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Abstract. In this paper, we explore the details in video recognition
with the aim to improve the accuracy. It is observed that most failure
cases in recent works fall on the mis-classifications among very simi-
lar actions (such as high kick vs. side kick) that need a capturing of
fine-grained discriminative details. To solve this problem, we propose
synopsis-to-detail networks for video action recognition. Firstly, a syn-
opsis network is introduced to predict the top-k likely actions and gen-
erate the synopsis (location & scale of details and contextual features).
Secondly, according to the synopsis, a detail network is applied to ex-
tract the discriminative details in the input and infer the final action
prediction. The proposed synopsis-to-detail networks enable us to train
models directly from scratch in an end-to-end manner and to investi-
gate various architectures for synopsis/detail recognition. Extensive ex-
periments on benchmark datasets, including Kinetics-400, Mini-Kinetics
and Something-Something V1 & V2, show that our method is more ef-
fective and efficient than the competitive baselines. Code is available at:
https://github.com/liang4sx/S2DNet.
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1 Introduction

The explosive growth of online videos requires for an automatic recognition
of large-scale videos, including human actions, events or other contents within
them. For example, there are more than 105 hours of fresh video contents up-
loaded to YouTube every day to be processed for ranking and recommendation.
In this situation, both high accuracy and high efficiency are required for large-
scale online video analysis.

Because of the strong expressive power, in recent years, deep networks be-
come the mainstream solutions for video recognition [5, 6, 12, 24, 41, 45, 46, 51].
To model spatial and temporal patterns in videos, 2D CNNs based methods first
extract spatial features of each frame with 2D CNNs, then model the temporal
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patterns based on a temporal fusion of spatial features. The temporal fusion
strategies consist of post-hoc fusion [6, 12, 15, 60] or mid-level fusion [62, 47, 56].
These methods sacrifice the fine-grained temporal modeling at the low level for
efficiency, resulting in a moderate accuracy. 3D CNNs [5, 10, 11, 46] handles spa-
tial and temporal dimensions jointly, which achieve higher accuracy, but the
computational costs are large, making them difficult to process large-scale real-
time online videos. Recently, a feasible way for high accuracy and high efficiency
is to investigate better temporal modeling based on 2D CNNs [32, 42, 53]. In [32],
parts of the 2D CNN channels are shifted along temporal dimension to merge
information among neighboring frames efficiently. [42] introduces a coarse-to-fine
framework, where features of multi-scale input are combined for final prediction
and early exits of easy cases are adopted for higher inference speed. In [53], a
policy network is used to select relevant regions and frames for better efficiency.
However, there are still a number of failed cases in their results.
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Fig. 1: Two failure cases of recent works [32, 42, 53]. The left shows both the input
clips of uniform frames used by these works (in first/third rows), and the input
clips of frames with detail sampled by our method (in second/fourth rows). The
right part shows the predictions generated by [32] using these clips. The bars
in red denote the probabilities of ground-truth actions. Without the details, the
first case is mis-classified since the high kick moment (with the leg in front of the
hip) is missing (3rd/4th frames in the second row) and the pose (2nd/3rd/4th/5th

frames in the first row) of the person seems like the pose of side kick (with the
leg extending out from the hip). Also, the second case is mis-classified because
the motion of exercising arms (lifting the arms upward) is indistinctive and the
pose of the person in earlier frames (1st/2nd/3rd/4th frames in the third row) is
similar to the pose of front raises (lifting the arms to the shoulder height)

We investigate the failure cases in recent works and find most of these fail-
ure cases fall on the mis-classifications among very similar actions (such as high
kick vs. side kick) that need a deep understanding of fine-grained discriminative
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details. Two failure cases on Kinetics-400 [5] are shown in Fig. 1. With the con-
ventional uniform frames, we can observe that the top-5 predictions of recent
works are rather reasonable and share the same scene (“martial art” for case 1
and “indoor exercise” for case 2). But without the details in the second/fourth
rows, even for our human eyes, it’s difficult to rank the ground-truth actions
“high kick” and “exercise arm” in the first place. Intuitively, for action recog-
nition of a video, the observation process of humans consists of two stages [2]:
1) Go through the video and identify the key frames/regions that are related to
the most likely actions in consideration. 2) Slow the playback rate of key frames
and zoom in the related region of each frame to obtain extra details for a more
precise prediction. Inspired by this process, to further improve the accuracy of
video recognition, we need to introduce the zoom in/out effects in both spatial
and temporal dimensions for better inspection of details in the video.

