
Supplementary: A Generalized & Robust
Framework For TimeStamp Supervision in

Temporal Action Segmentation

Rahul Rahaman1 , Dipika Singhania2 , Alexandre Thiery3 , and Angela
Yao4

rahul.rahaman@u.nus.edu, dipika16@comp.nus.edu.sg, a.h.thiery@nus.edu.sg,

ayao@comp.nus.edu.sg

National University of Singapore

In Sec. S1, we show the ablation results including the impact of prior, impact
of auxiliary losses, impact of timestamp annotation position, impact of segmen-
tation architecture, and number of epochs required for each maximization step.
In Sec. S2, we visualize the performance of our EM-TSS. Sec. S3 details the
posterior and prior for EM-Gen. In Sec. S4, we provide some additional details
of our user study.

S1 Ablation Studies

S1.1 Impact of Prior

In Sec. 4.4 of the main text, we described the use of a length prior for Times-
tamp supervision. We applied a Poisson prior distribution to the action segment
length with parameter µc, which is the average action length for action c. We
compared (1) a non-informative prior, i.e., equal µc for all actions c, and with
(2) µc roughly estimated from a randomly sampled video. As shown in Table T1,
the performance of EM-TSS is fairly robust and varies marginally for the two
different priors. This is unsurprising as the likelihood contributes significantly
more to the posterior than the prior, due to the large number of frames involved
in the likelihood.

Table T1: Effect of length prior on EM-TSS. Results are averaged over
three sets of sampled timestamps. The change in performance due to different
priors is marginal.

Prior
50Salads Breakfast

F1@{10, 25, 50} Edit MoF F1@{10, 25, 50} Edit MoF

non-informative 77.9 75.0 63.2 70.5 77.0 66.7 62.9 50.1 66.9 67.1
from one video 78.4 75.4 63.7 70.9 77.3 66.8 63.0 49.9 67.0 67.1

https://orcid.org/0000-0002-4260-027X
https://orcid.org/0000-0002-0555-1405
https://orcid.org/0000-0002-9542-509X
https://orcid.org/0000-0001-7418-6141

2 R. Rahaman et al.

S1.2 Impact of Auxiliary Losses

Table T2 shows the effect of the additional loss terms. In the first row, we
show the performance of the base loss ‘LCE’ from the TSS work [3] on both
the 50Salads and Breakfast datasets. This is a cross-entropy loss derived from
hard assignments of the segment boundary to the location that minimizes their
handcrafted energy function. The second row shows our base E-M loss. It is
evident that our base loss yields significantly better results. Additionally, we can
see that adding the auxiliary losses of [3] provides some benefit for the segment
metrics of Edit Distance and F1-score, but has little impact on MoF. This is
unlike [3], where the auxiliary losses also improved MoF. We believe that our

frame-wise weights ω
(m)
j,c naturally embed some components of transition and

confidence, so these auxiliary losses are less important for improving MoF.

Table T2: Effect of losses on EM-TSS (same set of timestamp as [3]).
Our base E-M loss based on the negativeQ-function significantly outperforms the
base cross-entropy loss of TSS [3], which uses hard boundaries from minimizing
their proposed energy function. Gradually adding the different auxiliary losses to
our base loss improves Edit and F1 scores, while MoF remains largely unchanged.

Losses
50Salads Breakfast

F1@{10, 25, 50} Edit MoF F1@{10, 25, 50} Edit MoF

LCE (Base loss of [3]) 65.7 62.6 50.7 57.7 72.8 60.3 52.8 36.7 64.2 60.2

LEM (Our base loss) 71.8 69.0 58.7 62.8 77.4 64.9 61.2 48.1 64.9 67.8
LEM+LTR 75.1 71.7 60.1 66.2 76.9 65.4 61.6 48.2 65.3 67.0
LEM+LTR+LConf 79.9 75.9 64.7 71.6 77.7 67.5 63.7 49.8 67.2 67.0

Table T3: Effect of timestamp locations on EM-TSS. As expected, the start
frame has the worst performance because of poor initialization. The middle and
random frame have similar performance.

