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1 Additional Experiment and Analysis

1.1 Many shot results

Due to the space limit, we put the standard 5-shot 5-way action recognition
result here in Table 1. We can see similar result comparison with Table 1 of
the main submission, indicating the superior performance of our method. Thus,
similar conclusions as the main submission can be derived.

Table 1. Result comparison of 5-way 5-shot experiments on 5 dataset splits. Methods
marked with * indicates results of our implementation with the original reported results
shown in parenthesis. The bottom and upper block are results with and without object
features, respectively.

Method SSv2◦ SSv2♯ Kinetics HMDB UCF

CMN [7] 48.8 - 78.9 - -
ARN [4] - - 82.4 60.6 83.1
OTAM [1] - 52.3 85.8 - -
TRN∗ [6,1] 46.7 49.5 (48.9) 82.2 (82.0) 70.2 85.4
ITA-Net∗ [5] 52.2 63.0 84.3 75.8 93.7
TRX∗ [2] 59.3 (59.1) 64.5 (64.6) 85.9 (85.9) 75.3 (75.6) 96.0 (96.1)
CPMT (Ours) 61.6 66.7 86.4 77.0 91.0

TRN+∗ 47.6 51.0 85.1 72.5 88.3
ITA-Net+∗ 55.0 67.2 85.5 76.8 95.5
TRX+∗ 62.9 66.8 87.3 78.4 96.5
CPMT (Ours) 69.0 73.5 87.9 85.1 92.3

1.2 Additional visualization

We place another visualization figure in Fig. 1. We can see similar results in the
main submission. In the example to the left, focused prototypes pa

f,2 and pb
f,1
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Fig. 1. Visualization of the self-attention weight of two global prototypes and two
focused prototypes on each timestamp of the input. Attention weights higher than
average (0.125) are marked in black. Example to the left comes from the SSv2♯ dataset
and the example to the right (False positive) is from Kinetics. Video similarity scores
s and similarity scores of matched prototypes p∗ ∼ p∗ are shown at the bottom.

are matched and high similarity score (0.78) is given. From the figure, we can
see that pa

f,2 has high attention on the middle frames, and pb
f,1 focus more on

the ending frames. The focus of both prototypes capture the moment when the
object is being taken out of the container, thus high similarity score is given. In
the example to the right, our model wrongly classifies the query action of “folding
paper” as “unboxing”. This is because px

f,2 and pz
f,2 give high similarity. In fact,

when we manually inspect the unboxing action in video z, we found that in the
last half of the video, the video recorder was reading a book taken out of the
box. Since reading a book contains actions similar to “folding paper”, we think
this may be the main reason that our method gives wrong prediction.

1.3 Analysis of bipartite matching

In the main submission, we introduced our method with includes two groups of
prototypes, where the focused prototypes are matched via bipartite matching.
Since bipartite matching matches each support prototype to a query prototype,
there will inevitably exist wrong matchings. However, we found that these wrong
matchings are necessary for training the model. Since our decoder is based on
a transformer architecture, each prototype is generated by attending to all the
frames. With the positional encoding, the generated prototypes implicitly con-
tains the temporal ordering of the whole video, but with different emphasizes
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Table 2. Result comparison of 5-way 1-shot experiments when using different thresh-
olds to filter the matched focused prototypes. “best” means we only use the best
matched focused prototype pair and filter all others. “average” indicates only keeping
the matched prototype pairs whose similarity scores are above average.

Method Matching p SSv2♯ Kinetics

CPMT (Ours) best 0 23.5 59.2
CPMT (Ours) average 0 24.3 63.6
CPMT (Ours) best 0.5 29.3 59.7
CPMT (Ours) average 0.5 30.6 65.4
CPMT (Ours) all N/A 59.6 81.0

(e.g., a prototype will look at all frames but emphasize only some frames). Thus,
through training, the optimization process will encourage the correct matchings
to generate high similarity scores, and keep the similarity scores of the wrong
matchings low.

