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Abstract. Weakly-supervised temporal action localization (WS-TAL)
aims to localize the action instances and recognize their categories with
only video-level labels. Despite great progress, existing methods suf-
fer from severe action-background ambiguity, which mainly comes from
background noise introduced by aggregation operations and large intra-
action variations caused by the task gap between classification and local-
ization. To address this issue, we propose a generalized evidential deep
learning (EDL) framework for WS-TAL, called Dual-Evidential Learn-
ing for Uncertainty modeling (DELU), which extends the traditional
paradigm of EDL to adapt to the weakly-supervised multi-label classi-
fication goal. Specifically, targeting at adaptively excluding the undesir-
able background snippets, we utilize the video-level uncertainty to mea-
sure the interference of background noise to video-level prediction. Then,
the snippet-level uncertainty is further deduced for progressive learning,
which gradually focuses on the entire action instances in an “easy-to-
hard” manner. Extensive experiments show that DELU achieves state-
of-the-art performance on THUMOS14 and ActivityNet1.2 benchmarks.
Our code is available in github.com/MengyuanChen21/ECCV2022-DELU.

Keywords: Weakly-supervised temporal action localization, Evidential
deep learning, Action-background ambiguity

1 Introduction

Temporal action localization is one of the most fundamental tasks of video un-
derstanding, which aims to localize the start and end timestamps of action in-
stances and recognize their categories simultaneously in untrimmed videos [62,
49, 31, 53]. It has attracted significant attention from both academia and indus-
try, due to the great potential for video retrieval [9, 41], summarization [24],
surveillance [18, 51], anomaly detection [50], visual question answering [25], to
name a few. In recent years, numerous action localization methods have been pro-
posed and achieved remarkable performance under the fully-supervised setting.
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Fig. 1: Action-background ambiguity in WS-TAL. (a) Some background snip-
pets are misclassified to the foreground, thus distracting the aggregation process
under video-level supervision. (b) Due to the large intra-action variations, the
learned action classifiers tend to ignore snippets which are not discriminative
enough, thus easily responding to only a fraction of action snippets instead of
the entire action instances.

However, these methods require extensive manual frame-level annotations, which
limits their scalability and practicability in real-world application scenarios, since
densely annotating large amounts of videos is time-consuming, error-prone and
extremely costly. To address this problem, weakly-supervised temporal action lo-
calization (WS-TAL) methods have been explored [13, 14, 42, 56], which requires
only easily available video-level labels.

Due to the absence of frame-wise annotations in the weakly-superwised set-
ting, most existing WS-TAL methods adopt the localization-by-classification
strategy [45, 54, 40, 52], in which the commonly used mutiple-instance learning
(MIL) strategy [35] and/or attention mechanism [42] are employed. Specifically,
after dividing each untrimmed video into multiple fixed-size non-overlapping
snippets, these methods apply action classifiers to predict a sequence of classi-
fication probabilities of snippets, termed as Class Activation Sequence (CAS).
The top ranked snippets are then selected for aggregation, resulting in a video-
level prediction for model optimization. To improve the accuracy of the learned
CAS, a variety of strategies have been adopted, such as feature enhancement [57,
13], pseudo label generation [56], context modeling [42], contrastive learning [58],
which have achieved impressive performance.

Despite remarkable progress has been achieved, existing methods still suf-
fer from severe action-background ambiguity due to the weakly-supervised set-
ting, thus leading to the significant performance gap with fully-supervised meth-
ods [26, 27, 29]. We argue that the action-background ambiguity mainly comes
from two aspects: (1) Background noise introduced by the aggregation oper-
ations when generating video-level predictions. As shown in Figure 1(a), the
selection of the top action snippets for later aggregation may be inaccurate,
i.e. some background snippets are mistakenly recognized as action snippets due
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Fig. 2: A toy example of 3-class WS-TAL, which demonstrates the two-level
evidential learning structure of DELU. (1) The video-level uncertainty is learned
to adaptively exclude the undesirable background snippets in the aggregation
process (Section 3.3). (2) The snippet-level uncertainty is employed to better
perform foreground-background separation by progressive learning (Section 3.4).
Each triangle in this figure represents a Dirichlet distribution of all possible
prediction results(Section 3.1). The three vertices of the triangle represent three
categories and each point in the triangle represents a particular allocation of
class probabilities. When points with high values are concentrated at a certain
vertex, the model classifies the sample into the corresponding category with a
low uncertainty U.