Following the aforementioned analysis and motivation, we present a new
perspective for accurate video recognition by proposing a novel synopsis-to-detail
network (S2DNet). Firstly, a synopsis network goes through the input video,
predicts the top-k most likely actions and generates the synopsis (location &
scale of details and contextual features). Secondly, given the synopsis, a detail
network is introduced to dynamically extract the details from the input and infer
the final prediction based on the details. As all modules (including samplers,
backbones and classifiers) of the synopsis/detail networks are differentiable, the
synopsis-to-detail network can be trained directly from scratch in an end-to-
end manner. Note that both recognizing top-k likely actions and discriminating
one out of the top-k actions using details are much easier tasks than direct
action recognition from the input video. As a result, despite adopting light-
weighted models for both synopsis/detail networks, our method achieves both
high accuracy and high efficiency.

There is another recent architecture for video recognition which has a coarse-
to-fine (C2F) design [33, 42], but provides conceptually different perspectives.
The C2F methods have not explored the potential of sampling details (zoom
in detail regions and slow the playback rate of detail frames), which is a key
concept in our method. Moreover, in C2F methods, each network shares the same
task of classifying among all actions in parallel. The proposed S2DNet, however,
formulates the task of action recognition as a progressive process, where the final
output is generated by two simpler tasks (firstly recognizing top-k likely actions
and then discriminating one out of the top-k actions using extra details).

Extensive experiments on benchmark datasets, including Kinetics-400, Mini-
Kinetics and Something-Something V1 & V2, show that our method is more
effective and efficient than the competitive baselines.

2 Related Works

Action Recognition. One prevalent approach to capture spatio-temporal pat-
terns of actions adopts Convolutional Neural Networks (CNNs). Early works
extract frame-level features with 2D CNNs and empower them with temporal



4 S. Liang et al.

dynamics via two-stream networks with optical flow [45], temporal averaging [51],
long short-term memory [6], etc. The other line of works develops 3D CNNs [12,
19, 41, 46], handling both spatial and temporal dimensions jointly. Later works
on 3D CNNs leverage self-attention mechanisms [52], pathways of different fram-
erates [11], learnable correlation operators [49], etc. More recently, there have
been attempts to apply vision transformers [7] for action recognition [1, 3, 8, 39],
matching or exceeding state-of-the-arts on multiple datasets.

In consideration of both accuracy and efficiency, recent efforts of efficient
action recognition methods lie in two folds. The first focuses on designing light-
weighted architectures, such as 2D CNNs with cost-efficient temporal modeling
modules [9, 30, 32, 34, 50, 54, 62] and optimized 3D CNNs [10, 28, 35, 47]. The sec-
ond attempts to dynamically allocate computation along time axis [14, 25, 26, 36,
37, 55, 59] or in both space and time [42, 53].

Coarse-to-fine Architectures. The coarse-to-fine architectures have a long
history in computer vision [13, 27, 48, 58, 61]. On the one hand, the architectures
alleviate computational costs by tackling easy cases in the coarsest level [27, 29].
On the other, they also help improve accuracy by fusing features of different
levels [27], eliminating redundancy of input [4, 58] and reducing searching space
[31, 44, 61]. In the context of action recognition, prior works adopt coarse-to-fine
architectures for early exits of easy cases [42] and multi-level feature fusion [33,
42]. Our design of two-stage architecture is inspired by these prior works.

S2DNet is also similar in form to some other lines of works, e.g., space-time
attention and ensembling. Due to page limit, we defer discussions about the
differences between these works and S2DNet to the supplementary material.

3 Synopsis-to-Detail Network

The proposed Synopsis-to-Detail Networks (S2DNet) (Fig. 2) consists of a Syn-
opsis Network (SNet) and a Detail Network (DNet). The synopsis in this paper
refers to a brief summary of the key factors of the input video, which is highly
related to the corresponding top-k likely actions. The details in this paper refer
to the discriminative factors that assist in differentiating the true action out of
the aforementioned top-k actions.

