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Abstract. Intuition might suggest that motion and dynamic informa-
tion are key to video-based action recognition. In contrast, there is ev-
idence that state-of-the-art deep-learning video understanding architec-
tures are biased toward static information available in single frames.
Presently, a methodology and corresponding dataset to isolate the ef-
fects of dynamic information in video are missing. Their absence makes
it difficult to understand how well contemporary architectures capitalize
on dynamic vs. static information. We respond with a novel Appearance
Free Dataset (AFD) for action recognition. AFD is devoid of static infor-
mation relevant to action recognition in a single frame. Modeling of the
dynamics is necessary for solving the task, as the action is only appar-
ent through consideration of the temporal dimension. We evaluated 11
contemporary action recognition architectures on AFD as well as its re-
lated RGB video. Our results show a notable decrease in performance for
all architectures on AFD compared to RGB. We also conducted a com-
plimentary study with humans that shows their recognition accuracy on
AFD and RGB is very similar and much better than the evaluated archi-
tectures on AFD. Our results motivate a novel architecture that revives
explicit recovery of optical flow, within a contemporary design for best
performance on AFD and RGB.

Keywords: Action Recognition, Action Recognition Dataset, Deep Learn-
ing, Static and Dynamic Video Representation, Human Motion Percep-
tion

1 Introduction

1.1 Motivation

Action recognition from video has been subject of significant effort in devel-
oping and improving both algorithms and datasets [30,63]. This interplay be-
tween algorithm and dataset advances has led to paradigm shifts in both. Al-
gorithms have evolved from primarily hand-crafted mathematically, physically,
and heuristically driven approaches to methods based on deep-learning architec-
tures. Datasets have evolved from relatively small, carefully selected videos to
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Fig. 1. Appearance Free Dataset (AFD) for Action Recognition. Within each set of
three images we show: a single RGB frame (left); corresponding optical flow in Mid-
dlebury colour coding [4] (middle); corresponding appearance free frame (right). When
viewed as video the AFD reveals the motion in the original video even as any single
frame provides no relevant discriminative information.

massive, web-crawled collections. As a result, current state-of-the-art algorithms
for action recognition achieve impressive levels of performance on challenging
datasets. In contrast, the internal representations learned by the architectures
remain under explored [24]. This lack of understanding is unsatisfying both sci-
entifically as well as pragmatically. From a scientific perspective, such detailed
analysis is integral to understanding how a system operates and can guide fur-
ther improvements. From a pragmatic perspective, multiple jurisdictions are
beginning to require explainability as a precondition for deployment of artificial
intelligence technologies [1,2]; technologies lacking such documentation may not
see real-world application.

Some evidence suggests that contemporary deep-learning architectures for
video understanding can perform well on the task of action recognition with lit-
tle to no regard for the actual actors [59,23,9]. These studies suggest that static
visual information available in a single frame (e.g. colour, spatial texture, con-
tours, shape) drives performance, rather than dynamic information (e.g., motion,
temporal texture). While some methodologies have been aimed at understand-
ing the representations learned by these architectures [39,16,61], none provide an
approach to completely disentangle static vs. dynamic information. In response,
we have developed an Appearance Free Dataset (AFD) for evaluating action
recognition architectures when presented with purely dynamic information; see
Fig. 1. AFD has been rendered by animating spatial noise, historically known
as Random Dot Cinematographs RDCs [29], using image motion extracted from
the UCF101 dataset [51] by a state-of-the-art optical flow estimator [53]. The
resulting videos show no pattern relevant to action recognition in any single
frame; however, when viewed as video reveal the underlying motion. We have
produced AFD for the entire UCF101 dataset, evaluated a representative sample
of contemporary action recognition architectures and used our results to drive
development of a novel architecture that enhances performance when confronted
with purely dynamic information, as present in AFD.

