
Dynamic Spatio-Temporal Specialization
Learning for Fine-Grained Action Recognition

Tianjiao Li1⋆, Lin Geng Foo1⋆, Qiuhong Ke2, Hossein Rahmani3, Anran
Wang4, Jinghua Wang5, and Jun Liu1⋆⋆

1 ISTD Pillar, Singapore University of Technology and Design
{tianjiao li,lingeng foo}@mymail.sutd.edu.sg, jun liu@sutd.edu.sg

2 Department of Data Science & AI, Monash University
qiuhong.ke@monash.edu

3 School of Computing and Communications, Lancaster University
h.rahmani@lancaster.ac.uk

4 ByteDance
anranwang1991@gmail.com

5 School of Computer Science and Technology, Harbin Institute of Technology
wangjinghua@hit.edu.cn

Abstract. The goal of fine-grained action recognition is to successfully
discriminate between action categories with subtle differences. To tackle
this, we derive inspiration from the human visual system which contains
specialized regions in the brain that are dedicated towards handling spe-
cific tasks. We design a novel Dynamic Spatio-Temporal Specialization
(DSTS) module, which consists of specialized neurons that are only ac-
tivated for a subset of samples that are highly similar. During training,
the loss forces the specialized neurons to learn discriminative fine-grained
differences to distinguish between these similar samples, improving fine-
grained recognition. Moreover, a spatio-temporal specialization method
further optimizes the architectures of the specialized neurons to cap-
ture either more spatial or temporal fine-grained information, to better
tackle the large range of spatio-temporal variations in the videos. Lastly,
we design an Upstream-Downstream Learning algorithm to optimize our
model’s dynamic decisions during training, improving the performance
of our DSTS module. We obtain state-of-the-art performance on two
widely-used fine-grained action recognition datasets.

Keywords: Action recognition, fine-grained, dynamic neural networks.

1 Introduction

Fine-grained action recognition involves distinguishing between similar actions
with only subtle differences, e.g., “cutting an apple in a kitchen” and “cutting
a pear in a kitchen”. This is significantly more challenging than coarse-grained

⋆ equal contribution
⋆⋆ corresponding author

2 T. Li et al.

classification, where the action classes can be “cutting something in a kitchen”
and “playing in a gym”. The higher inter-class similarity in the fine-grained
setting makes it a challenging task, which coarse-grained backbones and methods
struggle to overcome.

To tackle the challenging fine-grained action recognition task, we derive in-
spiration from the remarkable human visual system which has good fine-grained
recognition capabilities. Importantly, our visual system comprises of specialized
neurons that are activated only under some specific circumstances, as shown by
previous works [33, 23]. For example, for enhanced recognition of humans which
is crucial for social behaviour, human brains have developed a set of cortical
regions specialized for processing faces [33, 23]. These specialized regions fire
only when our attention focuses on human faces, while specific sub-regions are
further specialized to fire specifically for processing face parts [25], eye gazes and
expressions [12], and identity [27, 11].

Pulling something
from right to left

Pulling something
from left to right

Pouring something
into something

Pouring something
into something

until it overflows

Fig. 1. Key frames of samples taken from
the Something-Something-v2 dataset [10].
(Top) Fine-grained differences lie more in
the spatial aspects of the two actions, as
shown in the green box. To distinguish be-
tween these two actions, we need to fo-
cus on whether the water in the cup over-
flows in the final key frame, which can be
quite subtle. (Bottom) Fine-grained differ-
ences lie mainly in the temporal aspects of
the two actions, where we need to focus on
the movement (denoted with yellow arrows)
of the object across all key frames. Best
viewed in colour.

Inspired by the specialization of
neurons in the human brain, we im-
prove fine-grained recognition capa-
bilities of a neural network by using
specialized parameters that are only
activated on a subset of the data.
More specifically, we design a novel
Dynamic Spatio-Temporal Specializa-
tion (DSTS) module which consists of
specialized neurons that are only acti-
vated when the input is within their
area of specialization (as determined
by their individual scoring kernels).
In particular, a synapse mechanism
dynamically activates each specialized
neuron only on a subset of samples
that are highly similar, such that only
fine-grained differences exist between
them. During training, in order to dis-
tinguish among that particular subset
of similar samples, the loss will push
the specialized neurons to focus on
exploiting the fine-grained differences
between them. We note that previous
works on fine-grained action recogni-
tion [48, 38, 52] have not explicitly considered such specialization of parameters.
These works [48, 38, 52] propose deep networks where all parameters are gener-
ally updated using all data samples, and thus, during training, the loss tends to
encourage those models to pick up more common discriminative cues that apply
to the more common samples, as opposed to various fine-grained cues that might
be crucial to different subsets of the data.

DSTS for Fine-Grained Action Recognition 3

Another interesting insight comes from the human primary visual cortex,
where there are neurons that are observed to be specialized in temporal or spa-
tial aspects [43, 24]. Magnocellular, or M cells, are observed to be specialized to
detect movement, e.g., speed and direction. Parvocellular, or P cells, are impor-
tant for spatial resolution, e.g., shape, size and color. Together, they effectively
allow humans to distinguish between actions.

Spatial and temporal specialization has clear benefits for fine-grained action
recognition. As observed in Fig 1, some fine-grained differences lie mainly in the
temporal aspects of two actions, e.g., “Pulling something from right to left” and
“Pulling something from left to right”. In this case, a greater emphasis on the
temporal dimension of each video will lead to better recognition performance.
In contrast, some fine-grained differences lie more in the spatial aspects of two
actions, e.g., “Pouring something into something” and “Pouring something into
something and it overflows”. In this case, greater emphasis on the spatial dimen-
sion can improve the performance.

