2), the visualization of
datasets (Sec. 3), the evaluation metrics (Sec. 4), the experimental setup (Sec. 5),
additional cross-domain tasks (Sec. 6).

1 Additional Details about Optimal Transport

In the paper, we propose that generating balanced pseudo labels can be trans-
formed to an optimal transport problem [3,1], which explores the minimum cost
for assigning N data points to K clusters. Here we provide more details about
the problem transformation and the solution.

Specifically, based on the paper, we can express the original problem as

argmin
Q̂∈U

D(Q̂||P̂ ), subject to Q̂
⊤
1K = 1N , Q̂1N =

N

K
1K , (1)

To see the problem more clearly, we first define that

S =
1

N
Q̂,T =

1

N
P̂ , (2)

Then we can rewrite the constraint of Eq. (1) as

S⊤1K =
1

N
1N ,S1N =

1

K
1K , (3)

Besides, since we only consider one-hot pseudo labels, the objective function of
Eq. (1) is transformed to

D(Q̂||P̂ ) =
1

N

N∑
n=1

K∑
y=1

−Q̂yn log P̂yn

=
1

N
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=
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−Syn(logN + log Tyn)

= − logN
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(4)
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According to Eq. (3),
∑K

y=1 Syn = 1
N , ∀n, then

D(Q̂||P̂ ) = − logN +

N∑
n=1

K∑
y=1

Syn(− log Tyn) (5)

Obviously, minimizing D(Q̂||P̂ ) is equivalent to minimizing∑N
n=1

∑K
y=1 Syn(− log Tyn). The

∑N
n=1

∑K
y=1 Syn(− log Tyn) can be abbreviated

as ⟨S,− logT ⟩F , where ⟨·, ·⟩F denotes the Frobenius dot-product. Thus, the
problem of Eq. (1) is transformed to

argmin
S

⟨S,− logT ⟩F , subject to S⊤1K =
1

N
1N ,S1N =

1

K
1K , (6)

Using the notion of [3], we rewrite the problem as

argmin
S∈U

⟨S,− logT ⟩F , (7)

where
U := {S ∈ RK×N

+ |S1N = r,S⊤1K = c},

r =
1

K
1K , c =

1

N
1N

(8)

here r and c are the marginal projections of S onto its rows and columns,
respectively. This is called an optimal transport problem [3,1] between r and c
given the cost matrix ’− logT ’. Traditional algorithms are difficult to solve it,
since it involves the data points of the whole dataset. Thus, we adopt the fast
version of Sinkhorn-Knopp algorithm [3] to address this issue. This amounts to
adding a regularization term to Eq. (6)

argmin
S∈U

⟨S,− logT ⟩F +
1

ξ
D(S||rc⊤), (9)

here ξ is a parameter that controls the balance between the convergence speed
and problem approximation [1]. Then, the solution to Eq. (9) is

S∗ = diag(u)T ξdiag(v), (10)

here u ∈ RK , v ∈ RN are initially set as c and r respectively and then iteratively
updated by

∀y : uy ←
[
T ξv

]−1

y
∀n : vn ←

[
u⊤T ξ

]−1

n
. (11)

Since the S is relaxed to be continuous in Eq (8), we apply a rounding procedure
on S∗ to obtain the integral solution [1]. Besides, according to Eq. (2), we can
see that the solution of the problem,i.e., Eq. (10), is exactly consistent with the
formula expressed in the paper.
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2 Additional Details about Datasets

The datasets used in the paper include: NTU-RGBD 60 (NTU-60) [10], NTU-
RGBD 120 (NTU-120) [10], PKU Multi-Modality (PKUMMD) [8], Skeletics [5].
For NTU-60 and PKUMMD, two evaluation protocols are generally used in
previous methods: 1) Cross-Subject (xsub): training data and validation data
are collected from different subjects. 2) Cross-View (xview): training data and
validation data are collected from different camera views. For NTU-120, two dif-
ferent protocols are recommended in previous methods: 1) Cross-Subject (xsub):
training data and validation data are collected from different subjects. 2) Cross-
Setup (xset): training data and validation data are collected from different setup
IDs. Different protocols split the training and validation sets differently. As for
Skeletics, there is only one protocol to split the training and validation sets. Be-
sides, Skeletics is much larger than other datasets and some classes are common
with the classes of other datasets, thus we sample 30 classes that don’t over-
lap with the classes of other datasets. Three cross-domain tasks are evaluated
in the paper: NTU-60 → Skeletics, Skeletics → PKUMMD, and NTU-60+ →
PKUMMD. In all the tasks, we train the models using the training split of source
and target datasets, and evaluate it on the validation split of the target dataset.
The comparison of these tasks is shown in Table 1.

