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Abstract. Action Quality Assessment(AQA) is important for action
understanding and resolving the task poses unique challenges due to sub-
tle visual differences. Existing state-of-the-art methods typically rely on
the holistic video representations for score regression or ranking, which
limits the generalization to capture fine-grained intra-class variation. To
overcome the above limitation, we propose a temporal parsing trans-
former to decompose the holistic feature into temporal part-level repre-
sentations. Specifically, we utilize a set of learnable queries to represent
the atomic temporal patterns for a specific action. Our decoding pro-
cess converts the frame representations to a fixed number of temporally
ordered part representations. To obtain the quality score, we adopt the
state-of-the-art contrastive regression based on the part representations.
Since existing AQA datasets do not provide temporal part-level labels
or partitions, we propose two novel loss functions on the cross attention
responses of the decoder: a ranking loss to ensure the learnable queries
to satisfy the temporal order in cross attention and a sparsity loss to
encourage the part representations to be more discriminative. Extensive
experiments show that our proposed method outperforms prior work on
three public AQA benchmarks by a considerable margin.

Keywords: action quality assessment, temporal parsing transformer,
temporal patterns, contrastive regression

1 Introduction

Action quality assessment(AQA), which aims to evaluate how well a specific
action is performed, has attracted increasing attention in research community
recently [18, 17]. In particular, assessing the action quality accurately has great
potential in a wide range of applications such as health care [34] and sports
analysis [2, 20, 19, 18].

In contrast to the conventional action recognition tasks [25, 4], AQA poses
unique challenges due to the subtle visual differences. Previous works on AQA
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Fig. 1: An action consists of multiple temporally ordered key phases.

either use ranking-based pairwise comparison between test videos[5] or estimate
the quality score with regression-based methods[19, 29]. However, these methods
typically represent a video with its holistic representation, via the global pooling
operation over the output of the backbone network(e.g., I3D[4]). Since the videos
to be evaluated usually are from the same coarse action category (e.g., diving) in
AQA, it’s crucial to capture fine-grained intra-class variation to estimate more
accurate quality scores. Thus, we propose to decompose the holistic feature into
more fine-grained temporal part-level representations for AQA.

To achieve this, a promising strategy is to represent the video by using a set
of atomic action patterns. For example, a diving action consists of several key
phases, such as approach, take off, flight, etc., as illustrated in Fig.1. The fine-
grained patterns enable the model to describe the subtle differences, which is
expected to improve the assessment of action quality effectively. Nevertheless, it
remains challenging to learn such atomic patterns as the existing AQA datasets
do not provide temporal part-level labels or partitions.

In this work, we aim to tackle the aforementioned limitations by develop-
ing a regression-based action quality assessment strategy, which enables us to
leverage the fine-grained atomic action patterns without any explicit part-level
supervision. Our key idea is to model the shared atomic temporal patterns, with
a set of learnable queries for a specific action category. Similar to the decoding
process of transformer applied in natural language modeling[24], we propose a
temporal parsing transformer to decode each video into a fixed number of part
representations. To obtain quality scores, we adopt the recent state-of-the-art
contrastive regression framework[32]. Our decoding mechanism allows the part
representations between test video and exemplar video to be implicitly aligned
via a shared learnable query. Then, we generate a relative pairwise representa-
tion per part and fuse different parts together to perform the final relative score
regression.

To learn the atomic action patterns without the part-level labels, we pro-
pose two novel loss functions on the cross attention responses of the decoder.
Specifically, to ensure the learnable queries satisfy the temporal order in cross
attention, we calculate an attention center for each query by weighted summa-
tion of the attention responses with their temporal clip orders. Then we adopt
a marginal ranking loss on the attention centers to guide the temporal order.
Moreover, we propose a sparsity loss for each query’s attention distribution to
guide the part representations to be more discriminative.