The ability of action recognition (and other) video architectures to work in
absence of static appearance information is not only an academic exercise. Real-
world deployment scenarios may require it, such as in the presence of camou-



Is Appearance Free Action Recognition Possible? 3

flage. Two examples: Video surveillance for security should be able to cope with
nefarious actors who artificially camouflage their activities; video-based wildlife
monitoring must be robust to the natural camouflage that many animals possess
to hide their presence.

1.2 Related work

Datasets A wide variety of datasets for development and evaluation of automated
approaches of video understanding are available [3]. For action recognition, in
particular, there is a large body ranging from a few dozen classes [36,51,38,39,31]
to massively crawled datasets with classes in the hundreds [31,8,19,20]. Some
work has specifically focused on curating videos where temporal modeling is
particularly important for action recognition [33,48,19,38]; however, they still
contain strong cues from single frame static appearance (e.g. colour, shape, tex-
ture). Overall, no action recognition dataset completely disentangles single frame
static information from multiframe dynamic information.

Camouflaged actors would provide a way to evaluate recognition systems
based primarily on dynamic information. While there are camouflage video un-
derstanding dataset available, they are of animals in the wild as selected for ob-
ject segmentation (e.g. [37,5]). In contrast, it is unlikely that a non-trivial number
of real-world videos of camouflaged actors can be found. In response, our Ap-
pearance Free Dataset (AFD) provides synthetic camouflaged action recognition
videos as coherently moving patterns of spatial noise, historically known as Ran-
dom Dot Cinematograms (RDCs) [29]. These patterns are defined via animation
of an initial random spatial pattern, where the pixelwise intensity values of the
pattern are randomly selected. By design, they reveal no information relevant
to the motion in any single frame; however, when viewed as video the motion is
apparent; examples are shown in the right columns of Fig. 1. Such videos have
a long history in the study of motion processing in both biological [6,44] and
machine [58,62] vision systems. Interestingly, humans can understand complex
human body motion solely from sparse dots marking certain body points, even
while merely a random dot pattern is perceived in any single frame [28].

Synthetic video, both striving for photorealism [42,7,11,46,45] and more ab-
stracted [52,40], is a common tool in contemporary computer vision research
that allows for careful control of variables of interest. Our effort adds to this
body with its unique contribution of a synthetic camouflage action recognition
dataset for probing a system’s ability to recognize actions purely based on dy-
namic information. Notably, while our texture patterns are synthetic, they are
animated by the motion of real-world actions [51].

Models and action recognition architectures A wide range of action recognition
architectures have been developed [3]. Most contemporary architectures can be
categorized as single stream 3D (x, y, t) convolutional, two-stream and attention
based methods. Single stream approaches are motivated by the great success of
2D convolutional architectures on single image tasks [35,50,26,22]. In essence,
the 3D architectures extend the same style of processing by adding temporal
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support to their operations [27,55,8,56,13]. Two-stream architectures have roots
in biological vision systems [25,18]. The idea of having separate pathways for
static video content and dynamic information has been variously adopted. A
key distinction in these designs is whether the pathway for dynamic information
explicitly relies on optical flow estimation [49,15] or internally computed features
that are thought to emulate flow like properties [14]. Attention-based approaches
rely on various forms of non-local spatiotemporal data association as manifested
in transformer architectures [60,12]. For evaluation of architectures on the new
AFD, we select a representative sampling from each of these categories.

Interpretability Various efforts have addressed the representational abilities of
video understanding architectures ranging from dynamic texture recognition
[21], future frame selection [17] and comparing 3D convolutional vs. LSTM
architectures [41]. Other work centering on action recognition focused on vi-
sualization of learned filters in convolutional architectures [16,61], or trying to
remove scene biases for action recognition [39,38]. Evidence also suggests that
optical flow is useful exactly because it contains invariances related to single
frame appearance information [47]. More closely related to our study is work
that categorized various action classes as especially dependent on temporal in-
formation; however, single frame static information still remains [48]. Somewhat
similarly, an approach tried to tease apart the bias of various architectures and
datasets towards static vs. dynamic information by manipulating videos through
stylization; however, single frame static information remained a confounding fac-
tor [34]. While insights have been gained, no previous research has been able to
completely disentangle the ability of these models to capitalize on single frame
static information vs. dynamic information present across multiple frames. We
concentrate on the ability of these systems to capture dynamic information, with
an emphasis on action recognition.