To allow our module to efficiently and effectively handle fine-grained dif-
ferences over a large range of spatio-temporal variations, we design a spatio-
temporal specialization method that additionally provides specialized neurons
with spatial or temporal specializations. To achieve such specialization, we ex-
plicitly design the specialized neurons to focus only on one single aspect (spatial
or temporal) for each channel of the input feature map at a time, forcing the
neurons to exploit fine-grained differences between similar samples in that spe-
cific aspect, leading to higher sensitivity towards these fine-grained differences.
Specifically, this is implemented using gates that determine whether a spatial
operator or a temporal operator is used to process each input channel. By ad-
justing their gate parameters, specialized neurons that benefit from discerning
spatial or temporal patterns adapt their architectures to use the corresponding
operator across more channels. Eventually, the set of specialized neurons will
have diversified architectures and specializations focusing on different spatial
and temporal aspects, which collectively are capable of handling a large variety
of spatial and temporal fine-grained differences.

During end-to-end training of our module, we jointly train two types of pa-
rameters: upstream parameters (i.e., scoring kernels and gate parameters) that
make dynamic decisions and downstream parameters (i.e., spatial and temporal
operators) that process input, which can be challenging as upstream parame-
ters themselves also affect the training of downstream ones. Hence, we design
an Upstream-Downstream Learning (UDL) algorithm to optimize upstream pa-
rameters to learn how to make decisions that positively affect the training of
downstream parameters, improving the performance of our DSTS module.

2 Related Work

2.1 Action Recognition

Action recognition involves taking an action video clip as input and predicting
the class of the action. Many methods have been proposed to tackle this task,

4 T. Li et al.

including the two-stream [30], TSN [35], TRN [51], TSM [19], TPN [44], LTC [34],
I3D [3], S3D [42], SlowFast [7], X3D [6], NL [36], GST [22], Tx [9], TimeSformer
[2], ViViT [1], MViT-B [5], and Swin Transformer [20].

2.2 Fine-grained Action Recognition

In comparison, fine-grained action recognition, where actions have lower inter-
class differences, has been relatively less explored. Datasets such as Something-
Something-v2 [10] and Diving48 [18] have been curated for this purpose.

Interaction Part Mining [52] mines mid-level parts, connects them to form a
large spatio-temporal graph and mines interactions within the graph. LFB [38]
employs a long-term feature bank for detailed processing of long videos that
provides video-level contextual information at every time step. FineGym [28]
has found that coarse-grained backbones lack the capability to capture complex
temporal dynamics and subtle spatial semantics for their fine-grained dataset.
TQN [48] casts fine-grained action recognition as a query-response task, where
the model learns query vectors that are decoded into response vectors by a
Transformer.

Different from previous works that do not explicitly consider specialized pa-
rameters, we propose a novel dynamic DSTS module that trains and selects
specialized neurons for fine-grained action recognition. Furthermore, we investi-
gate a novel spatio-temporal specialization scheme that optimizes architectures
of the specialized neurons to focus more on spatial or temporal aspects, further
specializing them for improved fine-grained action recognition.

2.3 Dynamic Neural Networks

Dynamic neural networks generally adapt their parameters or structures accord-
ing to the input. Typical approaches include generating weights with a subnet-
work, dynamically selecting network depth and dynamically selecting network
widths [46, 37, 13, 40, 50]. On videos, several methods [41, 39] adaptively se-
lect video frames for the sake of efficiency. GSM [31] learns to adaptively route
features from a 2D-CNN through time and combine them. TANet [21] employs
a dynamic video aggregation kernel that adds global video information to 2D
convolutions.

Different from these methods, our DSTS module focuses on improving perfor-
mance on fine-grained action recognition. We design a novel synapse mechanism
that activates each specialized neuron only on samples that are highly similar,
pushing them to pick up relevant fine-grained differences to distinguish between
these similar samples. We further propose spatio-temporal specialization of our
specialized neurons, which to the best of our knowledge, has not yet been ex-
plored in previous works.

2.4 Kernel Factorization

Kernel Factorization generally involves factorizing a 3D spatio-temporal con-
volution into a 2D spatial convolution plus a 1D temporal convolution, such

DSTS for Fine-Grained Action Recognition 5

as in P3D [26], S3D [42] and R(2+1)D [32]. In GST [22], 3D convolutions are
decomposed into a fixed combination of parallel spatial and temporal convolu-
tions. In these works, the kernel factorization leads to improved effectiveness and
efficiency.

Here, we propose a novel DSTS module that dynamically activates the most
relevant specialized neuron. Different from previous works, our specialized neu-
rons learn to select a spatial or temporal operator for each channel, to better
handle the corresponding fine-grained differences between similar samples, for
fine-grained action recognition.

3 Proposed Method

3.1 Overview

C
lassifier

Specialized
Neuron 𝑛11

Specialized
Neuron 𝑛21

Specialized
Neuron 𝑛𝑁1

G

Specialized
Neuron 𝑛12

Specialized
Neuron 𝑛22

Specialized
Neuron 𝑛𝑁2

G

Specialized
Neuron 𝑛1𝐿

Specialized
Neuron 𝑛2𝐿

Specialized
Neuron 𝑛𝑁𝐿

G

B
ackb

o
n

e

Skip Connection

Layer1 Layer2 LayerL

DSTS Module

Fig. 2. Illustration of the proposed DSTS
module, which processes features extracted
from a backbone. There are L layers within
the DSTS module, each comprising N spe-
cialized neurons (grey rectangles). When a
feature map X is fed into the j-th DSTS
layer, impulse values vij from each special-
ized neuron nij are first calculated, and
the specialized neuron with the highest im-
pulse value in that layer is activated (indi-
cated with red arrows) using the Gumbel-
Softmax technique (indicated with G○). A
skip connection adds general features from
the backbone to the output of the DSTS
module (indicated with

⊕
), before being

fed into the classifier.