We evaluate our method, named as temporal parsing transformer(TPT), on
three public AQA benchmarks: MTL-AQA[18], AQA-7[17] and JIGSAWS[7].
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As a result, our method outperforms previous state-of-the-art methods by a
considerable margin. The visualization results show that our method is able to
extract part-level representations with interpretable semantic meanings. We also
provide abundant ablation studies for better understanding.

The main contributions of this paper are three folds:

– We propose a novel temporal parsing transformer to extract fine-grained
temporal part-level representations with interpretable semantic meanings,
which are optimized with the contrastive regression framework.

– We propose two novel loss functions on the transformer cross attentions to
learn the part representations without the part-level labels.

– We achieve the new state-of-the-art on three public AQA benchmarks, namely
MTL-AQA, AQA-7 and JIGSAWS.

2 Related Work

2.1 Action quality assessment

In the past years, the field of action quality assessment (AQA) has been re-
paid developed with a broad range of applications such as health care[34], in-
structional video analysis[5, 6], sports video analysis[17, 18], and many others[8,
9]. Existing AQA methods can be categorized into two types: regression based
methods and ranking based methods.

Regression based methods Mainstream AQA methods formulate the AQA
task as a regression task based on reliable score labels, such as scores given by
expert judges of sports events. For example, Pirsiavash et al. [20] took the first
steps towards applying the learning method to the AQA task and trained a linear
SVR model to regress the scores of videos based on handcrafted features. Gordan
et al. [8] proposed in their pioneer work the use of skeleton trajectories to solve
the problem of quality assessment of gymnastic vaulting movements. Parmar et
al. [19] showed that spatiotemporal features from C3D [23] can better encode the
temporal representation of videos and significantly improve AQA performance.
They also propose a large-scale AQA dataset and explore all-action models to
better evaluate the effectiveness of models proposed by the AQA community.
Xu et al. [29] proposed learning multi-scale video features by stacked LSTMs
followed [19]. Pan et al. [16] proposed using spatial and temporal graphs to model
the interactions between joints. Furthermore, they also propose to use I3D [4]
as a stronger backbone network to extract spatiotemporal features. Parmar et
al. [18] introduced the idea of multi-task learning to improve the model capacity
of AQA, and collected AQA datasets with more annotations to support multi-
task learning. To diminish the subjectiveness of the action score from human
judges, Tang et al. [22] proposed an uncertainty-aware score distribution learning
(USDL) framework Recently. However, the video’s final score can only provide
weak supervision concerning action quality. Because two videos with different
low-quality parts are likely to share similar final scores, which means the score
couldn’t provide discriminative information.
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Ranking based methods Another branch formulates AQA task as a ranking
problem. Doughty et al. [5] proposed a novel loss function that learns discrimi-
native features when a pair of videos exhibit variance in skill and learns shared
features when a pair of videos show comparable skill levels. Doughty et al. [6]
used a novel rank-aware loss function to attend to skill-relevant parts of a given
video. However, they mainly focus on longer, more ambiguous tasks and only
predict overall rankings, limiting AQA to applications requiring some quantita-
tive comparisons. Recently, Yu et al. [32] proposed the Contrastive Regression
(CoRe) framework to learn the relative scores by pair-wise comparison, high-
lighting the differences between videos and guiding the models to learn the key
hints for assessment.

2.2 Temporal action parsing

Fine-grained action parsing is also studied in the field of action segmentation
or temporal parsing [11, 10, 1, 12, 13, 31]. For example, Zhang et al.[33] proposed
Temporal Query Network adopted query-response functionality that allows the
query to attend to relevant segments. Dian et al.[21] proposed a temporal parsing
method called TransParser that is capable of mining sub-actions from training
data without knowing their labels. However, different from the above fields,
part-level labels are not available in AQA task. Furthermore, most of the above
methods focus more on frame-level feature enhancement, whereas our proposed
method extracts part representations with interpretable semantic meanings.

