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Abstract. The accelerated use of digital cameras prompts an increasing
concern about privacy and security, particularly in applications such as
action recognition. In this paper, we propose an optimizing framework to
provide robust visual privacy protection along the human action recog-
nition pipeline. Our framework parameterizes the camera lens to suc-
cessfully degrade the quality of the videos to inhibit privacy attributes
and protect against adversarial attacks while maintaining relevant fea-
tures for activity recognition. We validate our approach with extensive
simulations and hardware experiments.
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1 Introduction

We are at the beginning of a new era of smart systems. From health care to
video games, computer vision applications have provided successful solutions
to real-world problems [3,24,28]. For decades, cameras have been engineered to
imitate the human vision system, and machine learning algorithms are always
constrained to be optimized using high-quality images as inputs. However, the
abundance and growing uses of smart devices are also causing a social dilemma:
we want intelligent systems (e.g., in our home) to recognize relevant events and
assist us in our activities, but we also want to ensure they protect our privacy.

There have been some previous studies dealing with such a social dilemma.
For instance, some early works rely on hand-crafted strategies, e.g., pixelation
[52], blurring [33], face/object replacement [7], and person de-identification [1],
to degrade sensitive information. More recently, Ren et al. [40] proposed an ad-
versarial training strategy to learn to anonymize faces in videos and then perform
activity detection. Similarly, using adversarial training, [56,57] proposed to opti-
mize privacy attributes and recognition performance. However, all these methods
rely on software-level processing of original high-resolution videos, which may
already contain privacy-sensitive data. Hence, there is a possibility of these orig-
inal videos being snatched by an attacker. Instead of developing new algorithms

∗carlos.hinojosa@saber.uis.edu.co

https://carloshinojosa.me/project/privhar/


2 C. Hinojosa et al.

Human Action 

Recognition

Push

Traditional 
HAR Pipeline

 

</>

Measurements

Traditional Lens
Scene

Adversary

Measurements

Optimized Phase Mask

Phase 
modulation

 

</>

???

Our Privacy-preserving 
HAR Pipeline

Push

Our PrivHAR 

Network

Fig. 1. Traditional HAR pipeline uses standard cameras that acquire visual details from
the scene leading to privacy issues. We introduce PrivHAR, an adversarial optimization
framework that learns a lens’ phase mask to encode human action features and perform
HAR while obscuring privacy-related attributes.

or designing software-level solutions that still rely on high-resolution images and
videos as input, we believe that the privacy-preserving problem in computer
vision should be addressed directly within the camera hardware, i.e., sensible
visual data should be protected before the images are acquired in the sensor.

Currently, few works have been developed in this direction. For instance,
[41,42] proposed to use low-resolution cameras to create privacy-preserving anon-
ymized videos and perform human action recognition. Also, Pittaluga et al. [37]
introduced a defocusing lens to provide a certain level of privacy over a working
region. On the other hand, several works used depth cameras to protect privacy
and perform human action recognition [20,2]. These approaches rely on a fixed
optical system; thus, their main contribution included designing an algorithm for
a specific input type. More recently, [17] proposed to jointly design the lens of a
camera and optimize a deep neural network to achieve two goals: privacy protec-
tion and human pose estimation. However, the formulation of the optimization
in this work poses different problems: the privacy-preserving loss is not bounded
as it maximizes an ℓ2 term to enforce degradation, which may cause instability in
the optimization; authors only used one human pose estimation model (Open-
Pose [6]) in all experiments and its not clear if the method works with other
pose estimators. More importantly, to test and measure privacy, authors per-
formed adversarial attacks after training the network; hence such attacks were
not considered in the lens design.

In this paper, we address the problem of privacy-preserving human action
recognition and propose a novel adversarial framework to provide robust pri-
vacy protection along the computer vision pipeline, see Fig. 1. We adopt the
idea of end-to-end optimization of the camera lens and vision task [17,31,44]
and propose an optimization scheme that: (1) Incorporates adversarial defense
objectives into the learning process across a diversity of canonical privacy cate-
gories, including face, skin color, gender, relationship, and nudity detection. (2)
Encourages distortions in the videos without compromising the training stability
by including the structural similarity index (SSIM) [18] in our optimization loss.
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(3) To further preserve the temporal information in the distorted videos, we use
temporal similarity matrices (TSM) and constrain the structure of the temporal
embeddings from the private videos to match the TSM of the original video.

We test our approach with two popular human action recognition backbone
networks. To experimentally test our privacy-preserving human action recog-
nition network (PrivHAR) and lens design, we built a proof-of-concept optical
system in our lab. Our testbed acquires distorted videos and their non-distorted
version simultaneously. Our experimental results in hardware match the sim-
ulations. While we do observe a trade-off between Human Action Recognition
(HAR) accuracy and image distortion level, our proposed PrivHAR system offers
robust protection with reasonable accuracy.

