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Abstract. Some group activities, such as team sports and choreographed
dances, involve closely coupled interaction between participants. Here we
investigate the tasks of inferring and predicting participant behavior, in
terms of motion paths and actions, under such conditions. We narrow
the problem to that of estimating how a set target participants react to
the behavior of other observed participants. Our key idea is to model
the spatio-temporal relations among participants in a manner that is ro-
bust to error accumulation during frame-wise inference and prediction.
We propose a novel Entry-Flipped Transformer (EF-Transformer), which
models the relations of participants by attention mechanisms on both
spatial and temporal domains. Unlike typical transformers, we tackle
the problem of error accumulation by flipping the order of query, key,
and value entries, to increase the importance and fidelity of observed
features in the current frame. Comparative experiments show that our
EF-Transformer achieves the best performance on a newly-collected ten-
nis doubles dataset, a Ceilidh dance dataset, and two pedestrian datasets.
Furthermore, it is also demonstrated that our EF-Transformer is better
at limiting accumulated errors and recovering from wrong estimations.

Keywords: Entry-Flipping, Transformer, Behavior Prediction

1 Introduction

The development of computer vision with machine learning has led to extensive
progress in understanding human behavior, such as human action recognition
and temporal action detection. Although state-of-the-art algorithms have shown
promise, a majority of methods have been focused only on individuals without
explicitly handling interaction between people. However, human behavior can
span a wide range of interaction coupling, from the independence of strangers
passing each other, to highly coordinated activities such as in group sports and
choreographed dances.

The behavior of a person can be treated as a combination of self intention and
social interaction, where the latter is more crucial in group activities. Current
group-related computer vision works do not focus much on scenarios with heavy
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Fig. 1. This paper focuses on participants behavior prediction and inference, where the
behavior of target participant from a group activity is estimated with observation of
other participants. Entry-Flipping (EF) mechanism is proposed for attention function
to obtain accurate prediction and inference by flipping the query, key, and value entries.

social interaction among participants. For example, in pedestrian trajectory pre-
diction [2, 41], the behavior of a pedestrian is based more on self intention than
social interaction, with the latter cursorily for avoiding collisions.

To further explore the model of social interactions in group activities, we
consider the tasks of inferring and predicting the behavior of some participants as
they react to other participants. In these tasks, we hypothesize that the behavior
of participants of a group activity are less dependent on self intentions, and
instead dominated by how other participants behave. To formalize the problem,
we consider a group as split into two sets of observed and target participants. For
target participants, we assume that no data is provided beyond some initial states
— the objective is thus to infer their behavior based only on the continuing data
received from observed participants (see fig. 1). We believe that this modeling
of reactive human behavior in closely coupled activities such as team sports,
will eventually lead to enabling more realistic agent behavior models, e.g. for
simulation in games or sports training.

The task of inferring or predicting participant behavior is a frame-wise se-
quence estimation problem. There are many existing models focused on sequence
estimation, such as Recurrent Neural Networks (RNN) based methods [26, 33,
22] and attention-based methods [27, 36]. However, these methods face the prob-
lem of error accumulation, as the recurrence involves using the output estimation
from the previous step as the input in the next step. While this leads to tempo-
rally smooth predictions, small errors at each step accumulate over time, leading
to large final errors. Taking a typical transformer [27] as an example, the cross-
attention in the decoder auto-regressively uses the previous estimate as query
input. As the query is the base of an attention function, errors in subsequent
queries will often grow, even if the key and value entries are accurate. This may
not be a concern for e.g. open-ended text generation, but becomes an issue for
our tasks that prioritize accurate current estimates over temporal consistency.

In this paper, we propose the Entry-Flipped Transformer (EF-Transformer),
a novel framework for the inference and prediction of participant behavior. Two
key properties needed are: i) good relation modeling, ii) limiting the error accu-
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mulation. To model spatio-temporal relations among all participants in different
frames, we adopt a transformer-based structure with multiple layers of encoders
and decoders. In every encoder, separate attentions are used for the spatial do-
main, i.e. involving different participants, and the temporal domain, i.e. across
different frames. Each decoder contains spatio-temporal self-attention and also
cross-attention to relate features of observed and target participants. To limit
accumulated errors during frame-wise inference and prediction, an entry-flipped
design is introduced to the cross-attention in decoders, to focus more on cor-
rectness of output than smoothness. In our method, the query, key, and value
entries of decoders are flipped w.r.t. the typical order. As accurate information
of observed participants is sent to query entry of the attention function at each
step, error accumulation can be effectively suppressed.