1.3 Contributions

In light of previous work, we make the following three major contributions.

1. We introduce the Appearance Free Dataset (AFD) for video-based action
recognition. AFD is a synthetic derivative of UCF101 [51] having no static
appearance cues, however, revealing real-world motion as video.

2. We evaluate 11 contemporary architectures for action recognition on AFD;
i.e. dynamic information alone. We conduct a psychophysical study with
humans on AFD, and show significanly better performance of humans than
networks. These results question the ability of the tested networks to use
dynamic information effectively.

3. We provide a novel improved action recognition architecture with enhanced
performance on AFD, while maintaining performance on standard input.

We make AFD, associated code and our novel architecture publicly available.
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2 Appearance free dataset

Our proposed appearance free dataset, AFD101, is built from the original UCF101
[51] by employing a state-of-the-art optical flow estimator [53] to generate the
corresponding framewise flow that is used to animate spatial noise patterns. The
resulting AFD101, consisting of 13,320 videos, depicts realistic motion even while
any individual frame is devoid of static appearance information that is relevant
for action recognition. Figure 1 and the project webpage provide illustrative ex-
amples. We use UCF101 from many possible choices [3] as the basis for AFD
because it was widely used in action recognition evaluation and is large enough
to support training, yet small enough to facilitate numerous experiments.

2.1 Dataset generation methodology

Fig. 2. Appearance free videos are created by 1) initializing noise R0, 2) calculating
optical flow between input frame pairs, and 3) using the optical flow to warp R0. Steps
2 and 3 are repeated for each frame-pair in the input video.

Generation of AFD from RGB video follows three key steps; see Fig. 2.

1. Initialization: Generate a single frame of noise, with same spatial dimensions
as the frames in the input video. The pixel values are sampled uniformly i.i.d.
as three-channel RGB values. Let this frame be denoted as R0.

2. Flow calculation: Generate interframe optical flow for each temporally ad-
jacent pair of input RGB frames, It−1, It, t ∈ [1, T ], yielding the flow Ft−1,t,
with T being the number of frames in the input video. We use RAFT [53],
for the extraction of optical flow.

3. Warping: We warp the initial noise frame R0 using Ft−1,t, t ∈ [1, T ], to
generate the next noise frame, Rt. The output frames, Rt, are an appearance
free version of the input RGB video, where at each frame all that is seen is
i.i.d. noise, but whose interframe motion corresponds to that of the original
video; this output video has the same spatial and temporal dimension as the
input video.

2.2 Implementation details

The details of our proposed methodology are particularly important, as all static
discriminatory single frame information must be removed; to this end near-
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Fig. 3. ResNet50 Top-1 Accuracy on single frame UCF101 by Action Groups.

est neighbor interpolation during warping is performed. For each warp, newly
occluded pixels are overwritten by the new value moved to that location; de-
occluded pixels are filled with R0 values to ensure that the spatial extent of the
noise is constant. Along the border where the warping leads to undefined values
(e.g. pixel at that location moves elsewhere and no new value is warped into
that location) are treated as de-occlusions as well. In preliminary experiments,
we found that other choices of implementation, e.g. bilinear interpolation as op-
posed to nearest neighbor interpolation, or always estimating flow with respect
to I0 always yielded inferior results and unwanted artifacts. In the worst cases
these artifacts led to revealing motion boundaries of actors in single frames.