The process of S2DNet is like: first, SNet goes through the video, predicts the
top-k actions and extracts the synopsis; then, given the synopsis, DNet delves
into related details of the video and infers the final precise action.

3.1 Synopsis Network (SNet)

The synopsis includes location & scale parameters of details (θ) and contextual
features (m) related to the top-k likely actions. The former specifies the key
frames and regions of the input video. The latter acts as task information for
the extraction of discriminative features among the top-k actions. SNet learns the
above information from the raw frames. It is based on a classic action recognition
architecture, including a sampler, a backbone and a classifier.
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Fig. 2: Model Overview. S2DNet consists of a Synopsis Network and a Detail
Network. First, the Synopsis Network goes through the video, predicts the top-k
likely actions and extracts video synopsis accordingly (location & scale of details
θ and contextual features m). Then, given the synopsis, the Detail Network delves
into related details of the video and infers the final precise action

Synopsis Sampler. Consider a video with T × τ frames totally, where T is
the number of raw input frames and τ is the temporal stride of these frames.
The raw input frames are denoted by I ∈ RT×H×W , where H and W are height
and width (the dimension of RGB channels are omitted for brevity). The syn-
opsis sampler uniformly samples TS frames out of the raw input frames I, then
spatially resizes them to HS×WS . The output frames of the synopsis sampler
are denoted by V ∈ RTS×HS×WS . Importantly, the sizes of V are much smaller
than the sizes of I (e.g., 16×144×144 vs. 150×224×224). This ensures a low
computational cost of the following feature extraction.

Synopsis Backbone. The synopsis backbone fs can be any 2D/3D CNNs
for video recognition (e.g., [10, 11, 32]). It takes the output frames of the synopsis
sampler as input and generates spatio-temporal feature maps of the video:

e = fs (V) , (1)

where e ∈ RCS×TS×hS×wS . CS , hS and wS are channel size, height and width.
Synopsis Classifier. The synopsis classifier is designed to recognize the top-

k likely actions of the input video. A fully-connected (FC) layer with softmax is
adopted as the synopsis classifier hs, which takes the feature maps e as input:

p = hs(GAP(e)), (2)

where GAP is global average pooling and p is the softmax predictions over all N
actions. A k-hot vector s (with 1s for the top-k actions and 0s for other actions)
is introduced to represent the top-k likely actions. Specifically, s is the top-k
binarization of p, which takes only a single line of code3 in PyTorch [40].

3 torch.nn.functional.one hot(torch.topk(p,k).indices,N).sum(dim=-1)
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Fig. 3: Illustration of (a) generating location & scale parameters of details θ,
(b) generating contextual features m, and (c) fusing contextual features m to
intermediate feature maps of DNet

To ensure that the ground-truth class falls in the top-k predictions, a cross
entropy loss is applied to the output of SNet:

Ls = −
N∑

n=1

I (n = y) log p (n), (3)

where y denotes the ground-truth class and I (·) is an indicator function.
Synopsis I: Generating location & scale parameters of details θ (Fig. 3a).

Inspired by the differentiable attention [17, 18, 21, 57], location and scale are
formulated as 6 individual parameters: θ = (µt, µy, µx, δt, δy, δx). These param-
eters will be used in the sampler of DNet and their explanations are deferred
to Sec. 3.2. Taking the feature maps e and the top-k vector s as input, the
parameters are generated by the module fθ:

θ = fθ ([e, E(s)]) , (4)

where [·, ·] denotes concatenation and E(·) expands the vector s to the shape
of e (N×1→N×TS×hS×wS). fθ consists of one 1×1×1 convolutional layer, one
3×3×3 convolutional layer (both with BN [22] and ReLU [38]) and two parallel
fully-connected (FC) layers. The two FC layers generate (µt, δt) ∈ R2×1 for tem-
poral sampling and (µy, µx, δy, δx) ∈ R4×TD for spatial sampling, respectively.

Synopsis II: Generating contextual features m (Fig. 3b). Given the feature
maps e and the top-k vector s, m is generated by the module fm:

m = fm ([GAP(e), s]) , (5)

where m ∈ RCm×1. The module fm is a FC layer with ReLU and BN.
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3.2 Detail Network (DNet)

To delve into the details, DNet first samples a space-time volume with details
from the raw frames I, based on location & scale parameters of details θ. Then,
it extracts discriminative features over the volume with the help of contextual
features m. DNet has a sampler, a backbone and a classifier.