In fine-grained action recognition, ac-
tions from different classes can be
highly similar, with only fine-grained
differences between them. Such fine-
grained differences might not be effec-
tively learnt by parameters that are
trained on all samples, as they will
tend to capture common discrimina-
tive cues that occur more commonly
throughout the data, instead of var-
ious fine-grained cues, each of which
might only be relevant in a small sub-
set of the data [15]. Thus, to im-
prove performance on fine-grained ac-
tion recognition, we propose to em-
ploy specialized parameters in our
model. These specialized parameters
are pushed to gain specialized capa-
bilities in identifying fine-grained dif-
ferences by being trained only on a
subset of the data that contains highly
similar samples.

Our DSTS module achieves this
specialization through the dynamic
usage of blocks of parameters called specialized neurons, which can be observed
in Fig. 2. For each input sample, only one specialized neuron (i.e., the neuron
with the most relevant specialization) in each layer is activated to process the
sample – this dynamic activation occurs in what we call the synapse mechanism.
Crucially, we design the synapse mechanism such that each specialized neuron
is only activated on a subset of samples that are similar, with only fine-grained
differences between them. During training, since each specialized neuron is only
trained on a subset of the data that contains similar samples, the training loss

6 T. Li et al.

will push the specialized neuron to learn to handle the fine-grained information
relevant to these samples, instead of learning more common discriminative cues
that are applicable to the more common samples. Hence, each specialized neu-
ron gains specialized capability that is highly effective at classifying a particular
subset of samples, leading to improved fine-grained recognition performance.

Moreover, considering that fine-grained differences between similar samples
might exist in more spatial or temporal aspects, we further propose spatio-
temporal specialization in the specialized neurons, to further optimize their ar-
chitectures. By explicitly forcing the specialized neurons to focus on spatial or
temporal aspects for each channel of the input feature map, they are pushed
to exploit fine-grained differences in that specific aspect, leading to better sen-
sitivity towards the fine-grained differences in that aspect. Such channel-wise
decisions on spatial or temporal specializations are learned in an end-to-end
manner for improved performance. Lastly, we further improve the generalization
capability of our DSTS module by proposing Upstream-Downstream Learning,
where the model parameters involved in making its dynamic decisions are meta-
learned.

Next, we formally introduce the DSTS module which is illustrated in Fig. 2.
Setting batch size to 1 for simplicity, we assume that the pre-trained backbone
outputs a feature map X ∈ RNin×Nt×Nh×Nw , where Nin, Nt, Nh, Nw represent
the channel, temporal, height and width dimensions of the feature map, respec-
tively. The DSTS module consists of L layers, with each layer comprising of N
specialized neurons. We define the i-th specialized neuron in the j-th layer as
nij , which is shown in detail in Fig. 3. Each specialized neuron nij has a scoring
kernel mij ∈ RNout×Nin×1×1×1 (with the size of 1× 1× 1 for efficiently encoding
information from all channels of feature map X), a spatial operator consisting
of a convolutional kernel Sij ∈ RNout×Nin×1×3×3 (2D on the spatial domain), a
temporal operator consisting of a convolutional kernel Tij ∈ RNout×Nin×3×1×1

(1D on the temporal domain) and gates gij ∈ RNin .

3.2 DSTS Layer

In this subsection, we describe a single DSTS layer. For clarity, we describe
the first DSTS layer and omit the layer index, using ni to represent the i-th
specialized neuron (which consists of mi, Si, Ti and gi) in this DSTS layer.

Synapse Mechanism The synapse mechanism is the crucial step that dynam-
ically activates the specialized neuron with the most relevant specialization for
the given input feature map X. Importantly, similar feature maps should acti-
vate the same specialized neurons, so that each specialized neuron is pushed to
specialize in fine-grained differences to distinguish between these similar feature
maps during training.

To implement the synapse mechanism to achieve the above-mentioned spe-
cialization effect, we include a scoring kernel mi in each specialized neuron ni

that is applied on the input feature map X in a step that we call the scoring

DSTS for Fine-Grained Action Recognition 7

convolution. The resulting output is summed to produce a relevance score (which
we call an impulse vi) between the input feature map X and the fine-grained
specialization capabilities of the specialized neuron ni. The higher the impulse
produced by a specialized neuron, the higher the relevance of the specialized
neuron’s knowledge to the input feature, and the more likely it will be activated.

In the first step, to calculate the relevance scores between a specialized neuron
ni and a feature map X, we first apply a scoring convolution using the scoring
kernel mi on X:

qi = mi(X), (1)

where we slightly abuse the notation to let mi(·) denote the scoring convolution
function applied to an input using scoring kernel mi (we adopt this notation
for all convolution functions in this work) and qi ∈ RNout×Qt×Qh×Qw is an
intermediate representation with Qt, Qh, Qw being the resulting temporal, width
and height dimensions.

We then sum all elements in qi to get the impulse vi of specialized neuron
ni.

vi =

Nout∑
uc=1

Qt∑
ut=1

Qh∑
uh=1

Qw∑
uw=1

qi,uc,ut,uh,uw (2)

We conduct the above process (Eq. 1 and Eq. 2) for all scoring kernels {mi}Ni=1

of the N specialized neurons in the DSTS layer to obtain the complete set of
impulse values V:

V = {vi}Ni=1. (3)

Finally, we apply the Gumbel-Softmax technique [14] on V to select a spe-
cialized neuron to activate. The selection to activate specialized neuron na is
made by producing a one-hot vector with a 1 at the selected index a. During
training, the Gumbel-Softmax allows gradients to backpropagate through this
selection mechanism. During testing, the activated specialized neuron na is the
one with the highest impulse within V, and has the most relevant specialization
to discriminate between samples similar to the input X.

We remark that this synapse mechanism is crucial for the specialization of the
specialized neurons. As convolutional filters tend to produce similar responses
for similar feature maps [47, 45], qi and vi tend to be similar for similar feature
maps. Hence, during training, similar feature maps are highly likely to produce
high impulse scores for (and activate) the same specialized neuron; this neuron
will thus be updated using only a subset of similar samples, which pushes this
neuron to specialize in fine-grained differences to distinguish between them.