2.3 Is optical flow appearance free?

The concept of appearance consists of multiple intertwined qualities, including
texture, contour and shape. While optical flow is indeed free of texture it is not
free of contour and shape induced by motion of the camera or the actor itself; this
fact can be observed qualitatively in Fig. 1: The flow visualizations alone reveal
violin playing and knitting. We quantify this observation as follows. We train a
strong single frame recognition architecture, ResNet50 [22], on single frames from
three datasets: UCF101 (the original), UCF101Flow, comprised of optical flow
frames generated from UCF101 by RAFT [53], and AFD101. Top-1 recognition
results for UCF101, UCF101Flow and AFD101 are 65.6%, 29.4% and 1.1%,
respectively. These results show that only AFD101 contains no discriminatory
information in a single frame, as only 1.1% top-1 accuracy is in line with random
guessing.

2.4 AFD5: A reduced subset suitable for small scale exploration

To evaluate the performance of state-of-the-art architectures in the context of
human performance, a reduced subset of the classes in UCF101 is needed, simply
because it is not feasible to conduct an experiment with humans with the original
101 categories. We chose to have five classes as it is possible for humans to
hold five action classes in working memory for a prolonged duration [43]. In
the following, we refer to the reduced size version of AFD101 as AFD5 and the
corresponding reduction of UCF101, i.e. the RGB video, as UCF5.

A defining property of the subset is that it discourages recognition from
static information in single frames even within the original RGB input. To this
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weight so that classes that are often confused among each other get grouped together,
and c) select the most prominent subgroup.

end we train a ResNet50 [22], used by many state-of-the-art architectures as
inspiration for their backbone [3], on the entire UCF101 dataset in a single frame
classification manner, i.e., we randomly sample a frame from UCF101. By design,
this procedure isolates the ability of any given class to support recognition on
the basis of a single frame. UCF101 is subdivided into five action groups [51]:
Human Object Interaction, BodyMotion, PlayingInstruments, Sports and Human
Human Interaction; Fig. 3 has single frame recognition accuracy by group.

Our selection criterion is to choose videos with similar appearance; therefore,
we select a subset of actions within a group. To select the action group we
consider the following points. The Body Motion group is particularly attractive
because it is the only category that has five or more classes with below 25%
single frame recognition accuracy. The Human Object Interaction group is the
next closest in terms of having several (albeit fewer that five) categories with
such low single frame accuracy. However, its classes tend to be distinguished by
featuring a prominent object and we do not want to promote categorization based
on single frame object recognition. The PlayingInstruments group also features
prominent objects and likewise is a poor choice. The remaining groups (Sports
and Human Human Interaction) have generally higher single frame recognition
accuracies; so, also are excluded. These considerations lead us to Body Motion
as the group of interest for present concerns.

With the selection of Body Motion, we finetune the previously trained ResNet
on that particular group. Given that finetuning, we perform confusion matrix
reordering [54] and select the five classes that are most confused among each
other in the group. More precisely we find the permutation matrix that has the
highest interclass entropy, excluding classes with less than 50% accuracy; see
Fig 4. This results in the choice of the following five classes for AFD5: Swing,
Lunges, PushUps, PullUps, JumpingJack. AFD5 consists in total of 583 videos
with approximately 116 videos per class.
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Fig. 5. Results of psychopysical study. Top row: Performance on standard RGB video,
UCF5. Bottom row: Performance on appearance free data, AFD5.

3 Psychophysical study: Human performance on AFD5

To set a baseline for Appearance Free Data we perform a psychophysical study.
The ability of humans to recognize actions from dynamic information alone,
i.e. without any single frame static information, has been documented previously
[28,10,57]. These studies are conducted with sparse dots, typically at major body
joints, on otherwise blank displays. Our study appears to be unique in its use of
dense noise patterns i.e. dense random dots.