3 Method

In this section, we introduce our temporal parsing transformer with the con-
trastive regression framework in detail.

3.1 Overview

The input of our network is an action video. We adopt the Inflated 3D Con-
vNets(I3D)[4] as our backbone, which first applies a sliding window to split the
video into T overlapping clips, where each clip contains M consecutive frames.
Then, each clip goes through the I3D network, resulting in time series clip level
representations V = {vt ∈ RD}Tt=1, where D is feature dimension and T is the
total number of clips. In our work, we do not explore spatial patterns, hence each
clip representation vt is obtained by average pooling across spatial dimensions.
The goal of AQA is to estimate a quality score s based on the resulting clips
representation V . In contrastive regression framework, instead of designing a
network to directly estimate raw score s, it estimates a relative score between
the test video and an exemplar video V 0 with known quality score s0, which is
usually sampled from training set. Then, contrastive regression aims to design a
network F that estimates the relative score ∆s:

∆s = F(V ,V 0), (1)
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Fig. 2: Overview of our framework. Our temporal parsing transformer converts the
clip-level representations into temporal part-level representations. Then the part-aware
contrastive regressor first computes part-wise relative representations and then fuses
them to estimate the relative score. We adopt the group-aware regression strategy, fol-
lowing[32]. During training, we adopt the ranking loss and sparsity loss on the decoder
cross attention maps to guide the part representation learning.

then final score can be obtained by

s = s0 +∆s. (2)

In our framework, we first adopt a temporal parsing transformer G to convert the
clip level representations V into temporal part level representations, denoted by
P = {pk ∈ Rd}Kk=1, where d is the part feature dimension and K is the number
of queries, i.e. temporal atomic patterns. Then for test video and exemplar video,
we can have two set of aligned part representations P and P 0 = {p0

k ∈ Rd}Kk=1.
Our new formulation can be expressed as:

∆s = R(P ,P 0). (3)

where R is the relative score regressor, and

P = G(V ),P 0 = G(V 0). (4)

An overview of our framework is illustrated in Fig.2. Below we describe the
detailed structure of temporal parsing transformer G and part-aware contrastive
regressor R.

3.2 Temporal parsing transformer

Our temporal parsing transformer takes the clip representations as memory and
exploits a set of learnable queries to decode part representations. Different from
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prevalent DETR architecture[3], our transformer only consists of a decoder mod-
ule. We found that the encoder module does not provide improvements in our
framework; it even hurts the performance. We guess it might because that clip-
level self-attention smooths the temporal representations, and our learning strat-
egy cannot decode part presentations in this way without part labels.

We perform slight modifications to the standard DETR decoder. That is, the
cross attention block in our decoder has a learnable parameter, temperature, to
control the amplification of the inner product. Formally, in the i-th decoder layer,

the decoder part feature {p(i)k ∈ Rd} and learnable atomic patterns(i.e. query
set) {qk ∈ Rd} are first summed as a query and then perform cross attention on
the embedded clip representation {vt ∈ Rd}:

αk,t =
exp(p

(i)
k +qk)

T ·vt/τ

T∑
j=1

exp(p
(i)
k +qk)T ·vj/τ

, (5)

where αk,t indicates the attention value for query k to clip t, τ ∈ R indicates
the learnable temperature to enhance the inner product to make the attentions
more discriminative. Unlike DETR[3], in our decoder, we do not utilize position
embedding of clip id to the memory {vt}. We expect our query to represent
atomic patterns, instead of spatial anchors, as in the detection task[28, 14]. We
found that adding position encoding significantly drops the performance and
makes our learning strategy fail, which will be shown in the experiment section.

In our experiments, we only utilize one-head attention in our cross attention
blocks. The attention values are normalized across different clips, since our goal is
to aggregate clip representations into our part representation. Then the updated

part representation p
(i)′

k has the following form:

p
(i)′

k =

T∑
j=1

αk,jvj + p
(i)
k . (6)

We then perform standard FFN and multi-head self-attention on decoder part
representations. Similar to DETR[3], our decoder also has a multi-layer struc-
ture.