2 Related Work

Human action recognition is a challenging task [35] and has many applications,
such as video surveillance, human-computer interfaces, virtual reality, video
games, and sports action analysis. Therefore, developing privacy-preserving ap-
proaches for HAR is even more challenging and has not been widely explored.
Human Action Recognition (HAR).Nowadays, there are multiple approaches
in the computer vision literature for addressing the HAR problem. Some prior
work relies on 2D CNNs to conduct video recognition [8,22,53,9]. A major draw-
back of 2D CNN approaches is not properly modeling the temporal dynamics.
On the other hand, 3D CNN-based approaches use spatial and temporal con-
volutions over the 3D space to infer complicated spatio-temporal relationships.
For instance, C3D [49] is a 3D CNN based on the VGG model that learns
spatio-temporal features from a frame sequence. However, 3D CNNs are typi-
cally computationally heavy, making the deployment difficult. Therefore, many
efforts on HAR focus on proposing new efficient architectures; for example, by
decomposing 3D filters into separate 2D spatial and 1D temporal filters [23,50]
or extending efficient 2D architectures to 3D counterparts. Moreover, Rubik-
sNet [13] is a hardware-efficient architecture for HAR based on a shift layer that
learns to perform shift operations jointly in spatial and temporal context. We
build our proposed PrivHAR using both C3D and RubiksNet.
Privacy protection in Computer Vision. Currently, few works address the
privacy-preserving HAR problem. We divide prior work into software-level and
hardware-level protection, where we consider the latter more robust to attacks.

Software-level Privacy-preserving HAR. Most prior privacy-preserving works
apply different computer vision algorithms to the video data after their ac-
quisition. The literature has relied on domain knowledge and hand-crafted ap-
proaches, such as pixelation, blurring, and face/object replacement, to protect
sensitive information [1,7,33]. These methods can be useful in settings when
we know in advance what to protect in the scene. More recent works propose
a more general approach that learns privacy-preserving encodings through ad-
versarial training [56,5,36]. These methods learn to degrade or inhibit privacy
attributes while maintaining important features to perform inference tasks and
provide more robust videos to adversarial attacks. Ren et al. [40] use adversarial
training to learn a video anonymizer and remove facial features for activity detec-
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Fig. 2. Our proposed end-to-end framework. Our optical component consists of a cam-
era with two thin convex lenses and a phase mask between them. We achieve robust
privacy protection by training an adversarial framework under three goals: (1) to learn
to add aberrations to the lens surface such that the acquired videos are distorted to
obscure private attributes while still preserving features to (2) achieve high video ac-
tion recognition accuracy, and (3) being robust to adversarial attacks.

tion. Similarly, Wu et al. [56,57] proposed an adversarial framework that learns a
degradation transform for the video inputs using a 2D convolution layer. These
works optimize the trade-off between action recognition performance and the
associated privacy budget on the degraded video. Although these software-level
approaches preserve privacy, the acquired images are not protected.

Hardware-level Privacy-preserving HAR. These approaches rely on the cam-
era hardware to add an extra layer of security by removing sensitive data during
the imaging sensing. Prior hardware-level privacy-preserving approaches use low-
resolution cameras to anonymize videos, i.e., the videos are intentionally cap-
tured to be in special low-quality conditions that only allow for the recognition of
some events or activities while avoiding the unwanted leak of the identity infor-
mation for the human subjects in the video [39,42]. In [38,37], two optical designs
were proposed that filter or block sensitive information directly from the inci-
dent light-field before sensor measurements acquisition, enabling k-anonymity
and privacy protection by using a camera with defocusing lens. In particular,
they show how to select a defocus blur that provides a certain level of privacy
over a working region within the sensor size limits; however, only using optical
defocus for privacy may be susceptible to reverse engineering. In addition, the
authors did not test their method on the action recognition task. More recently,
[55] proposed a coded aperture camera system to perform privacy-preserving
HAR directly from encoded measurements without the need for image restora-
tion. However, it was only tested for indoor settings in a small dataset.

3 Privacy-preserving Action Recognition

We are interested in human action recognition from privacy-preserving videos.
We propose a framework to accomplish three goals: 1) to learn the parameters
of a robust privacy-preserving lens by backpropagating the gradients from the
action recognition and adversarial branches to the camera; 2) to learn the pa-



PrivHAR 5

rameters of an action recognition network to perform HAR on the private videos
with high accuracy; 3) to obtain private videos that are robust to adversarial at-
tacks. Our framework (Fig. 2) consists of three parts: optical, action recognition,
and an adversarial component.