3.1 Experiment design

A session in the experiment consisted of the following seven phases. (i) The par-
ticipant is presented with a brief slide show explaining the task. The participant
is told that they will see a series of videos as well as a menu on the same display
from which to indicate their perception of a human action that is depicted. (ii)
Training is provided on UCF5, i.e., RGB video. During this phase, four training
videos from each class, totaling 20 videos, are presented with correct responses
indicated in the menu. The videos are shown in randomized order. (iii) Testing
is performed on 90 UCF5 test videos. Each video repeats until the participant
makes their selection on the menu. (iv) A rest period of five minutes is pro-
vided. (v) Training is provided on AFD5, i.e. appearance free video. During
this phase, four training videos from each class are presented with correct re-
sponses indicated in the menu. The videos also are shown in randomized order.
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(vi) Testing is performed on 90 AFD5 test videos. Each video repeats until the
participant makes their selection on the menu. (vii) Participants are given a
questionnaire to complete, with questions including visual impairments (all had
normal or corrected vision), familiarity with computer vision, action recognition,
as well as their impression of task difficulty. During both test phases, action cat-
egory choices and response times were recorded. Ten human participants were
recruited as volunteers to participate in the experiment. All experiments were
conducted in the same environment, i.e. computer/display, lighting and seating
distance from the display (0.5 meters). Participants were allowed to view freely
from their seat and take as much time in making their responses as they like. All
participants completed their session within approximately 30 minutes, including
the questionnaire. Participants were informed and consented to the data gath-
ered in written and signed manner, and were provided with sweets and thanks
at task completion. The sample size of ten participants is in our view sufficient
to show that various people with different backgrounds are able to solve AFD
data without much trouble and to establish a baseline for comparison to action
recognition architectures.

3.2 Human results

Results of the psychophysical study are shown in Fig. 5. On average, our par-
ticipants perform with an accuracy of 89.8% on AFD5 and 98.9% on UCF5.
Participants report that mistakes on UCF5, the RGB videos, resulted from ac-
cidental clicks when making selections. Our analysis of AFD5 samples that were
most frequently misclassified by the participants reveals that those videos typ-
ically have sudden and high speed camera movement, e.g. as induced by quick
panning and zooming, which in turn creates very large optical flow displace-
ment. The plots of response time show that participants take longer to make
their choice on AFD5, with the exception of JumpingJack which remains largely
unaffected. The extended time taken for AFD5 suggests that appearance free
recognition requires more effort and repeated playback of the video is necessary,
even though ultimate performance is high.

Overall, the psychophysical results document the strong ability of humans to
recognize actions on the basis of AFD, as well as standard RGB videos.

4 Computational study: Model performances on AFD

We evaluate 11 state-of-the-art action recognition architectures on UCF101 and
our new AFD101. We select representative examples from the currently most
widely used categories of action recognition architectures, cf. Sec. 1.2: single
stream 3D convolutional [13,8,56], two-stream convolutional [49,14] and attention-
based [12,60]. We also evaluate on a standard 2D convolutional architecture
(ResNet50 [22]) to verify that our AFD does not support classification based
on single frame static information. Notably, our results from the psychophysical
study allow us to compare the performance of the network architectures to that
of humans on both UCF5 and AFD5.
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4.1 Training procedure

To guarantee a fair comparison all reported results are obtained by training
and testing with our procedure, described below. Furthermore, since we want to
investigate architectural benefits on Appearance Free Data, all results (except
for one architecture, see below) are obtained without pretraining - concurrently
often done on Kinetics400 [8] - as there is no AFD for Kinetics. Our goal is
not to show how to archieve best performance on UCF101; it is to show the
difference in performance of each network when presented with only dynamic
information. We also ran preliminary experiments with pretraining on Kinetics
and finetuning on AFD, but saw no significant improvement during AFD testing
compared to no pretraining. Nevertheless, since all the evaluated architectures,
save one, employ a ResNet-like backbone we use ImageNet pretrained versions
of those to initialize our training. The exception is MViT, which needed to be
initialized with Kintecs400 weights, as its performance was not increasing from
baseline with the aforementioned scheme. However the Kinetics weights were
only used as an intializer and we allowed for retraining of the entire backbone
to make the results comparing UCF and AFD as comparable as possible. We
acknowledge that our training strategy does not allow for the architectures to
show state-of-the-art performance on RGB input in our experiments; however,
our approach is necessary to allow for fair comparison of performance on RGB
vs. AFD and measure the respective performance between the modalities.