Detail Sampler. Given the raw input I ∈ RT×H×W and the real-valued
parameters θ = (µt, µy, µx, δt, δy, δx), the detail sampler generates a volume

V̂ ∈ RTD×HD×WD that contains rich details of the top-k actions. Following the
differentiable attention [17, 18, 21, 57], an array of 3-dimensional filters is applied
to the raw input I, yielding a sequence of local patches with smoothly varying
location and scale.

Specifically, given the expected output size TD×HD×WD, a TD×HD×WD

grid of sampling filters is applied to I. The center of the grid is determined by the
real-valued parameters (µt, µy, µx), which are formally time/height/width offsets
to the center of I. The time/height/width strides of the grid are controlled by
the real-valued parameters (δt, δy, δx). Consequently, the grid location (pt, py, px)
at frame z, row j and column i is:

pt(z) = µtT + (z − TD/2− 0.5)δt,

py(j) = µyH + (j −HD/2− 0.5)δy,

px(i) = µxW + (i−WD/2− 0.5)δx.

(6)

Note that the smaller δt is, the slower the playback rate of detail frames will be.
The smaller (δy, δx) are, the larger the resolution ratio of detail regions will be.

Previous works use Gaussian filters [18, 21, 57] or linear filters [21] for sam-
pling. We have experimented with both filters and find Gaussian filters suit
better for our case (discussed in the supplementary material). The coordinates
specified by the grid are the mean locations of Gaussian filters. Given the vari-
ance as 1, the temporal, horizontal and vertical filtering weights GT (dimensions
TD×T ), GY (dimensions HD×H) and GX (dimensions WD×W ) are defined as:

GT [z, r] =
1

ZT
exp(− (pt(z)− r)2

2
),

GY [j, v] =
1

ZY
exp(− (py(j)− v)2

2
),

GX [i, u] =
1

ZX
exp(− (px(i)− u)2

2
),

(7)

where (z, j, i) are coordinates of a point in the output V̂ and (r, v, u) are coordi-
nates of a point in the input I. ZT , ZY and ZX are the normalization constants
that ensure

∑
r GT [z, r]=1,

∑
v GY [j, v]=1 and

∑
u GX [i, u]=1.

Finally, the overall sampling operation is formulated as three 1-dimensional
Gaussian filtering. The output volume V̂ from the raw input I is sampled via
V̂ = GXGY GTI, where the dimension transposition is omitted for brevity.
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Detail Backbone. Similar to SNet, the detail backbone fd can be instan-
tiated with various video backbones. Taking the output volume of the detail
sampler V̂ and the contextual features m as input, it generates detail feature
maps ê ∈ RCD×TS×hD×wD of details by:

ê = fd

(
V̂,m

)
. (8)

Fusing the contextual features m to detail features (Fig. 3c). Following [11], m
is laterally fused into detail features via convolution. For ResNets-like architec-
tures [10, 20], we apply the lateral fusion after res3 and res4 (more discussions
are in our supplementary material), for example,

ê′3 = fu([ê3, E(m)]), (9)

where ê3/ê
′
3 ∈ RC3×TD×h3×w3 is the original/updated res3 features and E(·)

expands m to the shape of ê3 (Cm×1→Cm×TD×h3×w3). fu is a 1×1×1 convo-
lutional layer with BN and ReLU.

Detail Classifier. The detail classifier hd outputs the final precise predic-
tions by generating a vector p̂ of softmax probabilities over all classes. Taking
the detail feature maps ê and the contextual features m as input, a FC layer is
adopted for the classification:

p̂ = hd ([GAP(ê),m]) . (10)

Notably, m conveys contextual information (the global features to refer to and
the top-k actions to consider). Since DNet focuses on differentiating top-k ac-
tions, we adopt the top-k vector s as an “attention” for all output actions by
multiplying p̂ with s. Therefore, the cross entropy loss for DNet is refined as:

Ld = −
N∑

n=1

I(n = y)s(n) log p̂(n). (11)

Finally, the overall loss of S2DNet is computed by:

L = αLs + Ld, (12)

where α weighs the task of top-k action recognition and top-1 action recognition.