The optical component consists of a camera with two thin convex lenses
and a phase mask between them. Our simulated camera takes a video Vx ∈
Rw×h×3×T

+ = {Xt}Tt=1 as input, which has w×h pixels and T frames, and outputs

the corresponding distorted video Vy ∈ Rw×h×3×T
+ . Formally, Vy = O(Vx),

where we denote our designed camera as the function O(·), which distorts every

single frame Xt ∈ Rw×h×3
+ , and produces the respective private frames Yt ∈

Rw×h×3
+ . Then, the distorted video Vy passes through the action recognition

component where a convolutional neural network C predicts the class labels.
Besides, Vy also passes through the adversarial component where an attribute
estimator network A tries to predict the private information (attributes) from the
distorted video. All three components consist of neural networks with trainable
parameters, and the whole framework is trained adversarially. At the end of
the optimization process, we obtain the optimal camera lens parameters θ∗o , and
the optimal action recognition parameters θ∗c . Hence, the loss function of our
adversarial framework is formulated as follows:

θ∗o , θ
∗
c = argmin

θo,θc

L(O) + L(C)− L(A), (1)

where L(O), L(C), and L(A) are the loss functions for our optical component,
action recognition component, and adversarial component, respectively.

During inference, we can construct a camera lens using the optimal param-
eters θ∗o that acquires degraded images, on which our network C can perform
HAR. Since we develop our protection directly in the optics (camera lens), it
provides an extra layer of protection and, hence, is more difficult for a hacker to
attack our system to reveal the person’s identity. One could also deploy a less se-
cure software-only approach implementing image degradation post-acquisition.
A hybrid solution consists of designing an embedded chipset responsible for dis-
torting the videos immediately after the camera sensor.

3.1 Optical Component

The main goal of the optical component in our adversarial framework PrivHAR
(Fig. 2) is to design a phase mask to visually distort videos (hence obscuring
privacy-sensitive attributes), encode the physical characteristics and preserve
human action features to perform HAR. We adopted a similar strategy as the
authors in [44,17] to couple the modeling and design of two essential operators
in the imaging system: wave propagation and phase modulation.
Image Formation Model. We model the image acquisition process using the
point spread function (PSF) defined in terms of the lens surface profile to emu-
late the wavefront propagation and train the parameters of the refractive lens.
Considering by the Fresnel approximation and the paraxial regime [14], for in-
coherent illumination, the PSF can be described by

H(u′, v′) = |F−1{F{tL(u, v) · tϕ(u, v) ·W (u, v)} · T (fu, fv)}|2, (2)

where W (u, v) is the incoming wavefront, T (·) represents the transfer function
with (fu, fv) as the spatial frequencies, tϕ(u, v) = exp(−ikϕ(u, v)) with ϕ(u, v)



6 C. Hinojosa et al.

as the lens phase mask and k = 2π/λ as the wavenumber, tL(·) denotes the
light wave propagation phase with tL(u, v) = exp

(
−i k

2z (u
2 + v2)

)
with z as the

object-lens distance, F{·} denotes the 2D Fourier transform, and (u′, v′) is the
spatial coordinate on the camera plane. The values of ϕ(·) are modelled via the

Zernike polynomials with ϕ(u, v) = Rm̄
n̄ (

√
u2 + v2) · cos (arctan (v/u)), where

R (·) represents the radial polynomial function [27], m̄ and n̄ are nonnegative
integers with n̄ ≥ m̄ ≥ 0. To train the phase mask values using our PrivHAR,
we discretize the phase mask ϕ(·) as:

ϕ =

q∑
j=1

αjZj , (3)

where Zj denotes the j-th Zernike polynomial in Noll notation, and αj is the cor-
responding coefficient [4]. Each Zernike polynomial describes a wavefront aber-
ration [27]; hence the phase mask ϕ is formed by the linear combination of all
aberrations. In this regard, the optical element parameterized by ϕ can be seen as
an optical encoder, where the coefficients αj determine the data transformation.
Therefore, our adversarial training finds a set of coefficients θ∗o = {αj}qj=1 that

provides the maximum visual distortion of the scene but allows to extract rele-
vant features to perform HAR. Using the defined PSF-based propagation model
(assuming that image formation is a shift-invariant convolution of the image and
PSF), the acquired private images for each RGB channel can be modelled as:

Yℓ = Gℓ (Hℓ ∗Xℓ) + ηℓ, (4)

where Xℓ ∈ Rw×h
+ represents the discrete image from the ℓ channel, with each

pixel value in [0, 1]; Hℓ denotes the discretized version of the PSF [14] in Eq. (2)
for the channel ℓ, ηℓ ∈ Rw×h represents the Gaussian noise in the sensor, and
Gℓ(·) : Rw×h → Rw×h is the camera response function, which is modeled as a
linear function. Please see our supplementary document for a schematic diagram
of the light propagation in our model.