The main contributions of this paper are as follows:

– We articulate the key considerations needed for inferring and predicting par-
ticipant behavior in group activities that involve highly coupled interactions.

– A novel EF-Transformer framework is proposed for this task, where query,
key, value entries are flipped in cross-attention of decoders.

– Our method achieved SOTA performance on a tennis doubles dataset and
a Ceilidh dance dataset that involve highly coupled interactions, and also
outperformed other methods on looser coupled pedestrian datasets.

– We show our method is more robust at limiting accumulated errors and
recovering from spike errors.

2 Related Work

Relation Modeling. Participant behavior prediction involve several modules,
with a core of spatio-temporal relation modeling. Probabilistic graphical models
have been used to model relations, e.g. Dynamic Bayesian Networks (DBN) [40],
Conditional Random Fields (CRF) [4], but these models heavily relied on feature
engineering. With deep learning, models can directly learn the relations and find
good features simultaneously. Convolutional Neural Networks (CNN) are widely
employed to extract features from images and videos, while deeper layers of a
CNN can be viewed as relation modeling since they summarize features from a
larger image region [19, 24, 9, 5]. Graph Convolution Networks (GCN) [35, 39] are
used to learn the relation among features without a fixed grid format. However,
convolutions usually have limited receptive fields, and are enlarged only through
many layers. RNNs, such as LSTM, have been used to model temporal relation
in sequences [32, 3]. Different from CNNs processing all entries in one go, RNNs
are applied iteratively over time. Attention mechanisms were popularized by the
Transformer [27] and became adopted for both spatial and temporal relation
modeling [43, 8, 30]. Attention facilitates summarization for different types of in-
put, leading to better generalization, which can be built upon backbone networks
[14, 16, 21], or in feature learning [11]. However, the computational cost of atten-
tion is large, thus many methods [42, 28, 37] are hybrids involving a combination
of CNN, RNN, and attention to balance efficiency and effectiveness.
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Group Relevant Tasks. Group activities typically involve significant behavo-
rial relations among group members. Group activity recognition aims to estimate
video-level activity labels. In [6, 18, 31, 17] RNN was used to model temporal
relation of each person and pooled all persons together for recognition. Cross
inference block has been proposed in HiGCIN [34] to capture co-occurrence spa-
tiotemporal dependencies. In the actor transformer [13], the transformer encodes
all actors after actor-level features are extracted. These frameworks are impres-
sive but unsuitable for our proposed tasks, as they are not designed for frame-
level estimation. Another related task is pedestrian trajectory prediction [20, 23,
29, 33]. The goal is to predict moving trajectories of all pedestrians in future
frames with observation of a few past frames, where interaction among pedestri-
ans is the important cue. RNN [2, 7], graph-based technique [36], and attention
mechanism [12, 25] have been employed for this task. In [41], LSTMs were used
for single pedestrian modeling and an attention-based state refinement module
designed to capture the spatial relations among different pedestrians. Graph-
based attention has been proposed for spatial relation modeling [36], where the
graph is built based on spatial distance among pedestrians. The difference be-
tween this task and ours is that the former aims to predict the future based on
past observation for all pedestrians, while we focus more on models that can
continually predict about how target participants will react to behavior of other
observed participants. This is particularly important in activities that have very
strongly coupled interactions. Nonetheless, existing methods can be applied to
our task with minor modification, as described later.

3 Method

3.1 Problem Definition

Participants behavior inference and prediction are to estimate the behavior of
a number of target participants in a group, based on information of other ob-
served participants in that group. Supposed there are N participants in the
group and they are divided into two sets, with Nobs observed participants and
Ntgt target participants, where N=Nobs+Ntgt. Given a trimmed video clip with
T frames, let x={xi,t}i=1:Nobs,t=1:T denote the behavior of observed partici-
pants, where the behavior comprise positions and action labels. Correspondingly,
y={yi,t}i=1:Ntgt,t=1:T denote the behavior of target participants.