Spatio-Temporal Specialization Intuitively, after na is activated, we can
simply apply a 3D convolution kernel (corresponding to na) on X to extract
the spatio-temporal information. Yet, in fine-grained action recognition, the fine-
grained differences between actions can exist in more spatial or temporal aspects
of actions, which require emphasis along their respective dimensions for effective

8 T. Li et al.

discrimination. Motivated by this, instead of optimizing the parameters within a
3D kernel architecture, we additionally optimize the architectures of the special-
ized neurons to specialize in focusing on either more spatial or more temporal
fine-grained information.

Sp
at

ia
l

C
o

n
v

Te
m

p
o

ra
l

C
o

n
v

1x1x1
Conv

semHash

S

S

S

T

S

Impulse 𝑣𝑖𝑗

Scoring
Conv

Input 𝑋

𝒃

Gates

𝑍𝑆
′

𝑍𝑇
′

B
N

R
eL

U

B
N

R
eL

U

𝑍𝑆

𝑍𝑇

𝑋𝑆

𝑋𝑇

Spatial Operator

Temporal Operator

𝑍′𝑍

Fig. 3. Illustration of a specialized neuron
nij . A scoring convolution using mij , fol-
lowed by a summation, produces impulse
vij that is used to determine if nij is ac-
tivated. Gate parameters gij are used to
generate b using the Improved Semhash
method, which determines (using channel-
wise multiplication

⊗
) if each input chan-

nel uses the spatial operator’s kernel Sij (in
green) or the temporal operator’s kernel Tij

(in orange). After the processing of the spa-
tial and temporal operators, both features
Z′

S and Z′
T are added (indicated with

⊕
)

and fused using a 1 × 1 × 1 convolution to
get output Z′.

More concretely, our spatio-temporal
specialization method adapts the ar-
chitectures of the specialized neurons
to utilize either a spatial operator or
a temporal operator for each input
channel. The spatial operator uses a
2D convolution that focuses on the
spatial aspects of the feature map
while the temporal operator uses a
1D convolution that focuses on the
temporal aspects. To achieve spatial
or temporal specialization, we explic-
itly restrict the specialized neurons to
choose between spatial or temporal
operators for each input channel. Dur-
ing training, this design forces each
specialized neuron to exploit fine-
grained differences in each channel be-
tween similar samples in the chosen
aspect, leading to better sensitivity
towards these fine-grained differences.
Since different channels of the input
feature map can convey different in-
formation, which might lie in the spa-
tial or temporal aspects, we let our model adapt its architecture to select the
operator in each channel that would lead to greater discriminative capability.
Such architectural decisions (spatial or temporal) for each channel are learned
by the gate parameters. When it is beneficial for the specialized neuron to focus
more on a certain fine-grained aspect, the gates will learn to use the correspond-
ing operator across more channels, pushing for higher sensitivity towards that
aspect for improved discriminative capability. The efficacy of this channel-wise
design for spatio-temporal specialization is investigated empirically along with
other baselines in Section 4.3.

Spatio-temporal Architectural Decisions using Gates. This step takes place af-
ter the synapse mechanism, where a specialized neuron na is activated. The
specialized neuron’s gate parameters ga consists of Nin elements, with each el-
ement corresponding to one input channel. Each gate parameter determines if
the corresponding channel is processed using the spatial or temporal operator.

During the forward pass, we sample binary decisions from the gate parame-
ters ga using the Improved Semhash method [16, 17, 4], obtaining a binary vector
b ∈ {0, 1}Nin . Improved Semhash allows us to train gate parameters ga in an

DSTS for Fine-Grained Action Recognition 9

end-to-end manner. We opt for the Improved Semhash instead of the Gumbel-
Softmax here as we can use less parameters (Nin instead of 2Nin). We denote
the l-th element of b as bl. If bl = 0, then the corresponding input channel l will
use the spatial operator. While if bl = 1, then the corresponding input channel l
will use the temporal operator. More details of Improved Semhash can be found
in the Supplementary.
Specialized Spatio-Temporal Processing. After obtaining channel-wise architec-
tural decisions b, we can commence with the channel-wise selection of input
feature map X to obtain features XS and XT as follows, which will be used for
learning fine-grained spatial and temporal information respectively:

XS = (1− b) ·X, (4)

XT = b ·X, (5)

where 1 is a vector of 1’s of size Nin, and · refers to multiplication along the
channel dimension while treating each element of b and (1 - b) as a channel.
Using XS and XT , spatial and temporal outputs ZS , ZT are obtained using the
respective spatial and temporal kernels Sa, Ta within na:

ZS = Sa(XS), (6)

ZT = Ta(XT), (7)

where ZS denotes features that capture spatial information of input feature map
X, while ZT denotes features that capture temporal information. ZS and ZT are
then fed to a batch normalization and a ReLU activation layer. We denote the
two output features as Z ′

S and Z ′
T . The output feature map Z is obtained by

adding Z ′
S and Z ′

T :
Z = Z ′

S + Z ′
T (8)

Lastly, a 1 × 1 × 1 convolution is applied to Z to fuse both spatial and
temporal features. These fused features Z ′ are then fed to the next DSTS layer
or classifier.

Spatio-temporal specialization allows specialized neurons to focus on either
more spatial or temporal fine-grained information. If a specialized neuron ni is
activated on a subset of similar samples with fine-grained spatial differences,
encoding more spatial information by applying the spatial operator on more
channels will tend to be more effective, and gi will be trained to produce more
0’s in b. On the other hand, if the samples in the subset contain more fine-
grained temporal differences, the model will learn to apply the temporal operator
across more channels, by optimizing gi to produce more 1’s in b for better
fine-grained action recognition. It is also possible that the spatial and temporal
aspects are equally important to discriminate similar actions. In this case, gi will
be optimized to handle both spatial and temporal fine-grained information.