Loss Function. To encourage image degradation, we train our network to
minimize the quality of the acquired image by our camera Y = {Yℓ}3ℓ=1 in

comparison with the original image X = {Xℓ}3ℓ=1. Instead of maximizing the
ℓ2 norm error between the two images as previous works did [17], we use the
structural similarity index (SSIM) [54] in our optimization loss to measure qual-
ity. The ℓ2 norm does not have an upper bound; hence maximizing it to enforce
degradation causes instability in the optimization. On the other hand, the SSIM
function is bounded, which leads to better stability during training. Specifically,
the SSIM value ranges between 0 and 1, where values near 1 (better quality)
indicate more perceptual similarity between the two compared images. Then,
we define the loss function for our camera lens optimization as:

L(O) ≜ SSIM(X,Y). (5)

Since we encourage distortion in the camera’s output images/videos, the L(O)
loss is minimized in our adversarial training algorithm, see Algorithm 1.

3.2 Action Recognition Component

We can use any neural network architecture in our adversarial framework to
perform human action recognition. In this work, without loss of generality, we
adopt two HAR CNN architectures: the well-known C3D [49], and the Rubkisnet
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[13], a more recent and efficient architecture for HAR. For a set of private videos,
we assume that the output of the classifier C is a set of action class labels SC .
Then, we can use the standard cross-entropy function H as the classifier’s loss.

On the other hand, since our degradation model distorts each frame of the
input video separately (2D convolution), part of the temporal information could
be lost, decreasing the performance of the HAR CNN significantly. To preserve
temporal information, we use temporal similarity matrices (TSMs). TSMs are
useful representations for human action recognition and have been employed in
several works [21,12,34,45] due to their robustness against dynamic view changes
of the camera when paired with appropriate feature representation. Unlike previ-
ous works, we propose using TSMs as a proxy to keep the temporal information
(features) similar after distortion: we build a TSM for the original and pri-
vate videos and compare their structures. Specifically, we take the embeddings
ê from the last convolutional layer of our HAR CNN architecture and com-
pute the TSM values using the negative of the squared euclidean distance, i.e.,
(Tm

′)n1n2
= −∥ên1

− ên2
∥2. Then, we calculate the mean square error (MSE)

between the Tm
′ and the TSM from the input video Tm, which was computed

similarly using the last convolutional layer of the corresponding pretrained HAR
CNN (non-privacy) network. We define the action recognition objective as:

L(C) ≜ H(SC , C(Vy)) +MSE(Tm,Tm
′), (6)

where Vy denotes the set of E private videos: Vy = {Vy
e}Ee=1 = {O(Vx

e)}Ee=1.

3.3 Adversarial Component and Training Algorithm

The attacks that an adversarial agent could perform to our privacy-preserving
pipeline depends on the definition of privacy. There are different ways to measure
privacy and this is, in general, not a straightforward task. For example, in smart
homes with video surveillance, one might often want to avoid disclosure of the
face or identity of persons. Therefore, an adversarial agent could try to attack our
system by training a face detection network. However, there are other privacy-
related attributes, such as race, gender, or age, that an adversarial agent could
also wanted to attack too. In this work, we define the adversarial attack as a
classification problem, where a CNN network A takes a private video Vy as
input and tries to predict the corresponding private information. Therefore, the
goal of our adversarial training is to try that the predictions from A diverges
from the set of class labels SA that describe the private information within the
scene. To train the attribute estimator network, we also use the cross-entropy H
function and define the adversarial loss as:

L(A) ≜ H(SA, A(Vy)). (7)

Algorithm 1 summarizes the proposed adversarial training scheme. Before
performing the adversarial training, we first train each framework component
separately without privacy concern to obtain the optimal performance on each
task. Specifically, we train the optical component O by minimizing 1 − L(O)
to acquire videos without distortions, i.e., Vy videos are very similar to the
corresponding input Vx. We also train the HAR network C by minimizing
H(SC , C(Vx)), obtaining the highest action recognition accuracy (the upper
bound). Finally, we train the attribute estimator network A by minimizing
H(SA, A(Vx)), thus obtaining the highest classification accuracy (the upper
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Algorithm 1: Our Adversarial Training Algorithm.