The task is to infer and predict {yi,t}i=1:Ntgt
, starting from known initial

states of the target participants, {yi,1}i=1:Ntgt
. The estimation proceeds sequen-

tially in time, where the observable input at time t consists of {xi,τ}i=1:Nobs,τ=1:t+K ,
where K is the number of frames into the future beyond t. Here, K can be in-
terpreted as the level of (perfect) human foresight of the target participants in
predicting how other participants may behave. As an ML problem, K=0 corre-
sponds to participants behavior prediction, while it becomes inference for K≥1.
The inference can be performed in an online manner if K=1, otherwise it has to
be offline or with a delay.
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3.2 Typical Transformer

A typical Transformer consists of multiple layers of encoder and decoder. Both
encoder and decoder involve three modules: attention function, feed forward
network (FFN), and normalization, where attention function is

Xatt = fo

S
(
fq (Xq) fk (Xk)

T
)

√
d

fv (Xv)

+Xq. (1)

In (1), Xq, Xk, and Xv denote the input feature map of query, key, and value
correspondingly, and Xatt is the output attended feature map. f (·) is the fully-
connected (FC) layer, S (·) is the softmax function on each row of the input
matrix, and d is the dimension of Xq and Xk. Noted that multi-head attention
scheme in [27] is also employed in all attention modules of our framework, which
is ignored in (1) for simplification.

A typical transformer [27] can fit the proposed task, since the feature of ob-
served and target participants can be treated as two different sequences. Com-
pared with machine translation, the observed participants sequence plays the
role of source language sentence and the target participants sequence plays the
role of target language sentence. However, a typical transformer has a drawback
that leads to error accumulation in the task of participant behavior inference and
prediction. The attention function (1) takes some other feature (key and value)
into consideration when maps the input (query) to the output. From another
view, the attention function can be seen as a summarization of the three entries.
Different from convolutions or MLP, the three entries play different roles in the
attention function. Specifically, the query is the base in the attention function
while key and value are the references. In the inference stage, the query of de-
coder comes from the previous frame estimation, which is not accurate. With
a noisy or wrong query entry, it is difficult to recover the feature and provide
a relative correct estimation in the next frame. Therefore, the error will accu-
mulate over time, which may not be as relevant in open-ended tasks, e.g. text
generation.

3.3 Entry-Flipped Transformer

To solve the error accumulation problem, an EF-Transformer is proposed. In
our EF-Transformer, encoders apply spatio-temporal attention modules to en-
code the information from multiple participants in the whole clip. Different from
typical transformers, the decoder in EF-Transformer takes the output of the
encoder as the query entry. Since this does not depend as much on predic-
tive accuracies in previous frames, it reduces the accumulation of errors. With
the Spatio-Temporal Encoder (ST-Encoder) and Entry-Flipped Decoder (EF-
Decoder), the proposed EF-Transformer is designed to predict the behavior of
target participants frame-by-frame more from observations rather than earlier
predictions.
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Fig. 2. The framework of encoder, decoder, and prediction process in the proposed
EF-Transformer. For participants inference, Xenc

t is sent to decoder to estimate Ŷt.

Spatio-Temporal Encoder An ST-Encoder employs two self-attention func-
tions and an FFN to map the features of observed participants x to encoded
features xenc, as shown in Fig. 2(a). Different from word sequences, there are
both spatial and temporal domains in each video clip. As the attention function
has a quadratic time complexity of input size [27], the time complexity of an
attention function over the combined spatio-temporal domain is O

(
N2T 2

)
. To

reduce this, the attention over the two domains are handled separately. Spatial
self-attention captures the relation among all participants in one frame, where
every frame is sent to spatial self-attention independently. Subsequently, tempo-
ral self-attention captures the relation among all time frames for each participant
to get the attended feature xatt, so that different participants across different
time frames are not directly attended. By dividing the self-attention of observed
participants into two domains, the time complexity is reduced to O(NT (N+T )).
Masked attention [27] is applied to avoid attending the feature beyond K frames.
Following [27], a simple FFN is connected to the output of self-attention to ob-
tain xenc from xatt.