3.3 Instantiations

The proposed S2DNet is generic and can be instantiated using various video
backbones and implementation specifics. In this paper, we focus on action recog-
nition for trimmed videos, and opt to instantiate S2DNet with the classic 2D/3D
CNNs-based methods (e.g., [10, 11, 32]). However, note that our method can also
apply with recent Vision Transformers [1, 3, 7, 8, 39].

Specifically, to compare with state-of-the-art 2D CNNs, a TSM model with
MobileNetV2 [43] is used in SNet, and a TSM model with ResNet-50 [20] is
used in DNet. To compare with state-of-the-art 3D CNNs, a X3D-S [10] model
is used in SNet and a X3D-M/X3D-XL model is used in DNet. The results using
TSM/X3D backbones are reported in Sec. 4.2.



Delving into Details: Synopsis-to-Detail Networks for Video Recognition 9

4 Experiments

In this section, we empirically validate the proposed method on four action
recognition datasets using the standard evaluation protocols. First, in Sec. 4.2,
the comparison with state-of-the-art (SOTA) methods for S2DNet is presented.
Second, in Sec. 4.3, ablation results on different configurations of S2DNet are
discussed. Third, in Sec. 4.4, S2DNet is also compared with efficient action recog-
nition methods, demonstrating its merit of high efficiency. At last, we present the
efficiency analysis (Sec. 4.5) and some visualization results (Sec. 4.6), to provide
additional insights of S2DNet.

4.1 Setups

Datasets. Our experiments are based on four widely-used action recognition
datasets. Kinetics-400 [5] is a large-scale action recognition dataset with 240k
training and 20k validation videos in 400 action classes. Mini-Kinetics (assem-
bled by [36]) is a subset of the Kinetics-400 and it contains 121k training and 10k
validation videos in 200 action classes. Something-Something V1 & V2 [16] are
two action recognition datasets with 98k/194k videos in the shared 174 classes.
When compared with the SOTA methods, S2DNet is evaluated on Kinetics-
400 and Something-Something V2. When compared with the efficient methods,
S2DNet is evaluated on Mini-Kinetics and Something-Something V1 & V2. Fol-
lowing previous works, we report top-1 and/or top-5 classification accuracy (%).

Training & Inference. We use τ=2, k=5, α=0.1 and Cm=256 for all ex-
periments in this work. During training, following [32, 36, 53], random scaling,
224×224 random cropping and random horizontal flipping (except Something-
Something V1&V2) are adopted for data augmentation. During inference, for the
spatial domain, the raw frames are first resized to 256×256. On Kinetics-400,
three 224×224 patches are cropped from the resized frames, following common
practice in [10, 11, 52]. On other datasets, only one center 224×224 cropping is
used. For the temporal domain, on all datasets, we use only one clip per video.
More details (e.g., training hyper-parameters) are in the supplementary material.

4.2 Comparison with State-of-the-Arts

This section provides the comparison with SOTA methods on Kinetics-400 and
Something-Something V2, considering both accuracy and efficiency. Kinetics-
400 includes the daily actions that are highly relevant to interacting objects
or scene context, thereby requiring strong spatio-temporal modeling capacity.
Recent methods on this dataset are mostly based on 3D CNNs to learn space-
time features jointly. Something-Something V2 pays more attention to modeling
temporal relationships as pointed in [32, 56, 60]. Recent methods on this dataset
include both 2D CNNs and 3D CNNs.

Implementation details. To compare with SOTA methods on Kinetics-
400, S2DNet is instantiated using efficient 3D CNNs (i.e., X3D [10]). To compare
with SOTA methods on Something-Something V2, S2DNet is instantiated using
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Table 1: Comparison with the state-of-the-arts on Kinetics-400 and Something-
Something V2. “FLOPs” denotes multiply-add operations. “R50” and “R101”
denote ResNet-50 and ResNet-101 [20]. “MN2” denotes MobileNetV2 [43]. “-”
indicate that the numbers are not available for us. For S2DNet, “X3D-S/X3D-
M” indicates that X3D-S is used in SNet and X3D-M is used in DNet