to their similarity with the foreground in appearance. As a result, background
noise will distract or even dominate the further video-level classification. (2)
Large intra-action variations caused by the task gap between classification and
localization. Since only video-level supervisions are provided for WS-TAL, the
learned classifiers only need to focus on the most discriminative action snip-
pets when performing video-level classification. As shown in Figure 1(b), the
model tends to ignore the action snippets that are not significant enough, i.e.
fail to classify them into the target action category, thus easily responding to
only a fraction of action snippets instead of the entire action instance. These two
issues are essentially entangled with each other, jointly intensifying the action-
background ambiguity in the model learning process.

Inspired by the above observation, we find that it is desirable to tackle the
action-background ambiguity by considering the uncertainty of classification
results in both video and snippet levels. Recently, Evidential Deep Learning
(EDL) [44, 36], which can collect the evidence of each category and quantify the
predictive uncertainty, has received extensive attention and achieved impressive
performance in a few computer vision tasks [46, 43, 3]. However, EDL is designed
for fully-supervised single-label classification tasks, which is not suitable to be
directly integrated into weakly-supervised temporal action localization5.

To address the above issues, we propose a generalized EDL framework for
WS-TAL, called Dual-Evidential Learning for Uncertainty modeling (DELU),

5 In WS-TAL, multiple types of action may appear simultaneously in a video.
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which extends the traditional paradigm of EDL to adapt to the weakly-supervised
multi-label classification goal. As shown in Figure 2, to tackle the action-background
ambiguity, DELU leverages a two-level evidential learning structure to model
the predictive uncertainty in both video level and snippet level. Specifically,
(1) we utilize the video-level uncertainty to measure the interference of back-
ground noise. Here, we propose a novel evidential learning objective to learn
the video-level unceratinty, which can adaptively exclude the undesirable back-
ground snippets in the aggregation operations. (2) When pursuing video-level
uncertainty, the snippet-level uncertainty is naturally deduced. Based on this
more fine-grained information, we design a progressive learning strategy, in which
the order of the snippet-level uncertainty is leveraged to gradually focus on the
entire action instances in an “easy-to-hard” manner. As a result, the negative
impact of intra-action variations is alleviated and the background noise can be
further excluded. Our proposed DELU is optimized in an end-to-end manner,
and we validate its effectiveness on two popular benchmarks [15, 6].

In conclusion, the main contributions of this work are three-fold:
1. We design a generalized EDL paradigm to better adapt to the multi-label

classification setting under weak supervision. To the best of our knowledge, we
are among the first to introduce the evidential deep learning to weakly-supervised
temporal action localization.

2. By carefully considering both video- and snippet-level uncertainty, we pro-
pose a novel dual-evidential learning framework, which can effectively alleviates
the action-background ambiguity caused by background noise and large intra-
action variations.

3. We conduct extensive experiments on two public benchmarks, i.e., Thu-
mos14 dataset and Activity1.2 dataset. On both benchmarks our proposed DELU
method achieves state-of-the-art results.

2 Related Work

Weakly-supervised Temporal Action Localization (WS-TAL). In recent
years, WS-TAL with various types of weak supervisions has been developed, e.g.,
action orders [5], web videos [11], single-frame annotation [34, 21], and video-
level action category labels [52, 39, 28], while the last one is the most commonly
adopted due to its simplicity. UntrimmedNet [52] is the first work to use video-
level action category labels for the WS-TAL task. To date in the literature,
most existing approaches can be divided into three categories, namely attention-
based methods [45, 54, 13, 42, 38, 32], MIL-based methods [35, 22, 33, 37, 40], and
erasing-based methods [48, 59, 61]. Attention-based approaches generate the fore-
ground attention weight to suppress the background parts. CO2-Net [13] filters
out the information redundancy to enhance features by cross-modal attention
alignment. MIL-based approaches treat the input video as a bag in which the ac-
tion clips are positive samples and the background clips are negative ones, and
a top-k operation is utilized to aggregate the snippet-level prediction results.
ASL [35] explores a general independent concept of action by investigating a
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class-agnostic actionness network. The erasing-based methods attempt to erase
the most discriminative parts to highlight other less discriminative snippets. For
example, FC-CRF [61] tries to find new foreground snippets progressively via
step-by-step erasion from a complete input video.