Input : Video Dataset Vx = {Vx
e}Ee=1. Hyperparameters βo, βc, βa, γ1, γ2

Output: θo, θc, θa
Function Train(Vx, βo, βc, βa, γ1, γ2)

1 for every epoch do
2 for every batch of videos VB

x do
3 VB

y = O(VB
x ) ▷ Acquire private videos

4 θo ← θo − βo∆θo(L(O) + γ1L(C)− γ2L(A))
5 θc ← θc − βc∆θc(L(C))
6 θa ← θa − βa∆θa(L(A))

7 return Xe

bound). After initialization, we start the adversarial training shown in Algo-
rithm 1, where, for each epoch and every batch, we first acquire the private
videos with our camera O. Then, we update the parameters of the camera θo
by freezing the attribute estimator network parameters θa and minimizing the
weighted sum L(O) + γ1L(C)− γ2L(A), shown on line 4 of the algorithm. Simi-
larly, we update the parameters of the HAR network θc by freezing the attribute
estimator network parameters and using the private videos acquired on line 3 to
minimize L(C). Finally, we perform the adversarial attack by minimizing L(A)
and updating the parameters of the attribute estimator network θa while the
camera and HAR network parameters are fixed. Contrary to the prior work [17],
our training scheme jointly models the privacy-preserving optics with HAR and
adversarial attacks during training.

4 Experimental Results

Datasets. Given the lack of a public dataset containing both human actions
and privacy attribute labels on the same videos, we follow the same approach as
authors in [56] to train our proposed adversarial framework. Specifically, we per-
form cross-dataset training using three datasets: the HMDB51 [25], the VISPR
[32], and the PA-HMDB51[56]. The VISPR dataset contains 22,167 images an-
notated with 68 privacy attributes which include: semi-nudity, face, race, gen-
der, skin color, among others. The attributes of a specific image are labeled as
“present” or “not-present”. The HMDB51 dataset comprises 6,849 video clips
from 51 action categories, with each category containing at least 101 clips. The
Privacy-annotated HMDB51 (PA-HMDB51) is a small subset of the HMDB51
dataset, containing 515 videos, with privacy attribute labels. For each video
in PA-HMDB51, there are five attributes annotated on a per-frame basis: skin
color, face, gender, nudity, and relationship. Similar to VISPR, the labels are
binary and specify if an attribute is present or not in the frame.
Training set. We train our models using cross-dataset training on HMDB51
and VISPR datasets. Specifically, we exclude the 515 videos in the PA-HMDB51
dataset from HMDB51 and use the remainder videos to train our action recog-
nition component. On the other hand, we use the VISPR dataset with the same
five privacy attributes available in the PA-HMDB51 dataset: skin color, face,
gender, nudity, and relationship, to train our adversarial component.
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Testing set. We use PA-HMDB51 to test our action recognition and adversarial
components. This dataset includes both action and privacy attribute labels.
Training details. In Algorithm 1, we set initial learning rates βo = 3 ×
10−3, βc = βa = 10−4, and γ1 = 0.7, γ2 = 0.3 and applied an exponential learn-
ing decay with a decay factor of 0.1 that is triggered in the epoch 25. We trained
the end-to-end PrivHAR model for 50 epochs, with batch size of 8, and use the
Stochastic Gradient Descent (SGD) optimizer to update parameters θo, θc, θa.
To perform the adversarial attacks during training (adversarial component in
Fig. 2), we use the ResNet-50 architecture. Training the PrivHAR for 50 epochs
took about 6 hours on 8 Nvidia TITAN RTX GPU with 24 GB of memory.

4.1 Metrics and Evaluation Method

To measure the overall performance of PrivHAR, we evaluate the action recog-
nition task and privacy protection separately. First, to test action recognition,
we pass the testing videos through our designed camera lens O(·) to obtain the
private videos. Next, we use our learned HAR backbone C(·) to get the pre-
dicted actions on each private video. Similarly as C3D [49], and RubiksNet [13],
we report the standard average classification accuracy, denoted by AC .