3.3 Part-aware contrastive regression

Our temporal parsing transformer converts the clip representations {vt} into
part representations {pk}. Given a test video and exemplar video, we can obtain
two part representation sets {pk} and {p0

k}. One possible way to estimate the
relative quality score is to fuse each video’s part representations and estimate
the relative score. However, since our temporal parsing transformer allows the
extracted part representations to be semantically aligned with the query set, we
can compute the relative pairwise representation per part and then fuse them
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together. Formally, we utilize a multi-layer perceptron(MLP) fr to generate the
relative pairwise representation rk ∈ Rd for k-th part:

rk = fr(Concat([pk;p
0
k])). (7)

The MLP fr is shared across different parts. To balance the score distributions
across the whole score range, we adopt the group-aware regression strategy to
perform relative score estimation[32]. Specifically, it first calculates B relative
score intervals based on all possible pairs in training set, where each interval has
equal number of pair-samples. Then it generates a one-hot classification label
{ln}, where ln indicates whether the ground truth score ∆s lies in n-th interval,

and a regression target γn =
∆s−xn

left

xn
right−xn

left
, where xn

left, x
n
right denote the left and

right boundary of n-th interval. Readers can refer to [32] for more details.
We adopt average pooling1 on the relative part representations {rk} and

then utilize two two-layer MLPs to estimate the classification label {ln} and
regression target {γn}. Different from [32], we do not utilize tree structure. Since
we have obtained fine-grained part-level representations and hence the regression
becomes simpler, we found that two-layer MLP works fine.

3.4 Optimization

Since we do not have any part-level labels at hand, it’s crucial to design proper
loss functions to guide the part representation learning. We have assumed that
each coarse action has a set of temporally ordered atomic patterns, which are
encoded in our transformer queries. To ensure that our query extracts different
part representations, we constrain the attention responses in cross attention
blocks for different queries. Specifically, in each cross attention process, we have
calculated the normalized attention responses {αk,t} by Eq.5, then we compute
an attention center ᾱk for k-th query:

ᾱk =

T∑
t=1

t · αk,t, (8)

where T is the number of clips and
T∑

t=1
αk,t = 1. Then we adopt two loss functions

on the attention centers: ranking loss and sparsity loss.

Ranking loss To encourage that each query attends to different temporal re-
gions, we adopt a ranking loss on the attention centers. We wish our part repre-
sentations have a consistent temporal order across different videos. To this end,

1 We note that it might be better to weight each part. However, part weighting does
not provide improvements during our practice. We guess that it may be during the
self-attention process in the decoder, the relations between parts have already been
taken into account.
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we define an order on the query index and apply ranking losses to the corre-
sponding attention centers. We exploit the margin ranking loss, which results in
the following form:

Lrank =

K−1∑
k=1

max(0, ᾱk− ᾱk+1+m)+max(0, 1− ᾱ1+m)+max(0, ᾱK −T +m),

(9)
where m is the hyper-parameter margin controlling the penalty, the first term
guides the attention centers of part k and k+1 to keep order: ᾱk < ᾱk+1. From
Eq. 8, we have the range of attention centers: 1 ≤ ᾱk ≤ T . To constrain the first
and last part where k = 1 and k = K, we assume there is two virtual centers at
boundaries: ᾱ0 = 1 and ᾱK+1 = T . The last two terms in Eq. 9 constrain the
first and last attention centers not collapsed to boundaries.

Sparsity loss To encourage the part representations to be more discriminative,
we further propose a sparsity loss on the attention responses. Specifically, for each
query, we encourage the attention responses to focus on those clips around the
center µk, resulting in the following form:

Lsparsity =

K∑
k=1

T∑
t=1

|t− ᾱk| · αk,t (10)

During training, our ranking loss and sparsity loss are applied to the cross at-
tention block in each decoder layer.