To test whether filtering out subset of the matchings will also get good results,
we conduct the following experiment with different methods to filter the focused
prototypes. Specifically, since each prototype is not necessarily guaranteed to
have its correct matching, we filter the matched prototypes by the following
thresholds: 1) choose only the best match as the overall similarity score of two
videos, 2) choose only the matchings with similarity scores greater than average.
To allow the gradient flow over the non-matched prototypes, we use a leaky
relu-like method to suppress the scores of the non-matched prototypes by:

score =

{
score if matching meets threshold

p ∗ score otherwise
(1)

Here if p = 0, matchings that do not meet the threshold are discarded. If 0 <
p < 1, these matchings are suppressed. We equip this filtering method and test
it with different values of p and show the results in Table 2.

From Table 2, we can see that suppressing (p = 0.5) or ignoring (p = 0)
a subset of matched prototypes cannot perform well, since we find it is even
hard for model to fit on the training set. This proves our claim that the wrong
matchings are essential to train our model.

1.4 Class improvement of multi-relation encoding

In the main submission, we show the class improvement when using both groups
of prototypes compared with using only one single group of prototype. These
experiments are done using mg = mf = 8. Additionally, to see the impact of
each different relation in our multi-relation encoder, we show the class improve-
ment when encoding all 3 relations (global-global, global-object, object-object)
compared with encoding only one of the 3 relations. In Figure 2, yellow bars
show the class accuracy difference between encoding all relations and encoding
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Fig. 2. Class accuracy improvement when encoding 3 relations compared with encoding
only one relation. The colors indicate the improvement when compared with: global-
global only (yellow), global-object only (blue), object-object only (green).

only global-global relation. Blue and green bars indicate the difference between
encoding all relations and encoding only global-object relation, encoding object-
object relation, respectively. We can see that generally, object-object relation
can greatly help to improve the classification performance, while for classes like
“tipping something over”, “pushing something from right to left” and “pulling
something from left to right”, benefit from the combination of all the three
relations.

1.5 Pretraining using semantic labels

To compare with most of previous works, we do not use pretraining on the
backbone encoder, but directly use ImageNet pretrained ResNet50 as the back-
bone [1]. Meanwhile, many recent works have shown the usefulness of conducting
pretraining using the semantic labels of the training set [8,3,5]. Thus, for a more
complete comparison, we conduct another set of experiments where we first pre-
train the backbone network on the training dataset using their semantic labels,
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following PAL [8]. We show the result comparison in Tab. 3. From this setting
we can still see the superiority of our proposed method.

Table 3. Result comparison of 5-way 1-shot experiments on 4 datasets. In this table,
the backbone network is first pretrained using the semantic labels of the training set.
Results of previous methods are the authors’ reported results in each paper.

Method SSv2♯ Kinetics UCF HMDB

SRPN [3] - 75.2 86.5 61.6
PAL [8] 46.4 74.2 85.3 60.9
ITA-Net [5] 49.2 73.6 - -
CPMT-single (Ours) 53.3 75.4 85.1 62.3

CPMT-full (Ours) 61.0 85.2 88.1 85.0

2 Details for Training and Baseline Implementation

2.1 Model training

For each dataset, we use slightly different training parameters. Specifically, for
the Kinetics and UCF datasets, we fix the backbone encoder. For other datasets,
we do not fix the full backbone encoder, but fix all the batch normalization layers
except the first one. When training the model with backbone, the learning rate
of the backbone network is multiplied by 10. For the Kinetics dataset alone, we
set the hyperparameter λ1 = 0.1.

2.2 Baseline implementation details

As stated in the main submission, we give the baseline methods the same input
as our model for a fair comparison (denoted as “method+”). Here we describe
more details for the implementation of these baselines.

For TRX+, the original TRX generate frame-wise tuples with different cardi-
nalities. We extend this tuple construction on the B object features each frame.
To construct pairwise object tuples of frames i, j, we construct B×B object tu-
ples by associating each object feature of frame i with all object features of frame
j. Triplet tuples are constructed in the same fashion. As in TRX, the tuples are
all considered together to generate the class-specific prototypes. For ITA-Net+,
the implicit temporal alignment is used to align both frame-wise and object fea-
tures, so the input is the concatenated feature Finput ∈ R(B+2)T×d. The code
will be made publicly available including the implementation of baselines.
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