Entry-Flipped Decoder In the decoding stage, an EF-Decoder module is
introduced. This consists of a self-attention function, a cross-attention function,
and an FFN. The self-attention in EF-Decoder is also divided into spatial and
temporal domains, which has the same structure as ST-Encoder. It provides the
self-attended feature of target participants yatt. Unlike in a typical transformer,
cross-attention in the proposed EF-Decoder uses as query the encoded features
of observed participants, while key and value entries are self-attended features of
target participants, including both those initially observed and later predicted.
This is shown in Fig. 2(b). Specifically, when predicting frame τ , {xenc

i,τ−1}i=1:Nobs

is the query entry and {yatti,t }i=1:Ntgt,t=1:τ−1 form the key and value entries. The
key idea is that the query only contains observed participants in the current
frame, which becomes the base for next frame inference or prediction. Keys and
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values only contain target participants in past frames, forming the reference
bases for next frame inference or prediction. The decoded feature ydec comes
from an FFN stack on the cross-attention function, which is the same as the
ST-Encoder.

Justification of Entry Flipping. Why is this difference between our method
and a typical transformer important? For NLP translation, the most crucial
word usually is the last translated word. Hence, a typical transformer uses the
last translated word in the target language as the query entry of cross-attention
in the decoder. However, in scenarios where the behavior of participants are
highly coupled and reactive, such as in game sports, the most important clue for
determining the behavior of a target participant in next frame would not be the
past frames of the participant, but rather the status of other observed participants
in the current frame. For example, the ideal movement of a tennis player highly
depends on the evolving positions of her teammate and opponents, whereas
rapid acceleration and direction changes mean that the historical positions of
this player is not that critical as a predictor. Therefore entry-flipping is more
appropriate for the proposed group behavior inference and prediction tasks.

Prediction Framework The whole prediction (Fig. 2(c)) network includes
several layers: i) feature embedding layer, ii) ST-Encoder layers, iii) EF-Decoder
layers, and iv) prediction layer.

Feature Embedding. Two FC layers are separately applied on the two types
of input, i.e. 2D coordinates and action labels of participants, to map to higher
dimensional features. We first expand the 2D coordinates (ui,t, vi,t), to a nor-
malized 7D geometric feature xg

i,t by

xg
i,t =

[
uvi,t, uv

∆
i,t, uv

R
i,t, t/T

]T
, (2)

where

uvi,t =
[ui,t

w
,
vi,t
h

]
,

uv∆i,t =

[
ui,t − ui,t−1

w
,
vi,t − vi,t−1

h

]
,

uvRi,t =

[
ui,t − ui,1

w
,
vi,t − vi,1

h

] (3)

for a video frame of width w and height h, for which xg
i,t contain absolute coordi-

nates, relative coordinates, and temporal positions, all of which are normalized.
xg
i,t is sent to a FC layer fg to obtain higher dimensional geometric features.

Action labels are first converted to one-hot xs
i,t, followed by another FC layer

fs. Both types of features are concatenated before positional encoding xpe
i,t [27]

is added. Thus, the feature of a participant is

xi,t =
[
fg(x

g
i,t), fs(x

s
i,t)

]T
+ xpe

i,t. (4)
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Encoders and Decoders. L layers of ST-Encoder and EF-Decoder are stacked.
The encoded feature of observed participants from output of last layer ST-
Encoder is used as the query entry of all layers of EF-Decoder. The last EF-
Decoder layer output is the feature that ready for target participants inference
and prediction.
Prediction. A prediction layer provides a mapping of RNobs×D 7→ RNtgt×Dout ,
where D is the feature dimension of one participant in one frame. The features
of Nobs observed participants are flattened before inference or prediction. Dout is
dimension of output, which is 2 for trajectory estimation and number of action
categories for action classification. The prediction layer consists of three FC
layers, where every layer is followed by a nonlinear layer (LeakyReLU in our
experiment) except the last. More implementation details can be found in the
supplementary.
Loss function. This is a simple L2 loss applied to both trajectory and action
estimation:

L =

Ntgt∑
i=1

T∑
t=2

∥∥∥xg*
i,t − x̂g*

i,t

∥∥∥
2
+ λ

∥∥xs
i,t − x̂s

i,t

∥∥
2
, (5)

where xg*
i,t excludes the temporal coordinates t/T in xg

i,t of (2). In all our exper-
iments, λ=0.1.