Overall training loss In addition to the above auxiliary losses for cross at-
tention, our contrastive regressor R generates two predictions for the group
classification label {ln} and regression target {γn}, we follow [32] to utilize the
BCE loss on each group and square error on the ground truth regression interval:

Lcls = −
N∑

n=1

ln log(l̃n) + (1− ln) log(1− l̃n) (11)

Lreg =

N∑
n=1

1(ln = 1)(γn − γ̃n)
2 (12)

where Lreg only supervises on the ground truth interval, l̃n and γ̃n are predicted
classification probability and regression value. The overall training loss is given
by:

Lall = λclsLcls + λregLreg + λrank

L∑
i=1

Li
rank + λsparsity

L∑
i=1

Li
sparsity, (13)

where i indicates layer id and L is the number of decoder layers, λcls, λreg, λrank,
λsparsity are hyper-parameter loss weights.
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4 Experiment

4.1 Experimental Settup

Datasets We perform experiments on three public benchmarks: MTL-AQA[18],
AQA-7[17], and JIGSAWS[7]. See Supplement for more details on datasets.

Evaluation Metrics Following prior work[32], we utilize two metrics in our
experiments, the Spearman’s rank correlation and relative L2 distance(R-ℓ2).
Spearman’s rank correlation was adopted as our main evaluation metric to
measure the difference between true and predicted scores. The Spearman’s rank
correlation is defined as follows:

ρ =

∑
i(pi − p̄)(qi − q̄)√∑

i(pi − p̄)2
∑

i(qi − q̄)2
(14)

It focuses on the ranking of test samples. In contrast, relative L2 distance
measures the numerical precision of each sample compared with ground truth.
Formally, it’s defined as:

R-ℓ2 =
1

N

N∑
n=1

(
|sn − ŝn|

smax − smin
)2 (15)

Implementation Details We adopt the I3D backbone pretrained on Kinet-
ics[4] as our local spatial-temporal feature extractor. The Adam optimizer is
applied with a learning rate 1× 10−4 for the backbone and transformer module.
The learning rate for the regression head is set to 1× 10−3. The feature dimen-
sion is set to 512 for the transformer block. We select 10 exemplars for each
test sample during the inference stage to align with previous work[32] for fair
comparisons. As for the data-preprocessing on AQA-7 and MTL-AQA datasets,
we sample 103 frames following previous works for all videos. Since our proposed
method requires more fine-grained temporal information, unlike previous work
that segmented the sample frames into 10 clips, we segment the frames into
20 overlapping clips each containing 8 continuous frames. As for the JIGSAWS
dataset, we uniformly sample 160 frames following [22] and divide them into 20
non-overlapping clips as input of the I3D backbone. We select exemplars from
the same difficulty degree on MTL-dataset during the training stage. For AQA-7
and JIGSAWS datasets, all exemplars come from the same coarse classes.

4.2 Comparison to state-of-the-art

We compare our results with state-of-the-art methods on three benchmarks in
Tab.1, Tab.2 and Tab.3. Our method outperforms priors works on all three
benchmarks under all settings.

On MTL-AQA dataset, we evaluated our experiments with two different
settings, following prior work[32]. Specifically, the MTL-AQA dataset contains



10 Y. Bai et al.

Table 1: Performance comparison on MTL-AQA dataset. ‘w/o DD’ means that training
and test processes do not utilize difficulty degree labels, ‘w/ DD’ means experiments
utilizing difficulty degree labels.