Although several methods have investigated the role of uncertainty in WS-
TAL, e.g., GUCT [56] estimates the uncertainty about the generated snippet-
level pseudo labels to mitigate noise, Lee et al. [23] decompose the classifica-
tion probability into the action probability and the uncertainty with a chain
rule, they neglect the unique two-level uncertainty structure under the weakly-
supervised setting of WS-TAL. In this paper, by carefully considering both video-
and snippet-level uncertainty, we propose a novel dual-evidential learning frame-
work to effectively alleviate the action-background ambiguity.
Evidential Deep Learning (EDL). In recent years, deep learning approaches
commonly adopt softmax function as the classification head to output final pre-
dictions. However, due to the exponent operation employed on neural network
outputs, there exist intrinsic deficiencies of modeling class probabilities with
softmax. On the one hand, softmax-based classifiers have a tendency to be over-
confident in false predictions, which brings additional difficulties to the opti-
mization process [12]. On the other hand, since the softmax output is essentially
a point estimate of the probability distribution [10], it cannot estimate the pre-
dictive uncertainty.

To overcome the above weaknesses, EDL [44, 36] was gradually developed and
refined based on Dempster-Shafer theory of evidence (DST) [55] and Subjective
Logic theory [19]. The core idea of EDL is to collect evidence of each category
and construct a Dirichlet distribution parametrized over the collected evidence
to model the distribution of class probabilities. Besides the probability of each
category, the predictive uncertainty can be quantified from the distribution by
Subjective Logic theory. EDL has been successfully utilized in various tasks re-
quiring uncertainty modeling, and remarkable progress has been achieved in a
few computer vision tasks [46, 43, 3]. For example, Bao et al. [3] use the uncer-
tainty obtained by EDL to distinguish between the known and unknown samples
for the open set action recognition (OSAR) task.

However, current EDL models are designed for fully-supervised single-label
classification tasks, which is not suitable to be directly integrated into weakly-
supervised multi-label classification setting. To the best of our knowledge, we
are among the first to introduce the evidential deep learning to the WS-TAL
task, demonstrating favorable performance.

3 Proposed Approach

In this work, we describe our DELU framework in details. We first introduce the
Evidential Deep Learning (EDL) in Section 3.1. The overview architecture of
DELU is illustrated in Figure 3. We firstly utilize a pre-trained feature extractor
to obtain snippet-level video feature and adopt a backbone network to obtain
the CAS (Section 3.2). Then, we propose a generalized EDL paradigm which can
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Fig. 3: Overall framework of the proposed DELU. After obtaining the snippet-
level evidence, we aggregate them to generate the video-level evidence by select-
ing the top-k snippets according to the attention scores. The video-level evidence
and uncertainty are used to generalize the EDL paradigm for WS-TAL, and the
snippet-level uncertainty is employed to generate dynamic weights for progres-
sive learning. Note that we omit the regular classification loss Lcls (Section 3.2)
in this figure for simplicity.

better adapt to the setting of WS-TAL. Specifically, the video-level uncertainty
is utilized to generalize the EDL paradigm for weakly-supervised multi-label
(WS-Multi) classification (Section 3.3), and a progressive learning strategy is
employed by leveraging the snippet-level uncertainty (Section 3.4). Finally, the
whole framework is end-to-end learned (Section 3.5).

3.1 Background of Evidential Deep Learning

According to Dempster-Shafer theory of evidence [55] and Subjective Logic the-
ory [19], evidential deep learning (EDL) [2, 44] was proposed to address the de-
ficiencies of softmax-based classifiers mentioned in Section 2. Instead of directly
predicting the probability of each class, EDL collects evidence of each class first
and then builds a Dirichlet distribution of class probabilities parametrized over
the collected evidence. Based on the distribution, the predictive uncertainty can
be quantified by Subjective Logic theory [19]. To represents the intensity of ac-
tivation of each class, evidence is defined as a measure of the amount of support
collected from data in favor of a sample being classified into a particular class [55,
19, 44].