Location of
Method

50Salads Breakfast
timestamp F1{10, 25, 50} Edit MoF F1{10, 25, 50} Edit MoF

Start
Naive 21.0 12.5 3.2 17.5 31.9 17.1 10.4 3.1 21.3 30.6

EM-TSS 62.9 50.5 25.0 63.9 52.0 57.3 46.9 25.0 61.7 48.5

Centre
Naive 51.0 47.7 35.0 40.9 69.7 36.8 32.3 21.9 37.6 53.4

EM-TSS 78.4 76.0 63.5 71.1 77.1 57.3 46.9 25.0 61.7 48.5

Random
Naive 44.7 39.4 29.3 34.2 69.9 31.9 27.6 19.5 35.4 58.0

EM-TSS 78.4 75.4 63.7 70.9 77.3 66.8 63.0 49.9 67.0 67.1

Robust Timestamp Supervision 3

S1.3 Impact of Timestamp Positions

In line with the previous work [3], our EM-TSS results in the main text were
obtained from random timestamp annotations within the action segments. We
refer to these randomly positioned timestamp annotations as ‘Random’. Alter-
natively, we can choose the timestamps to be some specific frame of the action
segments, e.g., start frame (‘Start ’) and centre frame (‘Centre’).

In Table T3, we show the variation in the results with respect to the position
of the annotated timestamps. As discussed in Section 5.4 and Table 8 of the
main text, the boundary annotations are highly ambiguous. Hence, the ‘Naive’
performance of the start frame is extremely low. When we applied our EM-
TSS, we observed a significant performance increase over the baseline. However,
due to the poor performance of the initialization (i.e., naive baseline), the final
performance of ‘Start’ using EM-TSS is relatively low compared to other frame
locations. Choosing the centre frame yields a similar result to the randomly
chosen timestamp. This is in line with our expectation as the middle frame is
well within the action segment, hence free from ambiguity.

Table T4: Effect of segmentation architectures on EM-TSS.We show that
our algorithm performs equally well with different kinds of architectures. ‘Back-
bone from [3] ’ refers to the modified MSTCN model used as default backbone
in the TSS work [3] as well as our work.

Backbone Method
50Salads Breakfast GTEA

F1{25, 50} Edit MoF F1{25, 50} Edit MoF F1{25, 50} Edit MoF

MSTCN [1]
Naive 38.9 28.2 34.4 67.3 39.5 30.3 39.3 55.4 54.5 38.0 49.9 55.4

EM-TSS 68.9 57.0 64.4 75.0 61.8 49.1 64.8 65.0 80.7 65.0 80.3 68.3

MSTCN++ Naive 36.8 25.5 32.2 64.2 31.0 21.9 37.4 58.2 56.9 38.8 53.3 55.8
from [2] EM-TSS 71.4 58.8 67.5 74.3 63.4 49.9 64.1 66.7 82.1 65.7 79.2 70.3

Backbone Naive 43.3 34.0 37.2 69.6 29.1 20.1 37.4 56.8 55.3 39.6 51.1 56.5
from [3] EM-TSS 75.9 64.7 71.6 77.9 63.7 49.8 67.2 67.0 82.7 66.5 82.3 70.5

S1.4 Impact of Architectures

We adopted the modified MSTCN architecture used by [3] in our work. How-
ever, results in Table T4 show that our EM-TSS works equally well with other
architectures such as MSTCN [1] and MSTCN++ [2].

S1.5 Impact of Nmax

We have three hyper-parameters regarding epochs, which are N init (initializa-
tion epochs), Nmax (epochs per maximization step) and M (number of E-M
iterations). Among these, N init and M can be set based on convergence. In Ta-
ble T5, we show an ablation of the more non-intuitive hyper-parameter Nmax

4 R. Rahaman et al.

on 50Salads dataset (for one set of timestamp annotations as in [3]) to study
its impact on the performance of EM-TSS. The table indicates that the perfor-
mance is fairly stable for different values of Nmax. We chose Nmax = 5 for all
datasets to balance runtime efficiency and stable performance.

Table T5: Effect of epoch-per-maximization step Nmax. The performance
of EM-TSS on 50Salads dataset is fairly stable with respect to different values
of Nmax, for the specific set of timestamp as chosen by [3].

50Salads

Nmax F1@{10, 25, 50} Edit MoF

3 77.6 73.5 60.2 69.8 74.9
5 79.9 75.9 64.7 71.6 77.9
7 77.4 74.8 64.4 70.0 77.1

S2 Qualitative Analysis

B
ef

or
e

 E
M

G
T

Af
te

r
 E

M
G

T

Fig. F1: Effect of EM-TSS on ground truth probability in a training
video. In the line charts, we plot the probability assigned to the correct classes.
‘Before EM ’ denotes the probability obtained after ‘Naive’ initialization. ‘After
EM ’ denotes the probability after convergence of EM algorithm. It is visibly
clear that the probabilities are much smoother after applying E-M.