4.2 Training details

We train with Adam [32] using an early stopping scheme, and a base learning
rate of 3e−4. The batch size is chosen as large as possible on two GPUs with
24GB memory each. Data augmentation, a staple of modern deep learning, is
kept the same for all evaluated models and datasets; uniform temporal sampling
with jitter, random start frame selection, and contrast, hue, and brightness jitter
are applied. Random horizontal flipping of entire videos is used, as actions in
UCF101 do not depend on handedness. A quite aggressive data augmentation
scheme that changes over the course of every 20 epochs to a less aggressive one,
and capping at 80 epochs is used. We find that this aggressive data augmentation
technique is needed to achieve reasonable results when no pretraining is used.
Spatial center crops of 224×224 are used as the final input to all networks with
the exception of X3D XS and S, which use a spatial resolution of 160×160. The
reported results are the averages of the three standard splits used on UCF101,
now applied to both the original RGB as well as AFD. The results on UCF5 and
AFD5 were obtained by finetuning the networks previously trained on their 101
class counterparts and using the same splits.

4.3 Architecture results

Table 1 shows top-1 accuracy results for all evaluated architectures on UCF101,
AFD101, UCF5 and AFD5. Note that the results for the single frame ResNet on
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UCF101 essentially are the same as those shown in Fig. 3. The results in Table 1
also validate our claim of having removed all static, single frame information
relevant to recognition, as the performance is equal to random choice.

For most of the action recognition architectures, it is seen that obtaining
≈ 70-80% top-1 accuracy is possible. This fact makes the sizable drop of perfor-
mance on AFD data, the ∆ columns in Table 1, especially striking. The average
performance drops by approximately 30% almost evenly across all architectures -
with two notable exceptions: The Fast stream of SlowFast and I3D OF a common
I3D architecture with an optical flow estimator before the network input. These
two architectures are noteworthy because their ability to maintain performance
across regular and appearance free video apparently stems from their design to
prioritize temporal information over spatial; although, this focus on temporal
information leads them to be less competitive on the standard RGB input in
comparison to the other evaluated architectures. The comparison to human per-
formance shows X3D variations to be the best architectures, competitive with
human performance on UCF5; however, the best architectures on AFD5 (X3D
M and SlowFast) are considerably below human top-1 accuracy (18% below).
These results show that there is room for improvement by enhancing the ability
of current architectures to exploit dynamic information for action recognition. It
also suggests that optical flow is not what is learned by these networks, when no
explicit representation of flow is enforced. Importantly, TwoStream [49] and I3D
[8] OF were evaluated with RAFT optical to allow for a fair comparison with
each other and with our new algorithm, introduced in the next section. The
summary plots below Table 1 show learnable architecture parameter counts and
ordering by AFD accuracy. These plots further emphasize the fact that explicit
representation of dynamic information (e.g. as in I3D OF and to some extent
Fast) is best at closing the gap between performance on RGB and AFD. X3D
M is among the top performing architectures on RGB; further, among those top
RGB performers, it shows the smallest ∆. Also, it is has a relatively small num-
ber of learnable parameters, with only Fast notably smaller. These observations
motivate the novel architecture that we present in the next section. It improves
performance on AFD, while also slightly improving performance on RGB. This
architecture is given as E2S-X3D in Table 1. Moreover, it performs on par with
humans on UCF5 and AFD5.