EDL targets at predicting evidence for each category and building a Dirichlet
distribution of class probability. Given a C-class classification problem, let e ∈
RC

+ be the evidence vector predicted for a sample x, the corresponding Dirichlet
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distribution is given by

D(q|α) =

{
1

B(α)

∏C
j=1 q

αj−1
j , for q ∈ SC

0, otherwise
(1)

where αj = ej + 1, j = 1, ..., C is the class index, B denotes the C-dimensional
beta function and q is a point on the C-dimensional unit simplex SC [44].
As shown in Figure 2 and Figure 3, the Dirichlet distribution over a three-
dimensional simplex can be visualized as a triangle heatmap. Eac h point of
the simplex represents a point estimate of the probability distribution, and each
edge is the value range [0, 1], while the brightness represents the value of the
Dirichlet probability density function. Treating D(q|α) as the class probability
distribution, the negative logarithm of the marginal likelihood for sample x can
be derived as follows:

LEDL =

C∑
j=1

yj(logS − logαj), (2)

where y is the one-hot ground-truth vector for sample x, S =
∑C

j=1 αj . Eq. (2)
is the traditional optimization objective of EDL [44, 36]. Then, the predicted
probablity p̂j of class j and the uncertainty u of the prediction can be derived
as following:

p̂j = αj/S, u = C/S. (3)

Note that uncertainty u is inversely proportional to the total evidence. When
the total evidence is zero, the uncertainty becomes the maximum.

3.2 Notations and Preliminaries

In the following, superscript (i) is used to indicate the sample index, i = 1, ..., N ,
and subscript j is used to indicate the category index. Note that in the following,
for simplicity, the superscript (i) has been omitted when there is no ambiguity.
Given an untrimmed video V and its corresponding multi-hot action category
label y ∈ {0, 1}C+1, where C is the action category number, and C + 1 rep-
resents the non-action background class. The action instances in video V de-
tected by WS-TAL methods can be formulated as a set of ordered quadruplets
{cm, tsm, tem, ϕm}Mm=1, where M is the number of action instances in V , cm de-
notes the action category, tsm and tem denote the start and end timestamps, and
ϕm denotes the confidence score.

Following previous works [42, 14, 56], we first divide the untrimmed video V
into T non-overlapping 16-frame snippets, and use pre-trained networks, e.g.,
I3D model [20], to extract features from both RGB and optical flow streams.
After that, the two types of features are concatenated and then fed into an fusion
module, e.g., convolutional layers [42, 13], to obtain the snippet-wise feature
X = [x1, ...,xT ] ∈ RD×T , where D is the feature dimension.
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To date in the literature, existing methods mainly embrace a localization-by-
classification strategy. Firstly, a classifier fcls is applied to the snippet-wise fea-
tures X to predict the CAS, denoted as p = [p1, ...,pT ] ∈ RT×(C+1). Meanwhile,
an attention score sequence A = [A1, ..., AT ] ∈ RT is predicted by an attention
module to represent the probabilities of snippets belonging to the foreground.
After that, the video-level classification probability ỹ is obtained through a top-
k aggregation operation over the CAS according to the attention scores A, and
the process can be formalized as:

ỹ =
1

k

∑
t ∈ Ω, |Ω| = k,

Ω = argmax
Ω

∑
t∈Ω At

pt, (4)

where p = fcls(X). Finally, the video-level prediction ỹ is optimized by the
ground-truth label y:

Lcls = Cross-entropy(y, ỹ). (5)

3.3 Generalizing EDL for Video-level WS-Multi Classification

Although evidential deep learning has made great progress in modeling uncer-
tainty, the traditional EDL paradigm is not suitable to be directly applied to
the WS-Multi classification setting of WS-TAL. In order to extend the appli-
cability of evidential learning methods to WS-TAL tasks, the first problem to
be solved is how to predict video-level evidence evid = [evid,1, ..., evid,C ] ∈ RC

from snippet-level features X. We propose to predict the snippet-level evidence
esnip = [esnip,1, ..., esnip,C ] ∈ RT×C for action categories first, and then obtain
the video-level evidence evid by aggregating the snippet-level evidence esnip,t of
the snippets which are attached with the top-k attention score At. Note that here
we jointly employ attention scores and evidence for aggregation, which makes
the attention module and evidence learning enhance and complement each other.
Formally, we can denote the video-level evidence collection process as following:

evid =
1

k

∑
t ∈ Ω, |Ω| = k,

Ω = argmax
Ω

∑
t∈Ω At

esnip,t, (6)

where k = ⌈T/r⌉, r is a scaling factor, esnip = g(f(X;θ)), f is a DNN param-
eterized by θ to collect evidence, g denotes an evidence function, e.g., ReLU,
to keep the evidence esnip non-negative. Note that here we only consider the
C action categories for evidential learning since the additional background class
hinders the uncertainty modeling of foreground. Following the traditional EDL
method, we obtain α, S, and uvid by