Methods Backbone Frames top-1 top-5 FLOPs×Views

Kinetics400

TSM [32] R50 16 74.7 91.4 65G×30
C2F [42] R50 16 76.0 - 18G×9

TANet [34] R50 16 76.9 92.9 86G×12
SlowFast [11] R50 8/32 75.6 92.1 36G×30
SmallBig [28] R50 8 76.3 92.5 57G×6
CorrNet [49] R50 32 77.2 - 115G×30
TDN [50] R50 16 77.5 93.2 72G×30

SmallBig [28] R101 16 77.4 93.3 418G×12
TDN [50] R101 16 78.5 93.9 132G×30

CorrNet [49] R101 32 79.2 - 224G×30
SlowFast [11] R101-NL 16/64 79.8 93.9 234G×30

X3D [10] X3D-M 16 76.0 92.3 6.2G×30
X3D [10] X3D-XL 16 79.1 93.9 48G×30

S2DNet (ours) X3D-S/X3D-M 16/16 78.0 93.6 5.4G×3
S2DNet (ours) X3D-S/X3D-XL 16/16 80.6 94.2 39G×3

Something-Something V2

GST [35] R50 16 62.6 87.9 59G×6
SlowFast [11] R50 128 63.0 88.5 -
TSM [32] R50 16 63.4 88.5 65G×6
C2F [42] R50 16 64.1 - 85G×6

SmallBig [28] R50 16 63.8 88.9 105G×6
STM [23] R50 16 64.2 89.8 67G×30
TANet [34] R50 16 64.6 89.5 72G×6
TDN [50] R50 16 65.3 89.5 72G×1

S2DNet (ours) MN2/R50 16/16 66.4 89.9 35G×1

efficient 2D CNNs (i.e., TSM [32]). For both datasets, the input parameters are:
TS=16, TD=16, HS=WS=224 and HD=WD=144.

Kinetics-400. The upper part of Tab. 1 presents the comparison with SOTA
results for two S2DNet instantiations using X3D. Note that X3D-M and X3D-XL
achieve similar performances to the SOTA works with ResNet-50 and ResNet-
101, respectively. To make a fair comparison, we compare S2DNet (X3D-
S/X3D-M) with ResNet-50 based works (e.g., [11, 28, 30, 32, 34, 49]), and com-
pare S2DNet (X3D-S/X3D-XL) with ResNet-101 based works (e.g., [11, 28,
49, 50, 52]). Firstly, it is observed that S2DNet improves the X3D counterparts
by a margin of 2.0%/1.5% on top-1 accuracy, while requiring fewer multiply-add
operations (FLOPs). Secondly, S2DNet (X3D-S/X3D-M) achieves +0.5%
top-1 accuracy at 13.3× fewer FLOPs than the best reported result of TDN
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(R50) [50]. Thirdly, S2DNet (X3D-S/X3D-XL) is +0.8% more accurate on
top-1 accuracy and requires 6.0× fewer FLOPs than the best reported result of
SlowFast (R101) [11]. The above results verify that our top-k action recognition
contributes to a better performance of the final precise action prediction.

Moreover, although the top-5 results are generated by the light-weighted SNet
(X3D-S), the best top-5 performance of S2DNet is still better than X3D-XL and
SlowFast. This phenomenon indicates that a high-quality detail recognition help
foster better top-k action recognition in return.

Something-Something V2. The lower part of Tab. 1 presents the compar-
ison with SOTA results for one S2DNet instantiation using TSM. The results
show that S2DNet achieves a significant improvement of 3.0%/1.4% on top-
1/top-5 accuracy for TSM. Meanwhile, compared with the best reported result
of TDN, our method achieves +1.1% top-1 performance at 2.0× fewer FLOPs.
These results demonstrate that, by formulating action recognition into first rec-
ognizing top-k actions and then discriminating one out of the top-k actions, the
task is easier to handle than the direct action recognition from input videos.

4.3 Ablation Experiments

This subsection provides ablation studies on Mini-Kinetics comparing accuracy
and efficiency.

Implementation details. In this subsection, we use TSM with MobileNetV2
in SNet and TSM with ResNet-50 in DNet. The input parameters are : TS=TD=16,
HS=WS=144 and HD=WD=112.