4 Experiments

4.1 Datasets and Metrics

We selected three datasets with closely coupled behavior in experiments.
Tennis Dataset A new tennis doubles dataset was collected to evaluate our
method. There are 12 videos of whole double games with resolution of 1280×720.
4905 10-frame clips were collected in total, which are downsampled to 2.5 fps and
stabilized to remove camera motion. Individual-level bounding boxes and action
labels were annotated, with the bottom-center point of each box representing
the spatial location of the player. Coarse spatial positions of the ball were also
estimated. As it is difficult to determine due to extreme motion blur when the
ball was traveling fast, the ball position was only coarsely estimated by spatio-
temporal linear interpolation between the locations of two players consecutively
hitting the ball. Detailed information of the tennis dataset can be found in the
supplemental material. In our experiments, the top-left player was selected as
the target participant during testing, while the other three players and the ball
were treated as observed entities.
Dance Dataset The dance dataset [1] contains 16 videos from overhead view of
Ceilidh dances by two choreographers, where every dance was performed by 10
dancers. Two videos for each choreographer were selected for testing and others
for training. The raw video is 5 fps and resolution is 640×480. Here 3754 10-
frame clips were collected. The action labels are defined as ‘stand’, ‘walk left’,
‘walk right’, ‘walk up’,‘walk down’, and ‘twirling’. No explicit information about
the choreographer was provided during training.
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NBA Dataset NBA dataset [38] contains players and ball tracking data from
basketball games. During pre-processing, frame rate was down-sampled to 6.25
fps and a subset of over 4000 10-frame clips was built. As actions are not provided
in this dataset, we simply assigned ‘defensive’ and ‘offensive’ to players as action
labels. During training, one defensive player is randomly selected as the target
participant, while the first defensive player in the list is selected in testing. The
‘resolution’ (or court size) in this dataset is 100×50.
Pedestrian Datasets ETH [20] and UCY [23] datasets are conventionally used
in pedestrian trajectory prediction. Target participants were randomly selected
in training, and the one with longest trajectory was picked in testing. Four
nearest neighbors of the target pedestrian among all frames were selected as
observed participants. We follow the leave-one-out evaluation in [15].
Metrics To evaluate the accuracy of trajectory inference and prediction, two
metrics were computed following [41]: Mean Average Displacement (MAD) is
the mean distance between estimation and ground truth over all frames. Final
Average Displacement (FAD) is the distance between estimation and ground
truth of the last frame. Besides, metrics of short, middle, and long trajectory
lengths were computed separately, where the length threshold was statistically
determined over all samples to even out the number of samples across each
category. For action inference and prediction, Macro F1-scores are reported.

4.2 Baseline and Other SOTA Methods

We compare with several methods in our experiments:
CNN-based Method. This framework is based on spatial and temporal convo-
lutional layers. The encoder consists of 2 convolutional layers while the decoder
consists of 3 convolutional layers. A 5-frame sliding window is applied for input.
RNN-based Method. This framework has encoders and decoders based on
two GRU layers. At each frame, the output of the encoder is concatenated with
the historical data of target participants before sending to the decoder.
Typical Transformer. The typical transformer [27] here uses the ST-encoder
and a typical decoder structure, with an additional future mask added to the
attention function of encoding stage.
Pedestrian Trajectory Prediction Methods. [36, 41] are also compared.
Modifications are made to apply them to our tasks: i) ground truth of observed
pedestrians are provided for all frames in the testing stage, ii) if K>0, a K-frame
time shift over target participants is adopted to ensure the network has correct
information of K-frame future of observed participants.

4.3 Ablation Study

In this section, we compare several ST-Encoder structures. S+T represents the
parallel structure, where spatial and temporal self-attentions are operated on
separately, with the outputs added together. S→T and T→S are sequential
structures with different order of spatial and temporal domain. S×T represents
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Fig. 3. Visualization of trajectory prediction results of EF-Transformer and typical
transformer on tennis dataset. White rectangles and trajectories are the observed par-
ticipants. Red rectangles are target participants with red trajectories for ground truth.
Cyan trajectories are predicted by typical transformer and yellow ones are predicted
by our method. Please zoom in to see details.

Table 1. Comparisons of different ST-Encoders and prediction types on Tennis dataset.