αj = evid,j + 1, S =

C∑
j=1

αj , uvid = C/S, (7)
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Due to the low frequency or short duration of some action categories, the
collected evidence for them tend to have a relatively low intensity, thus being
easily ignored in the process of model learning. Therefore, we hope that the
classifier can assign more importance to the target action categories with smaller
evidence scores. With the symbols introduced in Section 3.2, we design a new
label vector g to replace original multi-hot label y:

gj =
yj/evid,j∑C
j=1 yj/evid,j

, (8)

It can be found from Eq. (8) that gj and evid,j are inversely proportional, thus
the model can learn features of each target category more evenly.

Although the above modified EDL paradigm can better adapt to the multi-
label classification setting, it neglects the uncertainty derived from the video-level
evidential learning. We further notice that the video-level uncertainty uvid can
be utilized to measure the interference of background noise to video-level pre-
diction, thus avoiding the background noise intensifying the action-background
ambiguity. We argue that the selected top-k snippets are dominated by action
snippets as expected only when the classifier predicts the video category cor-
rectly with a low uncertainty. Contrarily, when the prediction is accompanied by
a high uncertainty, the video-level prediction is more likely to be dominated by
background noise. In the latter case, we should expect the classifier to produce
a trivial prediction, instead of forcing the result to be consistent with the given
video-level action category label, which may lead to the action-background am-
biguity further increasing. To achieve this goal, we propose to replace gj with
hj by leveraging the video level uncertainty:

hj = (1− uvid)gj , (9)

Therefore, the samples with higher video-level uncertainties can take a smaller
weight in the optimization process, thus reducing the negtive impact caused by
background noise.

Based on the above derivation, our objective for generalizing EDL can be
formulated to the following form:

Lgedl =

N∑
i=1

(1− u
(i)
vid)

C∑
j=1

y
(i)
j /e

(i)
j∑C

j=1 y
(i)
j /e

(i)
j

(logS(i) − logα
(i)
j ). (10)

3.4 Snippet-level Progressive Learning

In the above section, snippet-level uncertainty is also deduced when performing
video-level evidential learning. To leverage the fine-grained information, we no-
tice that p ∈ RT×(C+1) represents the classification probabilities of snippets, and
pt,c+1 indicates the probability of the t-th snippet belonging to the background.
It is natural to think that the attention score A, which represents the probabil-
ity of each snippet belonging to the foreground, and the background probability
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pt,c+1 should be complementary:

Lcom =

T∑
t=1

|At + pt,c+1 − 1|, (11)

where | · | is the ℓ1 norm.
Due to the existence of task gap between classification and localization, mod-

els tend to focus only on the most discriminative video snippets, which makes
it difficult to classify other action snippets correctly. Inspired by Curriculum
Learning [4], we propose a progressive learning method by leveraging snippet-
level uncertainty to help the model learn the entire action instance progressively
and comprehensively. Note that the snippet-level uncertainty can reflect the dis-
criminability of itself, that is, the lower uncertainty of an action snippet means
it is easier to recognize its category. Our strategy is to attach larger weights
to snippets with lower uncertainty and smaller weights to ones with higher un-
certainty in the beginning, and gradually reverse this allocation in the training
process. During the progressively learning, the model firstly focuses on easy ac-
tion snippets and then gradually pays more attention to background and difficult
action snippets. As a result, the negtive impact of intra-action variation is alle-
viated and the background noise can be further excluded. Therefore, as shown
in Figure 3, we design a dynamic weight function λ(r, t) as following:

λ(r, t) = ∆ · tanh (δ(r)ϕ(s(t))) + 1, (12)

where ∆ is a hyper-parameter representing the amplitude of the change of the
dynamic weights. Specifically, δ(r) = 2r

R − 1 ∈ [−1, 1], r = 1, ..., R, r is the
current epoch index, R denotes the total training epoch number, and ϕ(s(t)) =
2s(t)
T − 1 ∈ [−1, 1], s = 1, ..., T , s(t) indicates the ordinal number of snippet t

obtained by sorting the snippet-level uncertainty usnip in a descending order.
Finally, after multiplying the snippet-level uncertainty guided dynamic weights

to the complementary loss Lcom, we can gradually focus on the entire action in-
stances in an “easy-to-hard” manner by optimizing the following objective:

Lucom =

T∑
t=1

λ(r, t) · |At + pc+1,t − 1|. (13)

3.5 Learning and Inference

Training. By aggregating all the aforementioned optimization objectives, we
obtain the final loss function as following

L = Lcls + λ1Lgedl + λ2Lucom, (14)

here, λ1, λ2 are balancing hyper-parameters.
Inference. In the inference phase, we first predict the CAS of the test video
and then apply a threshold strategy to obtain action snippet candidates following
the standard process [13]. Finally, continuous snippets are grouped into action
proposals, and then non-maximum-suppression (NMS) is performed to remove
duplicated proposals.
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Table 1: Temporal action localization performance comparison with existing
methods on the THUMOS14 dataset.

Supervision Method
mAP@t-IoU(%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 [0.1:0.5] [0.3:0.7] Avg

Fully

TAL-Net[8], CVPR2018 59.8 57.1 53.2 48.5 42.8 33.8 20.8 52.3 39.8 45.1

GTAN[31], CVPR2019 69.1 63.7 57.8 47.2 38.8 - - 55.3 - -

BU-TAL[60], ECCV2020 - - 53.9 50.7 45.4 38.0 28.5 - 43.3 -

Weakly

UntrimmedNet[52], CVPR2017 44.4 37.7 28.2 21.1 13.7 - - 29.0 - -

Hide-and-Seek[48], ICCV2017 36.4 27.8 19.5 12.7 6.8 - - 20.6 - -

AutoLoc[47], ECCV2018 - - 35.8 29.0 21.2 13.4 5.8 - - -

STPN[39], CVPR2018 52.0 44.7 35.5 25.8 16.9 9.9 4.3 35.0 18.5 27.0

W-TALC[40], ECCV2018 55.2 49.6 40.1 31.1 22.8 - 7.6 39.8 25.4 34.4

DGAM[45], CVPR2020 60.0 54.2 46.8 38.2 28.8 19.8 11.4 45.6 29.0 37.0

RefineLoc[1], WACV2021 - - 40.8 32.7 23.1 13.3 5.3 - 23.0 -

ACSNet[30], AAAI2021 - - 51.4 42.7 32.4 22.0 11.7 - 32.0 -

HAM-Net[16], AAAI2021 65.9 59.6 52.2 43.1 32.6 21.9 12.5 50.7 32.5 41.1

ASL[35], CVPR2021 67.0 - 51.8 - 31.1 - 11.4 - - 40.3

CoLA[58], CVPR2021 66.2 59.5 51.5 41.9 32.2 22.0 13.1 50.3 32.1 40.9

AUMN[32], CVPR2021 66.2 61.9 54.9 44.4 33.3 20.5 9.0 52.1 32.4 41.5

UGCT[56], CVPR2021 69.2 62.9 55.5 46.5 35.9 23.8 11.4 54.0 34.6 43.6

D2-Net[38], ICCV2021 65.7 60.2 52.3 43.4 36.0 - - 51.5 - -

FAC-Net[14], ICCV2021 67.6 62.1 52.6 44.3 33.4 22.5 12.7 52.0 33.1 42.2

ACM-Net[42], arXiv2021 68.9 62.7 55.0 44.6 34.6 21.8 10.8 53.2 33.4 42.6

CO2-Net[13], MM2021 70.1 63.6 54.5 45.7 38.3 26.4 13.4 54.4 35.7 44.6

ACG-Net[57], AAAI2022 68.1 62.6 53.1 44.6 34.7 22.6 12.0 52.6 33.4 42.5

DELU(Ours) 71.5 66.2 56.5 47.7 40.5 27.2 15.3 56.5 37.4 46.4

4 Experimental Results

We evaluate our proposed DELU on two public benchmarks, i.e., THUMOS14 [15]
and ActivityNet1.2 [6]. The following experiments verifies the effectiveness.