5 Two-stream strikes back

The results of our evaluation of architectures in Sec. 4 show the importance of
explicit representation of dynamic information for strong performance on AFD.
This result motivates us to revive the two-stream appearance plus optical flow
design [49]. While state of the art when introduced, compared to more recent
action recognition architectures, e.g. those evaluated in Sec. 4, it is no longer
competitive [63]; so, we incorporate two-streams into the top performing archi-
tecture on RGB input with the smallest drop on AFD, i.e. X3D.
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f × r UCF101 AFD101 ∆ UCF5 AFD5 ∆

Single Image Input
ResNet50 [22] 1× 1 65.6 1.1 64.5 74.2 20.1 54.1

Video Input
I3D [8] 8× 8 67.8 43.3 24.5 95.6 55.1 40.5
TwoStream [49]

(
1×1
10×1

)
76.1 29.3 46.8 78.1 62.3 15.8

C2D [60] 8× 8 77.4 42.6 34.8 84.5 69.0 15.5
R2+1D [56] 16× 4 68.2 28.9 39.3 80.6 67.9 12.7
Slow[14] 8× 8 73.3 37.6 35.7 89.9 40.6 49.3
Fast [14] 32× 2 50.5 45.9 4.6 71.4 65.7 5.7

SlowFast [14]
(
Slow
Fast

) (
8×8
32×2

)
82.9 55.4 27.5 91.0 70.2 20.8

I3D[8] OF 8× 8 54.5 44.4 10.1 74.4 59.7 14.7
X3D XS [13] 4× 12 79.8 43.2 36.6 95.2 57.0 38.2
X3D S [13] 13× 6 80.8 56.9 23.9 97.3 69.8 27.5
X3D M [13] 16× 5 81.5 58.2 23.3 98.8 71.5 27.3
MViT [12] 16× 4 82.9 39.8 43.1 95.1 22.2 72.9

E2S-X3D Ours
(
M
S

) (
16×5
13×6

)
85.7 73.9 11.8 99.4 90.8 8.6

Human Average 98.9 89.8 9.1
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Table 1. Top-1 accuracy for the evaluated action recognition architectures. The second
column indicates the number of frames and the temporal sampling rate, f × r, of each
network. For two-stream approaches the notation

(
Appearance

Motion

)(
f×r
f×r

)
is used. A drop

in performance across all networks on AFD data is observed. Plots below the table
show parameter counts as well as summarize the accuracy findings, sorted by AFD
performance. Absolute performance on UCF is of secondary importance; it merely
gives a point of comparison with respect to AFD. The ∆ columns shows the difference
between UCF and AFD performance, which highlights the relative dynamic recognition
capability of architectures.

5.1 E2S-X3D: Design of a novel action recognition architecture

The design of our novel architecture, ES2-X3D, is shown in Fig. 6. Initially,
optical flow fields and RGB images are processed in separate 3D convolutional
streams. Both streams are versions of the X3D architecture [13], where we use
the S variant for optical flow and the M variant for RGB. These two architec-
tures differ in their spatiotemporal resolution of the input and as a consequence
the activation maps. X3D M uses larger spatial and temporal extents, whereas
S has smaller spatial and temporal supports. Since the input flow field already
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Model input conv1 res2 res3 res4 res5 conv5

M 16× 224× 224 16× 112× 112 16× 56× 56 16× 28× 28 16× 14× 14 16× 7× 7 16× 7× 7
S 13× 160× 160 13× 80× 80 13× 40× 40 13× 20× 20 13× 10× 10 13× 5× 5 13× 5× 5

Fig. 6. Our novel ES2-X3D operates with two parallel streams for processing of RGB
(top stream) and optical flow (bottom stream). Late fusion via concatenation is followed
by a fully connected and Softmax layer. The table shows the output sizes of each
employed X3D architecture in the format T×H×W.