Encoder Pred
MAD FAD

Short Mid Long Avg Short Mid Long Avg

S+T 18.70 31.27 44.51 28.93 32.89 51.56 69.15 47.74

T→S uvR 19.49 31.01 45.71 29.29 35.31 50.96 69.81 48.43

S×T 19.72 32.05 43.73 29.53 36.28 54.09 67.90 49.95

uv 40.52 50.42 62.73 48.89 36.11 49.05 64.33 46.91

S→T Σuv∆ 20.72 32.91 49.05 31.18 40.12 57.81 78.98 54.93

uvR 19.40 30.04 43.04 28.35 35.38 48.62 64.23 46.43

jointly computing attention functions over spatial and temporal domain. In ad-
dition, we evaluated the accuracy of different position estimators from among
the 3 predicted components in (3), which have overlapping redundancy. Here,
the frame-wise relative component uv∆ is cumulatively summed to get position
estimates Σuv∆, relative to target positions in the last fully-observed frame.
Results are shown in Table 1.

Of the three components, uvR appeared to be better predicted than the other
two. Prediction of absolute coordinates uv is more difficult than only predicting
the difference. However, predicting the difference of neighboring frames uv∆

suffers from error accumulation. The output of frame t have to compensate
for the error in predicting frame t−1, which can lead to unstable oscillations.
Compared with Parallel ST-Encoder, Sequential ST-Encoder achieved better
performance except on short trajectories. This is because the query of Sequential
ST-Encoder is capable of attending to all other participants in all frames, while
query of parallel encoders can only attend the same participants in different
frames, or other participants in the same frame. Based on the results above,
only predictions of uvR are reported in the following experiments.

4.4 Trajectory Inference and Prediction

Here we focus solely on trajectory estimation, so ground truth action labels were
provided for target participants. Table 2 presents the results of behavior predic-
tion and inference on the tennis and NBA datasets. For the tennis dataset, it
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Table 2. Comparisons of trajectory inference and prediction with baselines and SOTA
methods on tennis dataset and NBA dataset.

Methods
MAD FAD

Short Mid Long Avg Short Mid Long Avg
In

fe
r
e
n
c
e

T
e
n
n
is

CNN-based 22.61 41.63 64.43 38.54 42.97 73.27 102.78 67.22

RNN-based 22.62 41.27 72.88 39.78 38.07 67.86 103.47 63.01

Transformer 21.17 32.91 46.67 30.95 37.14 52.06 68.14 49.34

SR-LSTM [41] 21.22 34.46 55.60 33.19 41.49 58.50 90.08 57.60

STAR [36] 20.28 35.21 55.36 33.16 36.86 57.52 90.01 55.45

EF-Transformer 19.40 30.04 43.04 28.35 35.38 48.62 64.23 46.43

P
r
e
d
ic
t
io

n

CNN-based 22.58 41.81 71.57 39.80 38.84 70.35 105.26 64.76

RNN-based 23.84 41.99 78.97 41.57 41.34 68.29 110.63 65.58

Transformer 20.14 33.09 50.70 31.33 35.85 52.55 71.57 49.67

SR-LSTM [41] 20.43 43.86 85.88 42.37 39.11 75.36 117.43 69.25

STAR [36] 23.83 43.80 83.65 43.20 37.83 70.61 117.19 66.50

EF-Transformer 19.24 30.71 41.98 28.44 34.97 50.36 62.60 46.83

N
B
A

Transformer 1.78 4.25 10.13 3.99 2.91 7.33 18.14 6.93

SR-LSTM [41] 2.84 4.78 10.53 4.77 6.00 8.90 18.63 9.08

STAR [36] 4.51 5.96 10.04 5.92 5.81 8.81 18.07 8.86

EF-Transformer 1.65 4.18 10.05 3.89 2.69 7.23 18.00 6.75

can be observed that our EF-Transformer achieved the best performance among
compared methods, in particular significantly outperforming other methods for
long trajectories. Longer trajectories provide greater risk of larger estimation
errors, and our entry-flipping mechanism is effective for limiting error accumu-
lation. Performance of SR-LSTM [41] is affected by the limited initial ground
truth sequence of target participants to adequately bootstrap the LSTM cell
states. Furthermore, estimated coordinates of target participants are sent to the
state refinement module, so the hidden state of observed participants may be-
come affected by past estimation errors. Similarly, STAR [36] models the spatial
relations of all participants together, where the features of observed participants
will also become conflated with inferred features of target participants. Compar-
ing inference and prediction, prediction is harder for all methods as no future
information of observed participants is provided. This is especially in the ten-
nis dataset, where the behavior of target participants involve quick reactions to
observed participants, often with anticipatory foresight. Some visualizations are
shown in Fig. 3, illustrating that our method can predict better trajectories than
a typical transformer.