3.3 Upstream-Downstream Learning

To further improve the performance of our DSTS module, we design a UDL
algorithm that better optimizes the model parameters involved in making dy-
namic decisions, which we call upstream parameters. These upstream parameters

10 T. Li et al.

(i.e., scoring kernels m and gate parameters g) that make dynamic decisions
and downstream parameters (i.e., spatial and temporal operators S and T) that
process input, are jointly trained during our end-to-end training, which can be
challenging as upstream parameters themselves also affect the training of down-
stream ones. This is because, upstream parameters determine which downstream
parameters will be used, and consequently updated. Hence, we use meta-learning
[8, 29] to optimize upstream parameters while taking their downstream effects
into account, leading to the improved learning of downstream parameters and
overall improved performance.

There are three steps in our meta-learning algorithm. In the first step, we
simulate an update step by updating downstream parameters while keeping up-
stream parameters frozen. This simulates the training process of the downstream
parameters when the current set of upstream parameters are used to make dy-
namic decisions. In the crucial second step, we evaluate the model’s performance
on held-out samples in a validation set, which estimates model performance on
unseen samples. The second-order gradients (with respect to upstream param-
eters) from this evaluation provide feedback on how upstream parameters can
be updated such that their dynamic decisions during training can improve the
learning process of downstream parameters, leading to better performance on un-
seen samples. In the final step, downstream parameters are optimized using the
meta-optimized upstream parameters, which now make dynamic decisions in the
model such that downstream parameters are able to benefit more from training
and have improved (testing) performance.

More concretely, in each iteration, we sample two mini-batches from the
training data: training samples Dtrain and validation samples Dval. The two
mini-batches should not contain overlapping samples, as we want to use Dval to
estimate performance on unseen samples. The algorithm proceeds in three steps:

Firstly, a Simulated Update Step updates downstream parameters d using
supervised loss ℓ on Dtrain.

d̂ = d− α∇dℓ(u, d;Dtrain), (9)

where α is a learning rate hyperparameter, while u and d denote the upstream
and downstream parameters respectively. We keep upstream parameters u fixed
in this step.

Secondly, a Meta-Update Step evaluates the updated model on Dval. We
update upstream parameters u using the second-order gradients with respect to
u when they were used to make decisions in the first Simulated Update Step, as
follows:

u′ = u− α∇uℓ(û, d̂;Dval), (10)

where û is a copy of u, but no gradients are computed with respect to û. We
denote it this way, because the same set of u parameters are used twice (in Eq. 9
and Eq. 10), and we want to compute second-order gradients ∇u with respect to
u in Eq. 9, not first-order gradients with respect to û in Eq. 10. These second-
order gradients ∇u provide feedback on how to adjust u such that their dynamic
decisions lead to better training of the downstream parameters (as simulated

DSTS for Fine-Grained Action Recognition 11

in the Simulated Update Step), resulting in improved performance on unseen
samples. d is not updated in this step.

Finally, d is updated in the Actual Update Step while keeping u′ frozen.

d′ = d− α∇dℓ(u
′, d;Dtrain) (11)

One iteration of this algorithm concludes here, and we obtain updated parame-
ters u′ and d′. An outline of the algorithm is shown in the Supplementary.

4 Experiments

We conduct experiments using our proposed DSTS module on two popular fine-
grained action recognition datasets, i.e., the Something-Something v2 dataset
(SSV2) [10] and Diving48 dataset [18].

SSV2 [10] is a large dataset, containing approximately 220k videos across 174
different classes. It consists of crowd-sourced clips that show humans performing
basic actions with various types of everyday objects. The difference between
classes could lie in fine-grained spatial or temporal details, as depicted in Fig. 1.
Following [10, 20, 49], we split the data into 169k training and 27k test videos.

Diving48 [18] contains approximately 18k trimmed video clips of 48 classes
of competitive diving sequences. There are fine-grained differences between the
48 classes, which could exist at takeoff, in flight, at entry, or a combination of
them in the diving sequences, making it a challenging classification task. Fol-
lowing [18, 48], we split the data into 16k training and 2k test videos. Following
[48], we use the cleaned (v2) labels released in Oct 2020.

4.1 Implementation details

To evaluate the efficacy of the proposed DSTS module, Swin-B transformer [20]
and TPN [44] are used as the backbone networks. In our experiments, each
DSTS layer contains 10 specialized neurons (N = 10) and the DSTS module has
3 layers (L = 3). The dimensions of the input X, such as Nin, Nt, Nh, Nw are
determined by different backbone networks, and we set Nout = Nin. Thus, the
shape of Sij , Tij , gij and mij for each nij are dependent on the backbones.

The experiments are conducted on 8 Nvidia V100 GPUs with batch size
B = 8. We follow the experimental settings of Video Swin Transformer [20],
using the AdamW optimizer and setting the initial learning rate α as 3× 10−4.
For TPN, we follow the experimental settings in [44], using the SGD optimizer
and setting the initial learning rate α as 0.01. We compute cross-entropy loss as
the supervised loss ℓ for classification.

During training, using the Gumbel-Softmax and Improved Semhash tech-
niques for selection of specialized neurons and operators, our model is end-to-end
trainable. We set Gumbel-Softmax temperature τ = 1, and the noise applied to
Improved SemHash is sampled from a standard Gaussian distribution.

During testing, given an input feature map X, impulse values {vij}Ni=1 are
computed for all N specialized neurons in each layer j. However, because we

12 T. Li et al.

Table 1. Top-1 and Top-5 scores (%) on SSv2. Type “C” indicates CNN-based architec-
tures and “T” indicates Transformer-based architectures. Our DSTS module improves
Top-1 accuracy of TPN by 2.5% and Swin-B by 2.2%.

Method Type Top-1 Top-5

SlowFast [7] C 63.1 87.6
TPN [44] C 64.7 88.1
ViViT-L [1] T 65.4 89.8
TSM (Two-stream) [19] C 66.6 91.3
MViT-B [5] T 67.7 90.9
Swin-B [20] T 69.6 92.7

TPN w/ DSTS C 67.2 89.2
Swin-B w/ DSTS T 71.8 93.7

do not require gradients this time, the input X is only processed by the best-
matching specialized neuron naj of each layer j, to obtain output Z ′

aj . Notably,
no noise is added to Gumbel-Softmax and Improved Semhash during inference.