On the other hand, to evaluate privacy protection, we follow the same eval-
uation protocol adopted by authors in [56]. Specifically, assuming that an at-
tacker has access to the set of private videos acquired with our O(·) and the
corresponding privacy attribute labels, then, the attacker can train different
CNNs to try to steal sensitive information from the privacy-protected videos
acquired with our camera. To empirically verify that our protection is robust to
this kind of attack, we separately train ten different classification networks us-
ing the private images acquired with our camera, i.e., these CNNs are different
from the selected CNN used during training. To train these networks, we use
the same training set defined in the previous section and fix our camera compo-
nent with the optimal learned parameters θ∗o . We use the following architectures:
ResNet-{50, 101}[16], Wide-ResNet-{50, 101} [58], MobileNet-V2 [43], Inception-
{V1,V3}[47,46], MNASNet-{0.5, 0.75, 1.0}[48]. Among these CNNs, eight ran-
domly selected networks start from ImageNet-pretrained weights. The remain-
ing two models were trained from scratch (random initialization) to eliminate
the possibility that the initialization with ImageNet weights affects the correct
predictions. After training, we evaluate each model on our defined testing set
(videos from PA-HMDB51) and select the model with the highest performance.
Similar to previous works [10,56,57,32], we adopt the Class-based Mean Aver-
age Precision (C-MAP)[32] to assess the performance of the models. Specifically,
we compute the Average Precision (AP) per class, which is the area under the
Precision-Recall curve of the privacy-related attribute. Hence, C-MAP corre-
sponds to the average of the AP scores across all the privacy-related attributes.
We also denote C-MAP as AA in our experiments (lower is better).

To measure image degradation, we use the structural similarity index (SSIM)
metric [18]. Large values of SSIM indicate high quality. Thus, in general, we
expect to achieve the minimum SSIM values while achieving high AC and low
AA for HAR and Adversarial accuracy, respectively. Besides, we combine the
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(a) Ablation Study

C3D Backbone

Experiment SSIM↓ AC ↑ AA ↓ P ↑
No-Adversarial 0.603 51.1 69.1 38.6
No-TSM 0.612 59.9 69.7 40.2

Zernike-50 0.643 58.3 70.5 39.2
Zernike-100 0.629 58.8 69.3 40.4
Zernike-200 0.612 63.3 68.9 41.52

RubiksNet Backbone

No-Adversarial 0.592 57.6 68.2 40.9
No-TSM 0.599 72.3 67.6 44.6

Zernike-50 0.618 70.2 69.2 42.8
Zernike-100 0.601 71.9 68.4 43.9
Zernike-200 0.588 73.8 66.5 46.1

(b) Comparisons.

Methods SSIM↓ AC ↑ AA ↓ P ↑

No-privacy (C3D) 1.0 71.1 76.1 35.8

No-privacy (RubiksNet) 1.0 85.2 76.1 37.3

Low-resolution [41] 0.686 48.3 70.9 36.3

Lens in [17]-RubiksNet 0.608 52.4 69.4 38.6

Defocus [37] 0.688 62.1 72.5 38.1

PDAR-GRL [56] - 63.3 70.5 40.2

PDAR-K-Beam [56] - 63.5 69.3 41.4

PDAR-Entropy [56] - 67.3 70.3 41.2

PrivHAR-C3D 0.612 63.3 68.9 41.7

PrivHAR-RubiksNet 0.588 73.8 66.5 46.1

Table 1. Quantitative Results. (a) Multiple ablation studies of our method for two dif-
ferent HAR backbones, C3D and RubiksNet: each component in Fig. 2 is trained sepa-
rately (No-Adversarial); not using the TSM matrices to preserve temporal information
(No-TSM); 50, 100, and 200 Zernike polynomials to design our lens. (b) Comparison
of our method (PrivHAR) with: three additional privacy-preserving approaches: de-
focusing, low-resolution cameras, and the lens used in [17]; and the privacy-preserving
deep action recognition (PDAR) framework with different learning approaches (GRL,
K-Beam, and Entropy) [56]. Accuracy values are reported in percentage.

two accuracy metrics (AC and AA) into one using the harmonic mean as:

P =
2

1
AC

+ 1
1−AA

=
2AC(1−AA)

1−AA +AC
, (8)

and we expect to achieve the maximum P value.

4.2 Simulation Experiments

Ablation Studies. We conduct multiple experiments to investigate different
configurations for our adversarial approach. We show the quantitative results of
our ablations studies in Table 1 (a), for C3D and RubiksNet. We first train the
optical and action recognition components to obtain privacy-preserving videos
and perform HAR on them. Then, we fix the optical component and train the
adversarial CNN to recover the privacy attributes from the videos. We refer to
this experiment as ‘No-adversarial’ in the Table 1 (a). Note that this approach
is similar to the prior work [17] but on a different vision task. In our second
experiment (No-TSM), we test the performance of our proposed PrivHAR with
q = 200 Zernike coefficients when not using TSMs to preserve the temporal in-
formation. We can observe from the table that, in general, the AC decreases,
which evidences the importance of using TSMs to preserve temporal informa-
tion. The third experiment consists of training our adversarial framework with
a different number of Zernike coefficients. Specifically, we trained our PrivHAR
using q = 50, q = 100, and q = 200 Zernike coefficients, see Eq. (3). In general,
increasing the number of Zernike coefficients leads to better encoding; hence the
AC value increases while the SSIM decreases. However, memory consumption
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Fig. 3. (a) Trade-off between privacy protection and action recognition on PA-
HMDB51. Vertical and horizontal, dashed and dotted, purple lines indicate AA and
AC on the original non-privacy videos, using RubiksNet and C3D backbones for HAR,
respectively. The red dashed line indicates where AA = AC . (b) Face recognition per-
formance on private images (from LFW [19] dataset) acquired with our optimized lens.