In the NBA dataset, EF-Transformer also outperformed other methods ex-
cept for the MAD of long trajectories, where STAR [36] surpassed ours only by
a tiny 0.01. It can be observed from Table 2 that the performance differences
among compared methods are less than for the tennis dataset. We believe the
main reason is that in the most of the cases, a defensive player only needs to
follow the corresponding offensive player, which is a simpler reaction than the
tennis scenario and usually results in a small displacement during prediction for
all methods.
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Table 3. Comparisons of trajectory prediction with 1 and 2 target participants with
baselines and SOTA methods on dance dataset.

Methods
MAD FAD

Short Mid Long Avg Short Mid Long Avg
N

t
g
t
=
1

CNN-based 6.91 12.19 14.58 11.13 8.64 14.49 16.86 13.22

RNN-based 8.60 15.09 20.52 14.61 10.71 17.08 20.69 16.03

Transformer 7.29 12.75 17.33 12.35 9.63 14.83 19.43 14.53

SR-LSTM [41] 9.50 15.67 22.48 15.76 11.56 18.16 21.82 17.05

STAR [36] 9.25 15.34 22.34 15.52 11.76 18.93 23.70 17.99

EF-Transformer 6.28 9.99 12.11 9.39 7.42 10.83 12.56 10.20

N
t
g
t
=
2

CNN-based 7.24 12.55 14.99 11.49 8.78 14.86 16.97 13.42

RNN-based 9.20 15.77 20.93 15.17 11.56 17.72 21.47 16.79

Transformer 7.02 12.26 17.49 12.15 9.39 15.50 20.06 14.86

SR-LSTM [41] 9.19 13.92 18.21 13.68 10.69 15.09 18.11 14.54

STAR [36] 8.26 14.78 22.77 15.14 10.39 17.07 23.34 16.80

EF-Transformer 6.80 10.19 12.23 9.67 8.22 11.52 13.60 11.05

For the dance dataset, we evaluated the methods on a prediction task with
different numbers of target participants. Results are listed in Table 3. Our
method outperformed all compared methods. It can also be observed that the
results of Ntgt=2 are comparable to Ntgt=1. Although fewer observed partici-
pants may make the prediction more difficult, it is possible that having more
target participants during training provide better guidance to the network, so
that the patterns of the dances are better learned. More results of inference task
can be found in the supplemental material.

To evaluate the performance in pedestrian datasets, we follow the setting in
[15] to provide 8-frame ground truth for the target participant, as the behavior
of a pedestrian highly relies on self intention, which underlies one’s historical
trajectory. The results are shown in Table 4. Our method achieved the best
performance among compared methods. As before, existing methods [41, 36] are
not appropriately designed for scenarios with different sets of observed and target
participants, conflating accurate observations with inaccurate past estimates.
Behavior prediction with 1-frame observation for the target is also evaluated.
Results and visualizations can be found in the supplementary.

Table 4. Comparisons of trajectory prediction with baselines and SOTA methods on
pedestrian dataset.

Methods
Performance MAD/FAD

ETH HOTEL ZARA ZARA2 UNIV AVG

SR-LSTM [41] 1.09/1.76 0.69/1.31 0.79/1.70 0.88/1.85 1.23/2.32 0.94/1.79

STAR [36] 1.09/2.85 0.69/1.41 0.91/2.08 1.27/2.92 1.00/2.18 0.99/2.23

Transformer 0.73/1.40 0.52/0.93 0.63/1.24 0.68/1.46 1.00/1.96 0.71/1.40

EF-Transformer 0.70/1.33 0.49/0.84 0.53/1.07 0.54/1.10 0.89/1.75 0.63/1.22
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Table 5. Comparisons of multi-task prediction with baselines and SOTA methods on
dance dataset.‘Traj’ represents the task of trajectory prediction, during which ground
truth action labels are provided. ‘Multi’ represents the task of multi-task prediction,
where both trajectories and action labels have to be predicted.