Table 1. The datasets used in different tasks.

NTU-60→Skeletics Skeletics→PKUMMD NTU-60+→PKUMMD
Train Test Train Test Train Test

Source Target Target Source Target Target Source Target Target

Dataset NTU-60 Skeletics Skeletics Skeletics PKUMMD PKUMMD NTU-60+ PKUMMD PKUMMD
Protocol xview - - - xview xview xsub xsub xsub

Split train train val train train val train train val
Camera fixed moving moving moving fixed fixed fixed fixed fixed
Scenario indoor wild wild wild indoor indoor indoor indoor indoor
Extractor Kinect V2 VIBE VIBE VIBE Kinect V2 Kinect V2 Kinect V2 Kinect V2 Kinect V2

Noise small large large large small small small small small
No. of Setups 17 − − − 3 3 15 3 3

No. of Subjects 40 − − − 66 66 33 57 9
No. of Classes 60 30 30 30 51 51 60 41 41
No. of Samples 37, 646 24, 265 2, 341 24, 265 14, 357 7, 188 22, 935 18, 841 2, 704

3 Visualization of Datasets

To vividly show the style differences between datasets, we provide some visual-
ized examples in Fig. 1. As can be seen from the comparison of RGB images,
compared to the NTU RGBD and PKUMMD, the Skeletics is a harder dataset
for skeleton extraction owing to the fast movement of humans and cameras, the
incomplete body parts, the complex backgrounds, etc. Hence, the skeletons of
NTU RGBD and PKUMMD are generally of high quality, while that of the
Skeletics dataset contains more noises, e.g., missed detection, deformed body
parts, as shown in Fig. 1. Furthermore, we present some specific action classes
for each dataset in Fig. 2.
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The joints in Microsoft Kinect V2 and VIBE are somewhat different. Accord-
ing to the positions of joints on the human body, we select 15 joints as shared
joints, as shown in Fig. 3. Note that even these shared joints are defined slightly
differently in Microsoft Kinect V2 and VIBE, which is also a kind of style gap.

Fig. 1. Visualization of the image and skeleton sequences from NTU RGBD, Skeletics,
PKUMMD, respectively.

4 Additional Details about Evaluation Metrics

Accuracy (ACC) is computed by assigning each cluster with the dominating
class label and taking the average correct classification rate as the final score.
Normalised Mutual Information (NMI) quantifies the normalised mutual depen-
dence between the predicted labels and the ground-truth. Adjusted Rand Index
(ARI) evaluates the clustering result as a series of decisions and measures its
quality according to how many positive/negative sample pairs are correctly as-
signed to the same/different clusters. All of the metrics scale from 0 to 1 and a
higher value is better.
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Fig. 2. Visualization of some specific classes in NTU RGBD, Skeletics, and PKUMMD.

5 Additional Implementation Details

5.1 Implementation Details of CoDT

The ST-GCN [13] is adopted as the encoder. All the classifiers take the en-
coded feature vectors as input, while the decoder D0 takes the 1D feature map
before the temporal pooling layer as input. The classifiers are comprised by a
full-connected layer, while the decoder is implemented by a two-layer MLP to
only regress the spatial locations of joints. For data pre-processing, we resize
each skeleton sequence to the length of 50 frames by linear interpolation. Fol-
lowing [14], Shear (i.e., spatial transformation depends on a shear amplitude β
) and Crop (i.e., temporal distortion depends on a padding ratio 1/γ ) are used
for data augmentation. For weak augmentation, β is set as 0.5 and γ is set as 6.
As for strong augmentation, we set β and γ as 1 and 3. Besides, we randomly
mask each part of skeletons in each frame with a probability of 0.3. The strong
augmentation is only used for the student models during finetuning stage. The
joint definitions are different in the Microsoft Kinect V2 and VIBE, thus in the
former two tasks, we only use the shared 15 joints of source and target skeletons
in B0 while keeping all joints of target skeletons in B1. For the implementation of
CoDT, we use SGD with momentum 0.9 as the optimizer. In pretraining stage,
the models are trained with the learning rate 0.1. After pretraining, we first ap-
ply the spherical k-means on the features of all target samples and then use the
centroids to initialize weights of target classifiers. The models are then trained
with the learning rate 0.01. The batch size nt and ns are set to 128. The loss
weights λsup, λdec, λcont, λcls and λcot are set to 1, 20, 1, 5 and 10, respectively.
The decay rate α of EMA is set as 0.999. The ξ is set as 10. The temperature ρ
is set to 7. All the experiments are conducted on the PyTorch [9].
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Fig. 3. Illustration of the 15 shared joints of Kinect V2 and VIBE.