4.1 Experimental Setup

THUMOS14. It contains 200 validation videos and 213 test videos annotated
with temporal action boundaries from 20 action categories. Each video contains
an average of 15.4 action instances, making this dataset challenging for weakly-
supervised temporal action localization.
ActivityNet1.2. ActivityNet1.2 contains 4,819 training and 2,383 validation
videos from 100 action categories. Since the ground-truth annotations of the
test set is not yet public, we test on the validation set following the protocol in
previous work [17, 16, 13].
Evaluation Metrics. Following previous work [13, 42, 52], we use mean Av-
erage Precision (mAP) under different temporal Intersection over Union (t-
IoU) thresholds as evaluation metrics. The t-IoU thresholds for THUMOS14
is [0.1:0.1:0.7] and for ActivityNet is [0.5:0.05:0.95].
Implementation Details. Following existing methods, we use I3D [7] model
pretrained on Kinetics [20] dataset to extract both the RGB and optical flow
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features. After that, we adopt CO2-Net [13] as the backbone to obtain the fused
2048 dimensional features and implement fcls and Lcls. The number of the sam-
pled snippets T for THUMOS14 and ActivityNet1.2 is set to 320 and 60, and
the scaling factor r is set to 7 and 5, respectively. Two convolutional layers
are utilized as the evidence collector f . The amplitude ∆ is set to 0.7, and the
balancing hyper-parameters λ1 and λ2 are 1.3 and 0.4.

4.2 Comparision with State-of-the-Art Methods

Evaluation on THUMOS14. Table 1 compares DELU with existing fully and
weakly-supervised TAL methods on the THUMOS14 dataset. From this table we
can find that DELU outperforms all existing weakly-supervised methods in all
IoU metrics. Specifically, our method achieves impressive performance of 15.3%
mAP@0.7 and 46.4% mAP@Avg, and an absolute gain of 1.8% and 2.8% is
obtained in terms of the average mAP when compared to the SOTA approaches
CO2-Net [13] and UGCT [56]. In addition to this, we observe that our methods
can even achieve comparable performance with those fully-supervised methods,
especially in terms of metrics with low IoU.
Evaluation on ActivityNet1.2. Table 2 presents the comparison of exper-
imental performance on the ActivityNet1.2 dataset. As shown, our method
also achieves state-of-the-art performance under the weakly-supervised setting.
Specifically, compared with the state-of-the-art method ACM-Net[42], we ob-
tain a relative gain of 1.5% in the term of the average mAP. DELU achieves
less significant performance improvement on this dataset due to the different
characteristics of datasets, that THUMOS14 contains 15.4 action instances per
video on average, compared with 1.6 in each video of ActivityNet. Therefore,
methods that tend to treat ambiguous snippets as the foreground will perform
better on ActivityNet, while methods with the opposite tendency will achieve
better performance on THUMOS14. For example, ACM-Net achieves SOTA on
ActivityNet, and CO2-Net achieves SOTA on THUMOS14, but neither of them
can achieve the same outstanding results on the other dataset. In this paper, the
proposed DELU achieves the SOTA performance on both datasets consistently.

4.3 Ablation Study

In Table 3, we investigate the contribution of each component on the THU-
MOS14 dataset. As introduced in Section 3.5, the optimization objective of
our proposed DELU consists of three loss functions, i.e., Lcls,Lgedl and Lucom.
Firstly, we set the baseline of the ablation study as the backbone method CO2-
net [13] whose optimization objective is Lcls. On this basis, we conduct experi-
ments on each improvement scheme according to the derivation steps of Lgedl,
that is, (T) only using the traditional EDL method optimized by Eq. (2), (B) ap-
plying the balanced improvement given by Eq. (8) on the basis of the traditional
EDL, and (U) optimizing the complete Lgedl which considers the video-level un-
certainty (Eq. (10)). Finally, the snippet-level uncertainty guided complementary
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Table 2: Comparison results on the Ac-
tivityNet1.2 dataset.