Method (w/o DD) Sp. Corr. R-ℓ2(×100)

Pose+DCT[20] 0.2682 -
C3D-SVR[19] 0.7716 -
C3D-LSTM[19] 0.8489 -
MSCADC-STL[18] 0.8472 -
C3D-AVG-STL[18] 0.8960 -
MSCADC-MTL[18] 0.8612 -
C3D-AVG-MTL[18] 0.9044 -
USDL[22] 0.9066 0.654
CoRe[32] 0.9341 0.365
TSA-Net[27] 0.9422 -
Ours 0.9451 0.3222

Method (w/ DD) Sp. Corr R-ℓ2(× 100)

USDL[22] 0.9231 0.468
MUSDL[22] 0.9273 0.451
CoRe[32] 0.9512 0.260
Ours 0.9607 0.2378

the label of difficult degree, and each video’s quality score is calculated by the
multiplication of the raw score with its difficulty. In the experiment setting ‘w/o
DD’, the training and test processes do not utilize difficulty degree labels. In
setting ‘w/ DD’, we exploit the difficulty label by comparing the test video to
the exemplar videos with the same difficulty, and we estimate the raw score,
which is multiplied by the difficulty to get the final quality. Our method outper-
forms existing works under both settings. As shown in Tab. 1, under ‘w/ DD’,
our method achieves a Sp. Corr. of 0.9607, and R-ℓ2 of 0.2378, outperforms the
tree-based CoRe[32]. Note that our model simply utilizes two shallow MLPs to
perform contrastive regression instead of the tree structure as in [32]. Our trans-
former extracts fine-grained part representations, hence the regression becomes
easier. Under ‘w/o DD’, out method achieves 0.9451(Sp. Corr) and 0.3222(R-ℓ2),
outperforms the CoRe and recent TSA-Net[27]. It’s worth noting that TSA-Net
utilizes an external VOT tracker[35] to extract human locations and then en-
hance backbone features, which is orthogonal to the main issue of temporal
parsing addressed in our work. Consequently, we expect that our method can be
further improved by incorporating the attention module as in [27].

On AQA-7 dataset, our method achieves state-of-the-art on 5 categories
and comparable performance on the rest category, shown in Tab. 2. In particular,
on average, our method outperforms CoRe by 3.14 Corr.(×100) and TSA-Net by
2.39 Corr.(×100), and obtains a very small R-ℓ2 of 1.68(×100), demonstrating
the effectiveness of our temporal parsing transformer.

On the smallest JIGSAW dataset, we perform 4-fold cross validation for
each category, following prior work[32, 22]. Our method achieves an average of
0.89 Corr. and 3.668 R-ℓ2, achieves new state-of-the-art.
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Table 2: Performance comparison on AQA-7 dataset.
Sp. Corr Diving Gym Vault BigSki. BigSnow. Sync. 3m Sync. 10m Avg. Corr.

Pose+DCT[20] 0.5300 0.1000 - - - - -
ST-GCN[30] 0.3286 0.5770 0.1681 0.1234 0.6600 0.6483 0.4433
C3D-LSTM[19] 0.6047 0.5636 0.4593 0.5029 0.7912 0.6927 0.6165
C3D-SVR[19] 0.7902 0.6824 0.5209 0.4006 0.5937 0.9120 0.6937
JRG[16] 0.7630 0.7358 0.6006 0.5405 0.9013 0.9254 0.7849
USDL[22] 0.8099 0.7570 0.6538 0.7109 0.9166 0.8878 0.8102
CoRe[32] 0.8824 0.7746 0.7115 0.6624 0.9442 0.9078 0.8401
TSA-Net[27] 0.8379 0.8004 0.6657 0.6962 0.9493 0.9334 0.8476
Ours 0.8969 0.8043 0.7336 0.6965 0.9456 0.9545 0.8715

R-ℓ2(×100) Diving Gym Vault BigSki. BigSnow. Sync. 3m Sync. 10m Avg. R-ℓ2
C3D-SVR[19] 1.53 3.12 6.79 7.03 17.84 4.83 6.86
USDL[22] 0.79 2.09 4.82 4.94 0.65 2.14 2.57
CoRe[32] 0.64 1.78 3.67 3.87 0.41 2.35 2.12
Ours 0.53 1.69 2.89 3.30 0.33 1.33 1.68

Table 3: Performance comparison on JIGSAW dataset.
Sp. Corr. S NP KT Avg.