represents the dynamic information with detail, the additional spatiotemporal
extent is not needed; in contrast, the RGB stream without the optical flow ben-
efits from larger spatial and temporal support, see Fig. 6 (bottom). We validate
these choices below via ablation. The dimensionality of the layers is shown in
Fig. 6. Following the separate parallel processing, late fusion is performed. We
fuse the outputs via simple concatenation of the outputs of the two streams.
While more sophisticated fusion schemes might be considered, e.g. [15], we leave
that for future work. Finally, a fully connected layer followed by a Softmax layer
yields the classification output, which is used with a cross-entropy loss to train
the network. For optical flow input, we use a state-of-the-art optical flow es-
timator, RAFT [53] pretrained on Sintel [7]. We do not further train the flow
extractor and only use it in its inference mode. To capture fine grained motion
and to adjust for the different spatial resolution RAFT was trained with, we add
an up-sampling layer to the RGB images prior to RAFT. Data augmentation, as
described in Sec. 4, is only used in the appearance stream, as indicated in Fig. 6.
The training, validation and testing of the network follows the same procedure
as the other networks; described in Sec. 4.

UCF5

Input

Architecture
(
RGB

-

) (
-

RAFT

) (
RGB
RAFT

)
XS 4× 12 95.2 82.1 —
S 13× 6 97.3 89.5 —
M 16× 5 98.8 86.8 —(
M
S

) (
16×5
13×6

)
— — 99.4

AFD5

Input

Architecture
(
RGB

-

) (
-

RAFT

) (
RGB
RAFT

)
XS 4× 12 57.0 77.3 —
S 13× 6 69.8 80.3 —
M 16× 5 71.5 78.9 —(
M
S

) (
16×5
13×6

)
— — 90.8

Table 2. Performance of X3D architecture configurations, XS, S and M for UCF5 and
AFD5. Ablation is performed for both optical flow and RGB inputs.
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5.2 E2S-X3D: Empirical evaluation

E2S-X3D outperforms all competing architectures on AFD101, with the closest
competitor (singlestream X3D) trailing by 15.7%; see Table 1. It also improves
performance on UCF101, albeit slightly; 2.8% points gained on MViT (MViT
has around 6× more parameters). To rule out an ensembling effect, we com-
pared our network in its default configuration (RGB in one stream, optical flow
in the other) with an alternative where it inputs RGB to both streams. We find
a performance drop of 10.6% on UCF101 and 30.7% on AFD101, validating our
hypothesis that explicit optical flow is crucial. Moreover, it is on par with human
performance on both AFD5 and UCF5. These results document the advantage
of explicit modeling of motion for action recognition. Table 2 shows results of
ablations across various X3D configurations for both AFD5 and UCF5. It shows
that for both input modalities, best performance is achieved when the S con-
figuration is used for optical flow and the M configuration for the RGB stream.
This set of experiments empirically validates our final ES2-X3D design.

6 Conclusions

We introduce an extension to a widely used action recognition dataset that
disentangles static and dynamic video components. In particular, no single frame
contains any static discriminatory information in our apperance free dataset
(AFD); the action is only encoded in the temporal dimension. We show, by means
of a psychophysical study with humans, that solving AFD is possible with a high
degree of certainty (∼ 90% Top1 Accuracy). This result is especially interesting
as 11 current state-of-the-art action recognition architectures show much weaker
performance as well as a steep drop in performance when comparing standard
RGB to AFD input. These results lend to the interpretability of the evaluated
architectures, by documenting their ability to exploit dynamic information. In
particular, this shows that optical flow, or a similarly descriptive representation,
is not an emergent property of any of the tested network architectures.

We propose a novel architecture incorporating the explicit computation of op-
tical flow and use insights from recent action recognition research. This explict
form of modeling dynamics allows our approach to outperform all competing
methods, and compete with human level performance. Given the strong perfor-
mance of our architecture in our evaluation, future work could consider training
and investigation of performance on larger datasets [8,19] as well as application
to other tasks where non-synthetic data is available and dynamic information
plays a crucial role, e.g. camouflaged animal detection [37]. Alternative fusion
strategies are also a potential for improvement of our present architecture.
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