In Fig. F1, we focus on a specific training video and plot the class probabilities
assigned to the correct classes. For example, for the entire red segment, we plot
the probability assigned to that red action class in the line chart. The ‘GT’ plots
the ground truth labels. The other two line plots show the probabilities before
(obtained from ‘Naive’ initialization) and after the E-M algorithm (at the end of
EM-TSS). It is visibly clear that the assigned probabilities improve significantly
after the E-M algorithm. The naive initialization gives a highly irregular prob-
ability to the correct class. After applying E-M, the assigned probabilities are

Robust Timestamp Supervision 5

much smoother and only become uncertain near the boundaries. Fig. F2 shows
the inference result on a sample test video. We show ground truth (‘GT ’), pre-
dictions from the ‘Naive’ baseline (‘Before EM ’), and predictions obtained after
training with the E-M algorithm (‘After EM ’) in the figure. The final model
prediction is considerably close to the ground truth compared to the baseline.
The noticeable changes in the prediction are that there are no fragmented action
segments in the prediction, and the action segments are better aligned with the
ground truth segments.

G
T

B
ef

or
e

E
M

Af
te

r
E

M

Fig. F2: Inference performance on test video. ‘GT ’ denotes the ground
truth. ‘Before EM ’ shows the prediction after the initialization. ‘After EM ’
shows the prediction with the final model obtained after the convergence of the
EM algorithm.

S3 EM-Gen Results and Generalization to SkipTag

S3.1 Performance of EM-Gen Under Missing Segment

In Fig. 4 of the main text, we provided a comparison between EM-Gen and
the TSS methods (EM-TSS and [3]). Here in Table T6, we provide the detailed
numerical results of EM-Gen under a varying degree of missing segments. Our
EM-Gen outperforms the TSS work [3] when there are subtle violations in an-
notation constraints and remains robust even with 20% segments missing.

S3.2 Generalization of EM-Gen to SkipTag

As briefly discussed in Sec. 4.6 of the main text, we generalized our EM-Gen
method to a weaker form of annotation under SkipTag supervision. This super-
vision allows annotators to freely annotate a set of random timestamps spread
somewhat evenly throughout the video, removing the constraint ‘one timestamp
per action segment’ of timestamp supervision.

We have shown that our EM-Gen is robust to one missing action segment be-
tween consecutive annotated timestamps. However, there are two other possible
scenarios that EM-Gen must be generalized to. Firstly, there can be a case where
two consecutive timestamps are from the same action segment, i.e., ‘no action
boundary ’ between the timestamps (depicted in Fig. F3). Secondly, there can be

6 R. Rahaman et al.

Table T6: Performance under (% of) missed action segments. Our EM-
TSS performs significantly better than [3] under missing action segments. Our
EM-Gen is robust to missing segments. With 20% missing segments, EM-Gen
significantly outperforms the TSS methods.

50Salads Breakfast GTEA

Err% Method F1{25, 50} Edit MoF F1{25, 50} Edit MoF F1{25, 50} Edit MoF

5%
[3] 58.5 44.8 56.1 69.0 57.3 42.0 60.9 62.4 69.7 53.1 71.2 64.1

EM-TSS 72.0 59.0 67.6 73.6 60.5 46.2 63.6 64.5 80.5 62.1 79.5 65.3
EM-Gen 72.0 61.7 68.9 75.8 61.5 49.4 65.7 67.1 80.8 64.8 79.7 67.9

10%
[3] 58.1 43.9 55.2 69.7 53.0 38.2 58.0 59.5 66.3 51.1 66.5 61.6

EM-TSS 69.2 55.9 66.0 72.1 55.8 40.8 59.6 62.5 77.0 57.3 76.4 63.0
EM-Gen 70.9 58.3 67.4 75.0 60.9 48.4 63.7 66.4 78.6 61.7 77.3 66.5

20%
[3] 52.2 36.8 50.9 63.0 48.5 32.7 55.3 55.1 58.4 41.1 60.6 53.6

EM-TSS 63.2 47.4 58.6 65.6 50.6 36.6 57.3 60.5 73.2 52.9 71.2 56.4
EM-Gen 68.5 55.7 66.6 71.9 57.9 45.2 60.1 65.3 75.0 59.7 74.0 65.0

‘more than one missing segment ’ between two timestamps. Here in this section,
we show how we reformulate our Q-function to take the case of ‘no boundary ’
into account and left the case of ‘more than one missing segment ’ out of the
scope of our current work. However, the formulation can be generalized easily
to handle more than two missing segments.

l
Case 3: l = r (No boundary)

Fig. F3: A typical timestamp segment with two timestamps tk−1 and tk belonging
to the same action segment.