also increases since we need to store all the Zernike bases. In general, we use
q = 200 Zernike coefficients as a default value in all other experiments. The
tables show that the best HAR backbone for our proposed PrivHAR network is
RubiksNet. We observed that when using RubiksNet, PrivHAR achieves higher
distortions (lower SSIM) affecting the performance of the adversarial component
while achieving high action recognition accuracy. We empirically verify that Ru-
biksNet is better at preserving the temporal information than C3D; hence it
performs better even with high image distortions. Besides, we observed that
TSM helps more the C3D backbone, which is more affected by the distortions
generated by our lens.
Attribute Estimator Network Performance. The values of AA reported
in the tables corresponds to the C-MAP obtained by the model with highest
performance on our testing set, as described in Section 4.1. To analyze the per-
formance of the attribute estimator networks, and hence our privacy protection,
we plot the receiver operating characteristic (ROC) and Precision-Recall (PR)
curves. In our supplementary document, we show the ROC and PR curves of the
attribute estimator network which achieves the best performance on the privacy-
preserving images/videos acquired with our camera. Specifically, considering the
area under curve (AUC) of the PR curves, we obtain an average precision (AP)
of 0.94, 0.72, 0.97, 0.52, 0.18 for skin color, face, gender, nudity, and relation-
ship, respectively. These values of AP are very close to those obtained by a
random classifier (null hypothesis), which are 0.95, 0.71, 0.97, 0.58, 0.17. There-
fore, based on the Fisher’s exact test [51], the best attribute estimator network
on our privacy-protected images is not significantly different from the random
classifier (p-value< 0.01).
Comparison with other methods. We compare our proposed PrivHAR with
two traditional privacy-preserving approaches: low-resolution [42] and defocusing
cameras [37]. We simulate both types of cameras and perform a similar train-
ing as shown in Fig. 2. To implement the low-resolution approach, we manually
downsampled the images with a resolution of 16×16. In addition, we compare our
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proposed PrivHAR with the privacy-preserving deep action recognition (PDAR)
framework with different learning approaches (GRL, K-Beam, and Entropy) [56].
We present the quantitative results in Table 1 (b), where all methods use the
C3D backbone for HAR if not otherwise specified. We also include our PrivHAR
using RubiksNet for comparison. Furthermore, we use the lens designed in [17],
which was optimized for human pose estimation and did not consider adver-
sarial attacks during training, for distort the videos and then perform HAR on
them. This approach obtains an AC = 52.4% using RubiksNet, which is 21.4%
lower than our PrivHAR-RubiksNet results. In addition, the trade-off between
privacy protection and action recognition is visualized in Fig. 3 (a), which shows
PrivHAR obtains the best privacy while maintaining high accuracy.

Face recognition performance. We follow the same face recognition valida-
tion on private images acquired by the optimized lens as the prior work in [17].
Specifically, we use an implementation of the face recognition network ArcFace
[11], train on Microsoft Celeb (MS-Celeb-1M) [15] and test on LFW [19] datasets.
Figure 3 (b) show the ROC curves for each testing approach: “No-privacy Model”
uses the pretrained ArcFace model on the original (non-private) images; “Pre-
trained model” uses the pretrained ArcFace model on the private version of each
dataset; “Trained model” uses an ArcFace model trained from scratch using the
private version of the MS-Celeb-1M dataset; “Fine-tuned Model” uses a pre-
trained ArcFace model fine-tuned with the private version of the MS-Celeb-1M
dataset. From the figure, we can conclude that the ArcFace model does not per-
form well on the images generated by our designed lens as the best performance
is achieved by the fine-tuned model (AUC= 0.68), which is still close to random
classifier’s performance. See results with others datasets in our supplementary.

Qualitative Results. We qualitatively compare our approach with low resolu-
tion and defocusing cameras in Fig. 4. We show results on three example videos
from the PA-HMDB51 dataset. The first row of the figure shows the non-privacy
video acquired using a standard lens and the ground truth (GT) of the actions
for reference. As observed, our lens achieves a higher distortion but still performs
action recognition. The last video shows a failure case of our method.