ST-GCN[30] 0.31 0.39 0.58 0.43
TSN[26] 0.34 0.23 0.72 0.46
JRG[16] 0.36 0.54 0.75 0.57
USDL[22] 0.64 0.63 0.61 0.63
MUSDL[22] 0.71 0.69 0.71 0.70
CoRe[32] 0.84 0.86 0.86 0.85
Ours 0.88 0.88 0.91 0.89

R-ℓ2 S NP KT Avg.

CoRe[32] 5.055 5.688 2.927 4.556
Ours 2.722 5.259 3.022 3.668

4.3 Ablation Study

In this subsection, we perform ablation studies to evaluate the effectiveness of
our proposed model components and designs. All of our ablation studies are
performed on MTL-AQA dataset under ‘w/ DD’ setting. We build a baseline
network that directly pool the clip features without transformer, and utilize the
resulting holistic representation to perform contrastive regression.

Different model components In this work, we propose a novel temporal
parsing transformer(TPT), and exploit the ranking loss(Lrank) and sparsity
loss(Lsparsity) on cross attention responses to guide the part representation
learning. We first perform experiments to show the effectiveness of each de-
sign, the results are shown in Tab.4. We can observe that with only TPT, the
performance only improves marginally from 0.9498 Corr. to 0.9522 Corr.. With
the ranking loss, the performance is significantly improved, demonstrating the
importance of temporally ordered supervision strategy. The sparsity loss fur-
ther improves the performance, showing that the discrimination of parts is also
important.
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Table 4: Ablation study of different components on MTL-AQA dataset.
Method TPT Lrank Lsparsity Sp. Corr. R-ℓ2
Baseline × × × 0.9498 0.2893

✓ × × 0.9522 0.2742
✓ ✓ × 0.9583 0.2444

Ours ✓ ✓ ✓ 0.9607 0.2378

Table 5: More ablation studies on MTL-AQA dataset.

(a) Different part generation strategies.

Method Sp. Corr. R-ℓ2
Baseline 0.9498 0.2893
Adaptive pooling 0.9509 0.2757
Temporal conv 0.9526 0.2758
TPT(ours) 0.9607 0.2378

(b) Effect of order guided supervision.

Method Sp. Corr. R-ℓ2
Baseline 0.9498 0.2893

Diversity loss 0.9538 0.2655
Ranking loss(ours) 0.9607 0.2378

(c) Effect of positional encoding.

Pos. Encode Memory(clip) Query(part) Sp. Corr. R-ℓ2
✓ ✓ 0.9526 0.2741
✓ × 0.9532 0.2651

Proposed × × 0.9607 0.2378

(d) Different relative representation generation.

Method Sp. Corr. R-ℓ2
Baseline 0.9498 0.2893

Part-enhanced holistic 0.9578 0.2391
Part-wise relative + AvgPool(ours) 0.9607 0.2378

Different relative representation generation Since we have obtained part
representations from TPT for each video, we may have two options to generate
relative representation for contrastive regression. For the first option, we can first
fuse the part representations with a pooling operation for each video, then each
video takes the part-enhanced holistic representation to estimate the relative
score. For the second option, which is our proposed strategy, we first compute
a part-wise relative representation and then apply the AvgPool operation over
the parts. We compare the results of above options in Tab.5d. We can see that
the part-wise strategy outperforms part-enhanced strategy. It’s worth noting
that the part-enhanced approach also outperforms our baseline network, which
implies that each part indeed encodes fine-grained temporal patterns.