Case 3 (C3): No action boundary between tk−1 and tk, as timestamp
segment S belongs to one continuous action. This case is possible only when
y[tk−1] = y[tk] = l, i.e., the two action labels match, reducing the segment
likelihood to

P(S|C3,Θ) =

tk−1∏
i=tk−1

pΘi,l.

When we take this new case into consideration along with our previously dis-
cussed cases (case 1, case 2 from Sec.4.3 of the main text), the new Q-function

Robust Timestamp Supervision 7

becomes

Q(Θ,Θ(m)) =
∑

s
P(m)[C1, s|D] · logP(S|C1, s,Θ)

+
∑

τ
P(m)[C2, τ |D] · logP(S|C2, τ,Θ)

+ P(m)[C3|D] · logP(S|C3,Θ), (1)

where P(m)[C3|D] is the posterior probability that the timestamp segment S
belongs to Case 3. For SkipTag supervision, when the left and right action are
not the same, i.e., l ̸=r, the posterior weights become

ω
(m)
j,l =

∑
s>j

P(m)[C1, s|D] +
∑

τ :s1>j

P(m)[C2, τ |D]

ω
(m)
j,c =

∑
s1≤j

∑
s2>j

P(m)[C2, s1, s2, c|D] if c ̸= l, c ̸= r, (2)

and ω
(m)
j,r = 1− ω

(m)
j,l −

∑
c ω

(m)
j,c . When the actions are the same, l=r, the first

term in ω
(m)
j,l is replaced by P(m)[C3|D].

S3.3 Posterior Probabilities of EM-Gen

In equation 1, we used the posterior probabilities to form the Q-function. In
addition, we use these posterior probabilities later in equation 2 to compute the

per-frame posterior weights ω
(m)
j,c . The form of the posterior probabilities is as

follows:

P(m)[C1, s |D] =
1

Z
· P(S|C1, s,Θ) · π(C1, s)

P(m)[C2, τ |D] =
1

Z
· P(S|C2, τ,Θ) · π(C2, τ)

P(m)[C3 |D] =
1

Z
· P(S|C3,Θ) · π(C3)

where, Z =
∑
s

P(S|C1, s,Θ) · π(C1, s)+∑
τ

P(S|C2, τ,Θ) · π(C2, τ) + P(S|C3,Θ) · π(C3). (3)

Similar to previous notations, s denotes valid boundary locations of Case 1,
and τ iterates over all possible triplets (s1, s2, c) of Case 2, which are the start
frame of the middle segment, start frame of the right segment and action class
of the middle segment, respectively.

S3.4 Prior for EM-Gen

Recall that for Timestamp supervision, we could directly use the Binomial prior
on the location of the boundary (start) frames derived from the Poisson prior

8 R. Rahaman et al.

on the lengths of the action segments. This is because in TSS, we have the exact
information on the (ordered) sequence of actions in the video implicitly from
the timestamp annotations. For TSS with missed segments as well as SkipTag,
however, we do not have this information as it is no longer guaranteed that all
the action segments are annotated exactly once.

To calculate the prior probabilities for the current timestamp segment Sk, we
utilize the expected location of the last boundary, denoted as βk−1, of previous
timestamp segment Sk−1. We naturally define β0 ≡ 0. First, we discuss how we
use βk−1 to calculate priors for Sk, then we will discuss how to calculate βk for
the segment Sk. Using βk−1, we estimate the prior π(C1, s) for the timestamp
segment Sk as

π(C1, s) = π(s |C1, βk−1) · π(C1)

=
e−µlµl

(s−βk−1)

(s− βk−1)!
· π(C1). (4)

This is because given the last expected boundary βk−1 and Case 1, the quantity
(s − βk−1) becomes the length of the action segment of the ‘left ’ action class l
(refer to Figure 3 of main text). Hence, it follows a Poisson distribution Pois(µl),
with µl being the mean length of the action class l. Next for Case 2, we calculate
π(C2, s1, s2, c) for a triplet (s1, s2, c), as