Architecture configurations. Tab. 2a shows results of different architec-
ture configurations of S2DNet. These configurations determine whether the two
sub-networks (SNet and DNet) are used together or separately. Notably, to mea-
sure the standalone performance of DNet, all sampling parameters for the detail
sampler are frozen, all lateral fusions in the detail backbone are canceled and
the detail classifier takes as input only the detail features ê.

Compared with the full network (a1 vs. a0), SNet presents more performance
drop on top-1 (−6.1%) than top-5 (−1.6%). This is because the top-5 classfica-
tion is much simpler than the direct top-1 classification. Despite using a more
sophisticated backbone, DNet is inferior to SNet with a performance drop of
0.5% on top-1 and 1.8% on top-5 (a2 vs. a1). This indicates that location &
scale information provided by SNet is better than a fixed pre-defined one. By
combining SNet and DNet, S2DNet achieves a significant gain of 6.1%/6.7% on
top-1 accuracy (a0 vs. a1/a2 ). This result indicates that synopsis information
and detail information complement each other.

Detail network configurations. Results of different configurations of DNet
are shown in Tab. 2b. For b1/b3, location & scale parameters θ for the detail
sampler are frozen. For b1/b2, contextual features m (Eq. 5) are not laterally
fused to the intermediate features of the detail backbone. By incorporating lo-
cation & scale parameters θ provided by SNet, DNet achieves a significant gain
of 2.6% on top-1 accuracy and a gain of 0.8% on top-5 accuracy (b2 vs. b1). This
result reveals that the detail sampler extracts more discriminative details from
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Table 2: Ablations on Mini-Kinetics. In all subtables, the bottom rows (a0, b0
and c0) represent the default settings of S2DNet

(a) Architecture configuration

SNet DNet top-1 top-5 FLOPs

a1 ✓ 68.6 89.5 2.2G
a2 ✓ 68.1 87.7 15.3G

a0 ✓ ✓ 74.7 91.1 18.0G

(b) Detail network configuration

Sample Fuse top-1 top-5 FLOPs

b1 70.7 90.1 17.5G
b2 ✓ 73.3 90.9 17.9G
b3 ✓ 71.7 90.9 17.6G

b0 ✓ ✓ 74.7 91.1 18.0G

(c) Detail sampler configuration

Space Time top-1 top-5 FLOPs

c1 71.7 89.6 17.6G
c2 ✓ 72.7 89.5 17.9G
c3 ✓ 74.0 89.4 17.9G

c0 ✓ ✓ 74.7 91.1 18.0G

input video with the proposed detail sampling. The lateral fusion of contextual
features in the detail backbone brings in a 1.0% improvement (b3 vs. b1), which
indicates that contextual features boost the final prediction of actions. Finally,
using all components in DNet as proposed (b0) leads to a further improvement,
indicating that these components boost each other.

Detail sampler configurations. As shown in Tab. 2c, S2DNet is evaluated
under different space-time sampling strategies. For c1, location & scale param-
eters θ are frozen, where the center croppings of uniformly sampled frames are
used as the input volume V̂ for DNet. This setting leads to a performance drop
of 2.8% on top-1 accuracy (c1 vs. c0). Only introducing spatial sampling brings
in a 1.0% performance gain (c2 vs. c1). Only introducing temporal sampling
brings in a performance gain of 2.3% (c3 vs. c1). These results show that both
spatial sampling and temporal sampling play an important role in delving into
fine-grained discriminative details from input videos.

4.4 Comparison with Efficient Action Recognition Methods

Although S2DNet is proposed to improve the accuracy, it also enjoys the merit
of high efficiency. This subsection provides the comparison with efficient action
recognition methods for S2DNet on three datasets: Mini-Kinetics, Something-
Something V1 and Something-Something V2.