4.2 Experiment Results

Results on SSv2. Following [20, 1, 19], we report Top-1 and Top-5 accuracy
scores across all models on the test set of SSv2. Results are shown in Table 1. As
both CNNs and Transformers are used to tackle action recognition, we test DSTS
on a CNN-based architecture (TPN [44]) and a Transformer-based architecture
(Swin-B [20]) to investigate if our DSTS module provides performance gains on
both types of architectures.

Adding our DSTS module to baseline architectures leads to improved per-
formance on both architectures. Adding DSTS to TPN (TPN w/ DSTS), the
performance of TPN improves by 2.5%, achieving a Top-1 accuracy of 67.2%.
To the best of our knowledge, this performance is state-of-the-art among CNN-
based architectures, surpassing even the performance of the two-stream TSM
which utilizes additional optical flow information. This shows that DSTS can
improve performance for CNN-based backbones on fine-grained action recogni-
tion. Adding DSTS to Swin-B (Swin-B w/ DSTS) improves Top-1 accuracy
by 2.2%, achieving a new state-of-the-art of 71.8%, showing that DSTS can help
improve fine-grained action recognition on Transformer-based backbones as well.
Qualitative results and visualizations have been placed in the Supplementary.
Results on Diving48. Following [48], we report Top-1 accuracy and mean
accuracy per class across all models on Diving48 dataset. Results are shown in
Table 2. Using DSTS module leads to significant improvements on Diving48 as
well. It achieves a Top-1 improvement of 2.2% on TPN and 2.5% on Swin-B.
TPN w/ DSTS achieves state-of-the-art result of 88.4% Top-1 accuracy.

4.3 Ablation Studies

We conduct extensive ablation studies to evaluate the importance of certain
design choices. Ablation studies are conducted on Diving48, using TPN as a
backbone. More experiments are placed in the Supplementary.

DSTS for Fine-Grained Action Recognition 13

Table 2. Top-1 and Class-wise accuracy scores (%) on Diving48. Our DSTS module
improves Top-1 accuracy of TPN by 2.2% and Swin-B by 2.5%.

Method Type Top-1 Class-wise Acc

I3D [3] C 48.3 33.2
TSM (Two-stream) [19] C 52.5 32.7
GST [22] C 78.9 69.5
TQN [48] T 81.8 74.5
Swin-B [20] T 80.5 69.7
TPN [44] C 86.2 76.0

Swin-B w/ DSTS T 83.0 71.5
TPN w/ DSTS C 88.4 78.2

Table 3. Evaluation results (%) on
the impact of spatio-temporal special-
ization of DSTS modules on Diving48.
Method Top-1 Class-wise Acc

DSTS w/o STS 87.2 76.5
DSTS w/o Gates 87.3 76.7
DSTS w/ STS 88.4 78.2

1) Spatio-temporal specialization. We eval-
uate the impact of spatio-temporal spe-
cialization on our DSTS module, and the
results are shown in Table 3. It can be
observed that DSTS module with spatio-
temporal specialization (DSTS w/ STS)
performs better than DSTS without it
(DSTS w/o STS), showing its effectiveness. For DSTS w/o STS, only one op-
erator, i.e., a 3D convolution with batch normalization and ReLU, within each
nij is employed to process X. Besides, when we remove gates gij (DSTS w/o
Gates), and let all specialized neurons have the same factorized architecture
(the channels are split into two fixed halves, to which the spatial and temporal
operators are applied respectively), the performance decreases by 1.1%. This
shows that our gates learn channel-wise architectures that are more specialized
and effective for fine-grained recognition, compared to fixed architectures.

Table 4. Evaluation results (%) on the impact of the
synapse mechanism on Diving48.
Method Top-1 Class-wise Acc Model Size

Baseline TPN 86.2 76.0 63M
w/o Synapse Mechanism 86.5 76.4 75M
w/ Synapse Mechanism 88.4 78.2 75M

2) Synapse Mechanism. We
investigate the impact of the
synapse mechanism, and re-
sults are shown in Table 4.
Following our method with
the dynamic synapse mech-
anism and activating the most relevant specialized neuron at each layer (w/
Synapse Mechanism) achieves better results compared to activating all spe-
cialized neurons and averaging their outputs (w/o Synapse Mechanism),
which is a non-dynamic design with the same number of parameters as our
method. This shows that the performance improvement comes from our synapse
mechanism and its dynamic design, and not the additional parameters. This im-
provement is because, unlike w/o Synapse Mechanism which trains all neurons
on all data samples and tends to learn more common discriminative cues that
apply to the more common samples, our DSTS module trains each specialized
neuron only on a subset of similar samples, explicitly pushing them to gain better
specialized fine-grained abilities.

3) Upstream-Downstream Learning. We conduct experiments to evaluate the
performance gains from our UDL method, and the results can be seen in Table 5.

14 T. Li et al.

Table 5. Evaluation results (%) on the
impact of the UDL method on Diving48.

Method Top-1 Class-wise Acc

DSTS w/o UDL 87.4 76.7
DSTS w/ UDL 88.4 78.2

We observe that our UDL method
(DSTS w/ UDL) improves perfor-
mance over using backpropagation in
a single step (DSTS w/o UDL). We
emphasize that such these performance
gains are achieved using only slightly more training time, which is reported in
the Supplementary.

Table 6. Evaluation results
(%) for different numbers of
specialized neurons N in each
DSTS module on Diving48.

N Top-1 Class-wise Acc

5 87.3 76.2
10 88.4 78.2
15 88.3 78.2

4) Number of specialized neurons in each DSTS
layer. We evaluate the impact of using different
numbers of specialized neurons in each DSTS layer,
and the results are shown in Table 6. When N is
low (e.g., N = 5), using more specialized neurons
in each DSTS layer (e.g., N = 10) improves the
performance, which can be explained by the in-
crease in representational capacity. More precisely,
when there are more specialized neurons, each one can afford to be more spe-
cialized towards a smaller subset of data, which improves their capability. We
use N = 10 as this improvement effect tapers off when N is increased beyond
10.