Different part generation strategies Our method utilizes the temporal pars-
ing transformer to extract part representations. In this ablation study, we com-
pare our method with the other two baseline part generation strategy, shown in
Tab. 5a. The first strategy utilizes the adaptive pooling operation cross temporal
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frames to down-sample the origin T clip representation into K part representa-
tions. The second strategy replaces the above adaptive pooling with a temporal
convolution with stride ⌊T/K⌋, resulting in a representation with K size. We
found that both strategies introduce minor improvements as they can not cap-
ture fine-grained temporal patterns.

Effect of position encoding Different from conventional transformer[3, 24],
our transformer decoding process does not rely on the temporal position encod-
ing. We compare the results of different position encoding strategies on the mem-
ory(clip) and query(part) in Tab.5c. To embed the position encoding on queries,
we add the cosine series embedding of ⌊T/K⌋× i to i-th learnable query, making
the queries have positional guidance uniformly distributed across temporal clips.
We keep the ranking loss and sparsity for fair comparisons. From Tab.5c, we can
observe that adding position encoding hurts the learning of temporal patterns.

Effect of order guided training strategy Our ranking loss on the attention
centers consistently encourages the temporal order of atomic patterns. To verify
the importance of such order guided supervision, we replace the ranking loss
to a diversity loss following the Associative Embedding[15] to push attention

centers: Ldiv =
K∑
i=1

K∑
j=i+1

exp−
1

2σ2 (ᾱi−ᾱj)
2

. Compared with Lrank, Ldiv does not

encourage the order of queries, but keeps diversity of part representations. As
shown in Tab. 5b, the performance significantly drops from 0.9607 Corr. to 0.9538
Corr., demonstrating the effectiveness of our order guided training strategy.

4.4 Visualization results

We provide some visualization results in Fig.3 and Fig.4. Samples are from MTL-
AQA dataset trained under ‘w/ DD’ setting and AQA-7 dataset. In Fig.3, we
visualize the clip frames with the highest attention responses in cross attention
maps of the last decoder layer. Since each clip consists of multiple frames, we
select the middle frame of a clip as representative. We can observe that our
transformer can capture semantic temporal patterns with learned queries. In
Fig.4, we visualize the cross attention maps. We can observe that the attention
responses have a consistent temporal order due to our designed ranking loss, and
they are also sparse due to our sparsity loss.

5 Conclusion

In this paper, we propose a novel temporal parsing transformer for action qual-
ity assessment. We utilize a set of learnable queries to represent the atomic
temporal patterns, and exploit the transformer decoder to convert clip-level rep-
resentations to part-level representations. To perform quality score regression,
we exploit the contrastive regression framework that first computes the relative
pairwise representation per part and then fuses them to estimate the relative
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01_01

Query 0 Query 1 Query 2 Query 3 Query 4

01_26

02_41

02_108

Fig. 3: Visualization of the frames with the highest attention responses in decoder cross
attention maps on MTL-AQA and AQA-7 datasets. Each row represents a test video
from different representative categories (diving from MTL-AQA, gymnastic vault from
AQA-7), whose ID is shown in the left first frame. Different columns correspond to
temporally ordered queries. The above results show that our transformer is able to
capture semantic temporal patterns with learned queries.

Video 1_79 Video 6_10 Video 2_47

Q
ue

ry
 ID

Clip ID Clip ID Clip ID

Fig. 4: Visualization of cross attention maps on three video samples from MTL-AQA
dataset, where video IDs are shown on the top. In each subfigure, each row indicates one
query, and each column indicates one clip. We can observe that the bright grids(with
high attention responses) have a consistent temporal order due to ranking loss, and
the attention maps are sparse due to our sparsity loss.

score. To learn the atomic patterns without part-level labels, we propose two
novel loss functions on cross attention responses to guide the queries to attend to
temporally ordered clips. As a result, our method is able to outperform existing
state-of-the-art methods by a considerable margin on three public benchmarks.
The visualization results show that the learned part representations are semantic
meaningful.
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