Methods
MAD FAD

Short Mid Long Avg Short Mid Long Avg

T
r
a
j

Transformer 7.29 12.75 17.33 12.35 9.63 14.83 19.43 14.53

EF-Transformer 6.28 9.99 12.11 9.39 7.42 10.83 12.56 10.20

M
u
lt
i

Transformer 7.91 14.73 19.24 13.82 10.77 17.86 21.94 16.72

EF-Transformer 6.98 10.31 11.80 9.63 8.28 11.65 12.51 10.75

4.5 Multi-Task Inference and Prediction

In multi-task inference and prediction, trajectories and action labels are esti-
mated simultaneously. Different from previous experiments, estimated action
labels are sent to feature embedding for next-frame inference or prediction. We
only compare to a typical transformer on dance dataset here. As action labels
are very tightly coupled between observed and target players in tennis, it turned
out that both methods resulted in 100% action classification and only minor
differences to trajectory prediction in Table 2, hence results are placed in the
supplemental material.

Trajectory prediction results are shown in Table 5. Without ground truth ac-
tion labels for target participants, our method achieved comparable trajectory
prediction performance to results with ground truth input. In contrast, the typi-
cal transformer had worse performance when action labels for target participants
had to be estimated. Action prediction confusion matrices are provided in the
supplementary. The macro F1-score of our method and typical transformer are
0.99 and 0.90 correspondingly. As our method is capable of limiting accumulated
errors, trajectory and action predictions occur in a virtuous cycle, where error
robustness in the previous step improves action classification, which in turn im-
proves trajectory prediction. This contrasts with a typical transformer, where
error drift leads to poorer action classification and larger errors in trajectory
prediction.

4.6 Robustness Analysis

Robustness reflects the ability to limit error accumulation, as well as to recover
from large errors (e.g. due to sensing failure). To evaluate robustness, the 6D
prediction of one middle frame is replaced by a large noise spike of [1,1,-1,-1,-1,-
1]. FAD was then computed to compare how well the methods recovered from
the spike. This experiment was performed with the inference task on the tennis
dataset, where the spike was added to different frames.
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Table 6. Comparisons of FAD on tennis dataset with noise involved in different frames.

Noise
Position

Transformer FAD EF-Transformer FAD

Short Mid Long Avg Short Mid Long Avg

No Noise 37.14 52.06 68.14 49.34 35.38 48.62 64.23 46.43

Noise@t=3 75.99 103.24 141.06 99.67 37.23 56.37 84.65 54.15

Noise@t=6 80.03 105.35 145.39 105.85 55.19 64.90 90.71 65.68

Noise@t=9 131.76 161.07 205.26 157.81 115.93 123.30 145.31 124.29

Table 6 shows that both methods can recover from the spike to some ex-
tent, noting that better recovery was made by the final frame for earlier spikes.
Nonetheless, our method performed significantly better than the typical trans-
former. Even with a frame 9 spike (second-last frame), our method’s FAD in-
creased only about 78 pixels, compared to 108 pixels for the typical transformer.

4.7 Limitations

Our method assumes that a group has a fixed number of participants, all with
strongly coupled behavior. Thus in e.g. a pedestrian scenario with varying num-
bers of individuals, not all of whom have correlated behavior, we need to select
a fixed number of the most likely related individuals as observations for each
target pedestrian (e.g. with k-nearest-neighbor filtering). Furthermore, although
pedestrian trajectories are smoother than in tennis and dance, it turned out that
prediction is also more difficult for our method. This is likely due to less behav-
ioral coupling among pedestrians. When observations are not as informative, our
method was predominantly trying to do some form of dead reckoning like other
methods, which is difficult to be accurate especially for longer intervals.

5 Conclusion

In this paper, we proposed the EF-Transformer for behavior inference and predic-
tion of target participants based on other observed participants. In our decoder,
the order of query, key, and value entries of the cross-attention are flipped to
effectively reduce error accumulation. EF-Transformer is evaluated in several
experiments, where it outperformed all compared methods on the tennis, dance
datasets and pedestrian datasets. Moreover, we demonstrate superior robustness
to noise spikes. The framework of EF-Transformer can be used for application
to learning realistic agent-based behavior in the future.
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28. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
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