π(C2, s1, s2, c) = π(s1, s2, c |C2, βk−1) · π(C2)

= π(s1 |C2, βk−1) · π(s2 |C2, s1, c) · π(C2, c)

=
e−µlµl

(s1−βk−1)

(s1 − βk−1)!
· e

−µcµc
(s2−s1)

(s2 − s1)!
· π(C2, c). (5)

Similar to Case 1, the quantity (s1 − βk−1) given Case 2, follows Pois(µl).
Whereas (s2− s1) ∼ Pois(µc) when it is conditioned on Case 2 and the fact that
the middle segment has action class c. We set the priors π(C1) = π(C3) = 1

3 .
For any c ̸= l, c ̸= r, we set π(C2, c) =

1
3(C−2) if l ̸= r, and π(C2, c) =

1
3(C−1) if

l = r, where C is the total number of classes. That is, we naively set all the case
priors to be equally likely.

Finally, we update the last boundary as βk for the current timestamp segment
Sk. We estimate it as

βk = βk−1 · P(m)[C3 |D] +
∑
s

s · P(m)[C1, s |D]

+
∑
s2

s2 ·
∑
s1,c

P(m)[C2, s1, s2, c |D]. (6)

The last boundary βk for timestamp segment Sk, (1) stays the same as βk−1

for Case 3 with probability P(m)[C3 |D], (2) for Case 1 is equal to s with prob-
ability P(m)[C1, s |D], (3) and finally for Case 2 is equal to s2 with probability∑

s1,c
P(m)[C2, s1, s2, c |D]. Hence, the expected value combines all of these pos-

sible cases.

Robust Timestamp Supervision 9

Fig. F4: User Interface for Temporal Segmentation Annotation. Left
Panel: annotators can enter id, choose video, the type of annotation and watch
the video. Middle Panel: annotators can pause and select the action-tag and
record it. This panel shows a list of action tags marked thus far. Right Panel:
displays the tagging time summary for completed videos.

S4 Details of user study

As mentioned in Section 5.4 of the main text, our user study revealed that full-
annotation (i.e., labelling the start of every action segment in the video) takes
about 90% of the video duration. Timestamp (TSS) annotation (i.e., labelling a
random frame from every action segment in the video) takes about 70% of the
video duration, while SkipTag annotation (i.e., labelling 7-8 random frames in a
video from Breakfast) only takes about 40% of the video’s duration. This means
that for a 1-minute video, full-annotation takes about 54s, TSS annotation takes
about 40s and SkipTag annotation takes about 21s on average.

A similar user study on TSS and full-annotation was conducted by [4]. They
reported that for a 1-minute video, annotation took an average of 300s for full-
annotation and 50s for TSS. Though our method requires similar amount of
time for TSS annotation, it reduces the full-annotation time by 5 times com-
pared to [4]. We speculate that the difference is likely due to the use of different
annotation interfaces.

For full-supervision annotations, we found that the start times of the same ac-
tion segments, marked by different annotators, had a standard deviation of ≈ 1.5
seconds or 23 frames (breakfast containing frames at 15fps). This further gives
us an indication of the ambiguity in annotating the boundary frames.

Annotation Interface: We developed a simple and user-friendly custom
annotation interface to perform the user study for all three annotations, which
is shown in Fig. F4. We will make the annotation tool available along with our
code repository.

References

1. Farha, Y.A., Gall, J.: Ms-tcn: Multi-stage temporal convolutional network for action
segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 3575–3584 (2019)

10 R. Rahaman et al.

2. Li, S.J., AbuFarha, Y., Liu, Y., Cheng, M.M., Gall, J.: Ms-tcn++: Multi-stage tem-
poral convolutional network for action segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2020)

3. Li, Z., Abu Farha, Y., Gall, J.: Temporal action segmentation from timestamp
supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 8365–8374 (2021)

4. Ma, F., Zhu, L., Yang, Y., Zha, S., Kundu, G., Feiszli, M., Shou, Z.: Sf-net: Single-
frame supervision for temporal action localization. In: European conference on com-
puter vision. pp. 420–437. Springer (2020)

	Supplementary: A Generalized & Robust Framework For TimeStamp Supervision in Temporal Action Segmentation

