Appendices for “AdaFocusV3: On Unified Spatial-temporal Dynamic Video Recognition”

Yulin Wang1*, Yang Yue1*, Xinhong Xu1, Ali Hassani2, Victor Kulikov3, Nikita Orlov3, Shiji Song1, Humphrey Shi2,3†, and Gao Huang1,4†

1 Department of Automation, BNRist, Tsinghua University
2 University of Oregon
3 Picsart AI Research (PAIR)
4 Beijing Academy of Artificial Intelligence (BAAI)

{wang-yl19, ley18}@mails.tsinghua.edu.cn, shihonghui3@gmail.com, gaohuang@tsinghua.edu.cn

A Experimental Setups

Datasets. Our experiments are based on six large-scale video recognition benchmark datasets, i.e., ActivityNet [1], FCVID [4], Mini-Kinetics [5,15], Something-Something (Sth-Sth) V1&V2 [3] and Diving48 [7]. The official training-validation split is adopted for all of them. Note that these datasets are widely used in the experiments of a considerable number of recently proposed baselines. We select them for a reasonable comparison with current state-of-the-art results.

– ActivityNet [1] contains the videos of 200 human action categories. It includes 10,024 training videos and 4,926 validation videos. The average duration is 117 seconds.
– FCVID [4] includes 45,611 training videos and validation 45,612 videos. The data is annotated into 239 classes. The average duration is 167 seconds.
– Mini-Kinetics is a subset of the Kinetics [5] dataset. It contains include 200 randomly selected classes of videos, with 121k videos for training and 10k videos for validation. The average duration is around 10 seconds [5]. We establish it following [15,10,11,9].
– Something-Something (Sth-Sth) V1&V2 [3] datasets contain 98k and 194k videos respectively. Both of them are labeled with 174 human action categories. The average duration is 4.03 seconds.
– Diving48 [7] is a fine-grained video dataset of competitive diving, consisting of ~18k trimmed video clips of 48 unambiguous dive sequences.

Data pre-processing. We uniformly sample 18 frames from each video on ActivityNet, FCVID and Mini-Kinetics, while sampling 8/16 frames on Sth-Sth and Diving48. These configurations are determined on the validation set for a favorable accuracy-efficiency trade-off. The data augmentation pipeline in [8,10,11,12,13] is adopted. Specifically, the frames of training data is randomly scaled and cropped into 224×224 images. On all the datasets except for Sth-Sth V1&V2 and Diving48, the random flipping is performed as well. At test time, all the frames are resized to 256×256 and centre-cropped to 224×224.

* Equal contributions. †Corresponding Authors.
B Baselines

Baselines. We compare AdaFocusV3 with a variety of recently proposed approaches that focus on improving the efficiency of video recognition. The results on ActivityNet, FCVID and Mini-Kinetics are provided. In addition to the previous versions of AdaFocus, the following baselines are included.

- LiteEval [15] dynamically activates coarse and fine LSTM networks conditioned on the importance of each frame.
- SCSampler [6] is an efficient framework to select salient video clips or frames. The implementation in [10] is adopted.
- ListenToLook [2] searches for the task-relevant video frames by leveraging audio information. We adopt the image-based variant introduced in their paper for fair comparisons, since we do not use the audio of videos.
- AR-Net [10] processes the frames with different resolutions based on their relative importance.
- AdaFrame [14] adaptively identifies the informative frames from the videos with reinforcement learning.
- VideoIQ [11] learns to process each frame with different precision based on the importance in terms of video recognition.
- OCSampler [9] is a one-stage framework that learns to represent the video with several informative frames with reinforcement learning.

C Training Details

On ActivityNet, FCVID and Mini-Kinetics, the training of AdaFocusV3 exactly follows the same end-to-end training pipeline as AdaFocusV2 [13]. On Something-Something (Sth-Sth) V1&V2 and Diving48, we first train the two deep encoders and the classifier with a random policy, and then train the policy network isolatedly. We find that this two-stage training pipeline yields a better performance, while its training cost is approximately the same as its end-to-end training counterpart.

D More Results

Effectiveness of the early-termination algorithm is validated in Figure 1. The results on ActivityNet with the cube size of 128×128×1 are presented. Three variants are considered: (1) adaptive early-exit with prediction confidence; (2) random early-exit with the same exit proportion as AdaFocusV3; (3) early-exit with fixed cube number. Our entropy-based mechanism shows the best performance.
Fig. 1. Ablation study on early-termination algorithm.

References