Implementation details. For a fair comparison, we use the same video
backbones (MobileNetV2 and ResNet-50) as [26, 36, 53]. To balance the trade-
off between efficiency and accuracy, we adopt TS=TD=16, HS=WS=144 and
HD=WD=112 on Mini-Kinetics. On Something-Something V1 & V2, we adopt
TS=8, TD=12, HS=WS=144 and HD=WD=144.
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Table 3: Comparison with efficient action recognition methods. “BN-I” denotes
to BN-Inception [22] and “R18” denotes ResNet-18. Only top-1 accuracy is re-
ported since the top-5 results of many of these works are not available

(a) Mini-Kinetics

Method Backbone top-1 FLOPs

AR-Net [36] MN2/R50 71.7 32G
AdaFocus [53] MN2/R50 72.2 27G
AdaFuse [37] R50 72.3 23G
DKP [25] R18/R50 72.7 18G

S2DNet (ours) MN2/R50 74.7 18G

(b) Something-Something V1/V2

Method Backbone top-1 FLOPs

ECO [62] BN-I/R18 39.6/- 32G
TSM [32] R50 45.6/59.1 33G

AdaFuse [37] R50 46.8/59.8 31G
AdaFocus [53] MN2/R50 48.1/60.7 34G

S2DNet (ours) MN2/R50 49.7/62.5 22G

Results. Tab. 3 illustrates 2.0%/1.6%/1.8% better accuracy of S2DNet on
the three datasets. While the gains are significant, it is also observed that S2DNet
requires fewer FLOPs. This indicates that S2DNet is good at handling the trade-
off between accuracy and efficiency, making it flexible to deploy in real world.

4.5 Efficiency Analysis

As in Tab. 4, compared with the efficient/SOTA methods [32, 50], S2DNet enjoys
higher accuracy (+3%/+1.1%), lower latency (↓1.49×/↓2.50×), lower FLOPs
(↓1.88×/↓2.05×) with minor/less extra parameters (+15%/-8.2%). The FLOPs
and latency of S2DNet are lower for two reasons. First, SNet is light-weighted
and brings a small amount of extra parameters and FLOPs. Second, DNet has
a smaller spatial input size (e.g., 224→144) by using local regions with details,
which reduces the FLOPs significantly.

Table 4: Efficiency comparison on Something-Something V2. All measures use a
Tesla V100 with batch size as 16. † denotes the reproduced results

Method Backbone Frames FLOPs Param. Latency (ms) top-1

TSM [32] R50 16 66G 24.3M 15.7 63.4
TDN [50] R50 16 72G 30.5M† 26.3† 65.3

S2DNet (ours) MN2/R50 16/16 35G 28.0M 10.5 66.4

4.6 Visualization

In S2DNet, fine-grained details are sampled by a detail sampler, using location
& scale of details from SNet. This process is visualized in Fig. 4, using the
a0 instantiation of S2DNet in Tab. 2a. The upper half of the figure shows the
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uniform frames sampled by SNet (and also by some previous works), and the
lower half shows the contents sampled by the detail sampler.

SNet
top-5: {punching_person, rock_scissors_paper, headbutting ,…}

DNet 
top1: headbutting, prob: 0.91

DNet 
top1: sniffing, prob: 0.82

SNet 
top-5: {shaking hands, sniffing, laughing,…}

Fig. 4: Visualization of the sampled contents of S2DNet on Kinetics-400. The
labels in red denote ground-truth actions

In the first case, one can observe that the moment of headbutting is missing in
the uniform frames while the pose of the man on the right is similar to punching
person. This leads to a mis-classification of the previous works (e.g., TSM). As for
S2DNet, by leveraging the synopsis from SNet, it samples space-time details that
are most related to the top-k actions (actions about hands/heads). Specifically,
it slows the playback rate of the frames in which the two persons get close, and
zooms in the regions where their moving hands/heads are conspicuous. By doing
so, the action headbutting is recognized.

In the second case, one can observe that there are a lot of redundant frames in
the uniform frames and the true action sniffing is indistinctive. This results in a
mis-classification of the previous works. S2DNet samples space-time details that
are most related to the top-k actions (actions about hands/faces). Specifically,
it gets rid of the redundant frames and zooms in the regions where motions of
hands/faces are conspicuous. By doing so, the action sniffing is recognized.

5 Conclusion

This paper proposes a novel network for video recognition, namely Synopsis-to-
Detail Network. Inspired by the observation that recent works fail to differentiate
very similar actions (such as high kick vs. side kick), S2DNet first predicts the
top-k actions and generates the synopsis by coarsely going through the video.
Then, according to the synopsis, it extracts discriminative details in the input
and infers the final precise action. Extensive experiments demonstrate that our
method outperforms existing works in terms of both accuracy and efficiency.
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