Table 7. Evaluation results
(%) for different numbers of
DSTS layers L on Diving48.

L Top-1 Class-wise Acc

1 87.5 76.8
3 88.4 78.2
5 88.2 78.2

5) Number of DSTS layers. We also evaluate the
impact of varying L, i.e., stacking different num-
bers of DSTS layers, and results are shown in Table
7. As expected, stacking more DSTS layers leads
to better performance. This is because, the DSTS
module with more layers could have greater repre-
sentational capacity to process more complex and
fine-grained cues. When we increase L from 1 to 3, we obtain an improvement of
0.9%, and increasing L further does not lead to further improvement. We thus
set L = 3.

5 Conclusion

In this paper, we have proposed a novel DSTS module consisting of dynamically
activated specialized neurons for fine-grained action recognition. Our spatio-
temporal specialization method optimizes the architectures of specialized neu-
rons to focus more on spatial or temporal aspects. Our UDL procedure further
improves the performance of our DSTS module. We obtain state-of-the-art fine-
grained action recognition performance on two popular datasets by adding DSTS
modules to baseline architectures.
Acknowledgement This work is supported by National Research Foundation, Sin-
gapore under its AI Singapore Programme (AISG Award No: AISG-100E-2020-065),
Ministry of Education Tier 1 Grant and SUTD Startup Research Grant. This work is
also partially supported by Natural Science Foundation of China (NSFC) under the
Grant no. 62172285. The research is also supported by TAILOR, a project funded by
EU Horizon 2020 research and innovation programme under GA No 952215.

DSTS for Fine-Grained Action Recognition 15

References

1. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lucic, M., Schmid, C.: Vivit: A
video vision transformer. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV). pp. 6836–6846 (October 2021) 4, 12

2. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for
video understanding? (2021) 4

3. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the
kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 6299–6308 (2017) 4, 13

4. Chen, Z., Li, Y., Bengio, S., Si, S.: You look twice: Gaternet for dynamic filter se-
lection in cnns. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 9172–9180 (2019) 8

5. Fan, H., Xiong, B., Mangalam, K., Li, Y., Yan, Z., Malik, J., Feichtenhofer, C.:
Multiscale vision transformers. arXiv preprint arXiv:2104.11227 (2021) 4, 12

6. Feichtenhofer, C.: X3d: Expanding architectures for efficient video recognition.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 203–213 (2020) 4

7. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recog-
nition. In: Proceedings of the IEEE/CVF international conference on computer
vision. pp. 6202–6211 (2019) 4, 12

8. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: International Conference on Machine Learning. pp. 1126–
1135. PMLR (2017) 10

9. Girdhar, R., Carreira, J., Doersch, C., Zisserman, A.: Video action transformer
network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 244–253 (2019) 4

10. Goyal, R., Ebrahimi Kahou, S., Michalski, V., Materzynska, J., Westphal, S., Kim,
H., Haenel, V., Fruend, I., Yianilos, P., Mueller-Freitag, M., et al.: The” something
something” video database for learning and evaluating visual common sense. In:
Proceedings of the IEEE international conference on computer vision. pp. 5842–
5850 (2017) 2, 4, 11

11. Haxby, J.V., Hoffman, E.A., Gobbini, M.I.: The distributed human neural system
for face perception. Trends in cognitive sciences 4(6), 223–233 (2000) 2

12. Hoffman, E.A., Haxby, J.V.: Distinct representations of eye gaze and identity in
the distributed human neural system for face perception. Nature neuroscience 3(1),
80–84 (2000) 2

13. Hua, W., Zhou, Y., De Sa, C., Zhang, Z., Suh, G.E.: Channel gating neural net-
works (2019) 4

14. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144 (2016) 7

15. Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance.
Journal of Big Data 6(1), 1–54 (2019) 5

16. Kaiser, L., Bengio, S.: Discrete autoencoders for sequence models. arXiv preprint
arXiv:1801.09797 (2018) 8

17. Kaiser, L., Bengio, S., Roy, A., Vaswani, A., Parmar, N., Uszkoreit, J., Shazeer, N.:
Fast decoding in sequence models using discrete latent variables. In: International
Conference on Machine Learning. pp. 2390–2399. PMLR (2018) 8

18. Li, Y., Li, Y., Vasconcelos, N.: Resound: Towards action recognition without rep-
resentation bias. In: Proceedings of the European Conference on Computer Vision
(ECCV). pp. 513–528 (2018) 4, 11

16 T. Li et al.

19. Lin, J., Gan, C., Han, S.: Tsm: Temporal shift module for efficient video under-
standing. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 7083–7093 (2019) 4, 12, 13

20. Liu, Z., Ning, J., Cao, Y., Wei, Y., Zhang, Z., Lin, S., Hu, H.: Video swin trans-
former. arXiv preprint arXiv:2106.13230 (2021) 4, 11, 12, 13

21. Liu, Z., Wang, L., Wu, W., Qian, C., Lu, T.: Tam: Temporal adaptive module for
video recognition. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 13708–13718 (2021) 4

22. Luo, C., Yuille, A.L.: Grouped spatial-temporal aggregation for efficient action
recognition. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. pp. 5512–5521 (2019) 4, 5, 13

23. Minxha, J., Mosher, C., Morrow, J.K., Mamelak, A.N., Adolphs, R., Gothard,
K.M., Rutishauser, U.: Fixations gate species-specific responses to free view-
ing of faces in the human and macaque amygdala. Cell Reports 18(4), 878–
891 (2017). https://doi.org/https://doi.org/10.1016/j.celrep.2016.12.083, https:

//www.sciencedirect.com/science/article/pii/S2211124716318058 2
24. Nolte, J., Vanderah, T., Gould, D.: Nolte’s the human brain: An introduction to

its functional anatomy (2016) 3
25. Pitcher, D., Walsh, V., Yovel, G., Duchaine, B.: Tms evidence for the involvement

of the right occipital face area in early face processing. Current Biology 17(18),
1568–1573 (2007) 2

26. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-
3d residual networks. In: proceedings of the IEEE International Conference on
Computer Vision. pp. 5533–5541 (2017) 5

27. Rotshtein, P., Henson, R.N., Treves, A., Driver, J., Dolan, R.J.: Morphing marilyn
into maggie dissociates physical and identity face representations in the brain.
Nature neuroscience 8(1), 107–113 (2005) 2

28. Shao, D., Zhao, Y., Dai, B., Lin, D.: Finegym: A hierarchical video dataset for
fine-grained action understanding. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 2616–2625 (2020) 4

29. Shu, J., Xie, Q., Yi, L., Zhao, Q., Zhou, S., Xu, Z., Meng, D.: Meta-weight-net:
Learning an explicit mapping for sample weighting (2019) 10

30. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recog-
nition in videos. In: Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 1. p. 568–576. NIPS’14, MIT Press,
Cambridge, MA, USA (2014) 4

31. Sudhakaran, S., Escalera, S., Lanz, O.: Gate-shift networks for video action recog-
nition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 1102–1111 (2020) 4

32. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look
at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition. pp. 6450–6459 (2018) 5

33. Tsao, D.Y., Moeller, S., Freiwald, W.A.: Comparing face patch systems in
macaques and humans. Proceedings of the National Academy of Sciences 105(49),
19514–19519 (2008) 2

34. Varol, G., Laptev, I., Schmid, C.: Long-term temporal convolutions for action
recognition. IEEE transactions on pattern analysis and machine intelligence 40(6),
1510–1517 (2017) 4

35. Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., Van Gool, L.: Tem-
poral segment networks: Towards good practices for deep action recognition. In:
European conference on computer vision. pp. 20–36. Springer (2016) 4

https://doi.org/https://doi.org/10.1016/j.celrep.2016.12.083
https://www.sciencedirect.com/science/article/pii/S2211124716318058
https://www.sciencedirect.com/science/article/pii/S2211124716318058

DSTS for Fine-Grained Action Recognition 17

36. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. pp.
7794–7803 (2018) 4

37. Wang, X., Yu, F., Dou, Z.Y., Darrell, T., Gonzalez, J.E.: Skipnet: Learning dy-
namic routing in convolutional networks. In: Proceedings of the European Confer-
ence on Computer Vision (ECCV). pp. 409–424 (2018) 4

38. Wu, C.Y., Feichtenhofer, C., Fan, H., He, K., Krahenbuhl, P., Girshick, R.:
Long-term feature banks for detailed video understanding. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 284–293
(2019) 2, 4

39. Wu, Z., Li, H., Xiong, C., Jiang, Y.G., Davis, L.S.: A dynamic frame selection
framework for fast video recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2020) 4

40. Wu, Z., Nagarajan, T., Kumar, A., Rennie, S., Davis, L.S., Grauman, K., Feris,
R.: Blockdrop: Dynamic inference paths in residual networks. In: CVPR. pp. 8817–
8826 (2018) 4

41. Wu, Z., Xiong, C., Ma, C.Y., Socher, R., Davis, L.S.: Adaframe: Adaptive frame
selection for fast video recognition. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 1278–1287 (2019) 4

42. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature
learning: Speed-accuracy trade-offs in video classification. In: Proceedings of the
European conference on computer vision (ECCV). pp. 305–321 (2018) 4, 5

43. Xu, X., Ichida, J.M., Allison, J.D., Boyd, J.D., Bonds, A., Casagrande, V.A.: A
comparison of koniocellular, magnocellular and parvocellular receptive field prop-
erties in the lateral geniculate nucleus of the owl monkey (aotus trivirgatus). The
Journal of physiology 531(1), 203–218 (2001) 3

44. Yang, C., Xu, Y., Shi, J., Dai, B., Zhou, B.: Temporal pyramid network for action
recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 591–600 (2020) 4, 11, 12, 13

45. Yosinski, J., Clune, J., Nguyen, A.M., Fuchs, T.J., Lipson, H.: Understanding neu-
ral networks through deep visualization. ArXiv abs/1506.06579 (2015) 7

46. Zamora Esquivel, J., Cruz Vargas, A., Lopez Meyer, P., Tickoo, O.: Adaptive
convolutional kernels. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision Workshops. pp. 0–0 (2019) 4

47. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: European conference on computer vision. pp. 818–833. Springer (2014) 7

48. Zhang, C., Gupta, A., Zisserman, A.: Temporal query networks for fine-grained
video understanding. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 4486–4496 (2021) 2, 4, 11, 12, 13

49. Zhang, D.J., Li, K., Chen, Y., Wang, Y., Chandra, S., Qiao, Y., Liu, L., Shou,
M.Z.: Morphmlp: A self-attention free, mlp-like backbone for image and video.
arXiv preprint arXiv:2111.12527 (2021) 11

50. Zhang, J., Wang, Y., Zhou, Z., Luan, T., Wang, Z., Qiao, Y.: Learning dynamical
human-joint affinity for 3d pose estimation in videos. IEEE Transactions on Image
Processing 30, 7914–7925 (2021) 4

51. Zhou, B., Andonian, A., Oliva, A., Torralba, A.: Temporal relational reasoning in
videos. In: Proceedings of the European Conference on Computer Vision (ECCV).
pp. 803–818 (2018) 4

52. Zhou, Y., Ni, B., Hong, R., Wang, M., Tian, Q.: Interaction part mining: A mid-
level approach for fine-grained action recognition. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 3323–3331 (2015) 2, 4

	Dynamic Spatio-Temporal Specialization Learning for Fine-Grained Action Recognition