Method
mAP@t-IoU(%)

0.5 0.75 0.95 Avg

DGAM[45], CVPR2020 41.0 23.5 5.3 24.4

RefineLoc[1], WACV2020 38.7 22.6 5.5 23.2

ACSNet[30], AAAI2021 40.1 26.1 6.8 26.0

HAM-Net[16], AAAI2021 41.0 24.8 5.3 25.1

Lee et al[21], AAAI2021 41.2 25.6 6.0 25.9

ASL[35], CVPR2021 40.2 - - 25.8

CoLA[58], CVPR2021 42.7 25.7 5.8 26.1

AUMN[32], CVPR2021 42.0 25.0 5.6 25.5

UGCT[56], CVPR2021 41.8 25.3 5.9 25.8

D2-Net[38], ICCV2021 42.3 25.5 5.8 26.0

ACM-Net[42], arXiv2021 43.0 25.8 6.4 26.5

CO2-Net[13], MM2021 43.3 26.3 5.2 26.4

ACGNet[57], AAAI2022 41.8 26.0 5.9 26.1

DELU(Ours) 44.2 26.7 5.4 26.9

Table 3: Ablation study of the effec-
tiveness of our proposed EDLU on the
THUMOS14 dataset. T represents the
traditional EDL method (Eq. (2)). B
represents the modified EDL (Eq. (8))
which balances the evidence collected
for each target category. U is the gener-
alized EDL paradigm leveraging video-
level uncertainty (Eq. (10)).

Exp
Lgedl Lucom

mAP@IoU(%)

T B U 0.1 0.3 0.5 0.7 mAP

1 % % % % 69.7 54.7 38.2 13.2 44.5

2 ! % % % 68.9 54.8 39.0 14.9 44.9

3 ! ! % % 70.4 55.4 38.9 14.7 45.2

4 ! ! ! % 70.6 56.2 39.2 14.6 45.6

5 ! ! ! ! 71.5 56.5 40.5 15.3 46.4

loss Lucom is added to above components. Table 3 clearly demonstrates that ev-
ery step of our method brings considerable performance improvement on the
THUMOS14 dataset.

4.4 Evaluation for insights

In this part, we provide experiment results to illustrate that (1) background
noises and (2) ignoring non-salient action snippets are existing issues in WS-
TAL and DELU effectively alleviates them.

The issue (1) does exist. Given the test videos of the THUMOS14 dataset,
we select the 5% snippets with the highest target CAS, i.e., the Class Activa-
tion Score of the Target (ground-truth) action category, predicted and averaged
by the SOTA method CO2-Net, of which 22.54% are background snippets (this
number drops to 20.92% in our DELU). This fact indicates that existing methods
suffer from the background noise issue, which hinders further improvement of lo-
calization performance. To verify that DELU alleviates this issue, we utilize Area
Under the Receiver Operating Characteristic (AUROC) to evaluate the action-
background separation performance. Specifically, we sort snippets according to
the learned attention scores and then divide them into action and background
with different thresholds. Figure 4(a) presents the ROC curves of DELU and
CO2-Net, which shows DELU achieves more accurate action-background sepa-
ration. To be more precise, DELU has an AUROC of 85.92%, while CO2-Net
has an AUROC of 83.96%.

The issue (2) also exists. First, we observe the following phenomenon: the
target CAS predicted for action snippets in the same video are not evenly dis-
tributed. For instance, as shown in Figure 4(b), when CO2-Net works on the
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THUMOS14 dataset, 30% snippets with higher target CAS accounts for more
than half of the total target CAS. In order to validate that non-salient snippets
can bring performance improvement, we divide snippets in each test video into
ten intervals according to the target CAS, and then manually correct the tar-
get CAS (before softmax normalization) of the snippets in each interval with a
fixed amplitude (5 in our experiment). Figure 4(c) shows that the performance
improvements in non-salient intervals are generally higher than those in salient
ones. Note that using other amplitude values also has similar results. To ver-
ify that DELU improves this issue, we compare the target CAS distribution of
DELU and CO2-Net. As shown in Figure 4(d), the target CAS distribution of
DELU is more uniform, indicating DELU does make the model more comprehen-
sively focus on both salient and non-salient snippets and improve performance.
Similar conclusions can also be found in Figure 4(b).

(a) (b) (c) (d)

Fig. 4: Evaluation for the insights of our method.

5 Conclusions

This paper proposes a generalized evidential learning framework for WS-TAL,
called Dual-Evidential Learning for Uncertainty modeling. Specifically, video-
level evidential learning and snippet-level progressive learning are performed to
jointly alleviate the action-background ambiguity. Extensive experiments demon-
strate the effectiveness of components in our proposed framework. DELU out-
performs all existing methods on THUMOS14 and ActivityNet1.2 for weakly-
supervised temporal action localization. Inspired by the merits of evidential lean-
ring, in the future, we plan to perform pseudo label mining or introduce single-
frame annotations, to explore and widen the potential of our DELU framework.
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