5.2 Implementation Details of CCM-FP and CCM-PF

In CCM-FP, we measure the pairwise feature similarity by using the indices
of feature elements rank ordered according to their magnitudes. If two samples
share the same top-k (k = 5 is used) indices in their respective lists of rank
ordered feature elements, the paired samples belong to a positive pair, otherwise,
a negative pair. Note that, the above operations are performed on the features
from the teacher model. Then the constructed binary pair-wise pseudo labels
of each branch are used to optimize the pair-wise prediction similarities for the
other branch, which is the same as CCM.

In CCM-PF, we construct the binary pair-wise pseudo labels in the same
way as CCM. But different from CCM which treats the pair-wise prediction
similarity as the similarities of samples, CCM-PF uses the cosine similarities
of features as the pair-wise similarities of samples. That’s, the pair-wise pseudo
labels of each branch are used to optimize the pairwise feature similarities for
the other branch. For the sake of fairness, we adopt our proposed formula of the
supervised contrastive loss function to optimize both CCM-FP and CCM-PF.

6 Additional Cross-Domain Tasks

Apart from the above-mentioned cross-domain tasks, here we introduce two
more tasks: FineGym (VIBE) → Skeletics (VIBE), Kinetics-400 (OpenPose)
→ NTU-60 (HRNet). The FineGym dataset [11] is a fine-grained action recogni-
tion dataset with 29K videos of 99 fine-grained action classes. The Kinetics-400
dataset [6] contains around 300, 000 video clips retrieved from YouTube. The
videos cover as many as 400 action classes. The VIBE [7] is a 3D pose estima-
tor. The Openpose [2], HRNet [12] are two 2D pose estimators which produce
2D locations and confidence scores for the joints. That’s, each joint is repre-
sented by a (pseudo) 3D tensor containing two coordinates and a score. The
poses of FineGym (VIBE) and NTU-60 (HRNet) are provided by [4], and the
poses of Kinetics-400 (OpenPose) are provided by [13]. These tasks can simulate
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the transfer learning between datasets extracted by different 2D or 3D pose es-
timation algorithms. In the task of FineGym (VIBE) → Skeletics (VIBE), the
FineGym dataset only contains the fine-grained gymnastic action categories,
while the categories of Skeletics are much more coarse and unconstrained. And
in the task of Kinetics-400 (OpenPose)→ NTU-60 (HRNet), the extracted joints
in two domains are extensively different in qualities and styles. Intuitively, these
two tasks are extremely difficult.

We conduct the ablation study on these two tasks to further examine the
effectiveness of our method. The results are shown in Table 2. It can be seen
that the new tasks are very hard. For example, the ACC on the task of Kinetics-
400 → NTU-60 is only around 10%. However, even in such cases, our proposed
OCM and CCM can significantly improve the performances of base modules,
proving the generalization ability of our method.

Table 2. Results on the additional tasks. The ’F → S’ and ’K → N’ represent ’Fine-
Gym (VIBE) → Skeletics (VIBE)’ and ’Kinetics-400 (OpenPose) → NTU-60 (HRNet)’,
respectively.

Methods B∗
F → S K → N

ACC NMI ARI ACC NMI ARI

BM
† B0 16.6 19.1 5.0 12.2 26.2 5.2

B1 18.7 23.3 6.4 10.4 18.6 3.7

BM + OCM
B0 17.7 20.1 5.5 13.6 29.4 6.2
B1 21.8 26.4 8.7 12.1 22.9 5.2

BM + OCM + CCM
B0 22.6 25.4 10.7 14.6 30.9 7.2
B1 23.4 26.3 11.0 13.9 29.8 6.5
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