Deconvolution Attack. Suppose the attacker has access to the camera or a
large collection of acquired images with our proposed camera. In that case, the
attacker could use deconvolution methods (blind and non-blind) on our distorted
images to recover people’s identities. To test the robustness of our designed lens
to deconvolution attacks, we assume both scenarios: having access to the camera,
we can easily get the PSF (by imaging a point of source light) and hence use
a non-blind deconvolution method, e.g. the Wiener deconvolution; on the other
hand, not having access to the camera but a large collection of our distorted im-
ages then we can train a blind deconvolution network, e.g. DeblurGAN [26]. We
describe the training details in our supplementary document. In Fig. 5 we show
the results with two video frames from the HMDB51 dataset with people near
the camera. We observed that the distortion achieved by PrivHAR-RubiksNet
(RBN) is significantly higher than C3D; hence it is more difficult for Deblur-
GAN and Wiener deconvolution to recover the scene. In both cases, using C3D
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Fig. 4. Qualitative Results on PA-HMDB51. Each row shows standard no-privacy
videos and ground truth (GT) labels (top); and predictions from our optimized lens
(PrivHAR-RubiksNet, bottom) to low-resolution (second) and defocus (third) cameras.

Standard Lens PrivHAR-C3D DeblurGAN PrivHAR-RBN DeblurGANWiener Deconv. Wiener Deconv.

Fig. 5. Deconvolution of private images acquired with our optimized lens using C3D
and RubiksNet (RBN) backbones in PrivHAR. The images acquired with our lens are
robust to deconvolution, and DeblurGAN cannot recover people’s identities.

or RBN, the distortion is sufficient to avoid recovering face details, and the peo-
ple’s identity is protected. However, some attributes are visible in the recovered
scene when using PrivHAR-C3D. It is possible to obtain a lens with C3D that
provides more distortion; however, the HAR accuracy could be affected.

4.3 Hardware Experiments

To demonstrate the PrivHAR’s capability of action recognition, we conduct ex-
perimental validations acquiring four human actions: jump, clap, punch, and hair
brush in our Lab. We emulate the lens designed with our PrivHAR adversarial
framework using a deformable mirror-based 4f system [29,30]. We first train our
system using q = 15 Zernike coefficients and then load the learned coefficients
to the deformable mirror an calibrate the PSF. After calibration we obtained
the following learned Zernike coefficients: {α1 = α2 = α3 = 0, α4 = −0.45, α5 =

0.36, α6 = 0.24, α7 = 0.6, α8 = −0.4, α9 = −0.11, α10 = 0.69, α11 = −0.31, α12 =
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Fig. 6. Experimental setup scheme and some results on acquired videos. The deformable
mirror configuration and characterized PSF are shown in the upper left corner. The
right column shows the non-privacy and private videos obtained with our camera.

−0.15, α13 = −0.70, α14 = −0.85, α15 = 0.38}. The resulting PSF and the used
phase mask are presented in Fig. 6(Left). Finally, we placed our proof-of-concept
system on a movable table to take it out of our Lab and acquire real outdoor
images. In Fig. 6(Right), we show the human action recognition for two video
sequences recorded by our 4F-based system. The ground truth and the private
version were illustrated in the first and second rows, respectively. Outdoor sys-
tem configuration, additional qualitative and quantitative results, and detailed
description of the proof-of-concept system can be found in the supplement.

5 Discussion and Conclusion

We present PrivHAR, a framework for detecting human actions from a privacy-
preserving lens. Our framework consists of three components: the hardware com-
ponent that comprises a camera with a privacy-preserving lens, whose param-
eters are learned during training and its main function is to obscure sensitive
private information; the action recognition component that aims to preserve
temporal information using temporal similarity matrices and performs HAR on
the degraded video; and the adversarial component, which performs five attacks
to the private videos seeking to recover the hidden attributes.

Limitations. One limitation of our simulated experiments is that we test our
approach on a relatively small set due to the lack of a public dataset containing
human actions and privacy attribute labels on the same videos. As future work,
we plan to build a video dataset using our proposed optical system, which allows
us to acquire both RGB and private videos. In addition, the deformable mirror is
the main limitation of the proof-of-concept optical system. This device can only
use q = 15 Zernike Polynomials, limiting the scene’s level of distortion. For now,
our small-scale tests show results consistent with our extensive experiments.

Conclusion. We extensively evaluated and experimentally validated our ap-
proach in simulations and a hardware prototype. Our qualitative and quanti-
tative results indicate a trade-off between image degradation and HAR accu-
racy. Our optics modeling can generally be integrated into an embedded chipset
or used as a software-only solution by applying the image degradation post-
acquisition to deploy a less secure system. However, we show that the learned
lens can be deployed as a camera, which provides a higher security layer. One
could connect it to an Nvidia Jetson for real-time privacy-preserving HAR.
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