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This supplement provides further details of the main paper. We describe (1)
additional ablation experiments (Sec. A); (2) further error analysis of our results
(Sec. B); (3) implementation details and how to reproduce our results (Sec. C);
(4) additional visualizations of our results (Sec. D); and (5) limitation of our
approach (Sec. E). For sections, figures, tables, and equations, we use numbers
(e.g , Sec. 1) to refer to the main paper and capital letters (e.g , Sec. A) to refer to
this supplement. We hope that this document will complement our main paper.

A Additional Ablation Experiments

Here we present additional ablation experiments, as mentioned in Sec. 4.4 of the
main paper. These are omitted from the main paper due to lack of space. All
experiments are reported on THUMOS14, consistent with our ablation exper-
iments in the main paper. We follow our best design and use a local window
size=19 with layer norm, center sampling, and score fusion enabled.

Loss Weight. We provide additional ablation on the loss weight λreg in Eq.
7. Specifically, we varied the loss weight λreg ∈ [0.2, 0.5, 1, 2, 5], retrained the
model, and reported the mAP scores. The results are presented in Table A. For
a large range of λreg, our model has quite stable results with a maximum gap
of 1.4% in average mAP. λreg = 1 yields the best results, as we used in all our
experiments.
Maximum Input Sequence Length during Training. A possible explana-
tion of our superior results is that our model might benefit from training using
a long sequence (2304 time steps as in our previous experiments). Here we ex-
amine the effects of maximum input sequence length during training. Table B
reports mAP scores for different training sequence lengths. The results of our
model remain fairly consistent even with much shorter input sequence length.
Note that when truncating an input sequence, our training scheme is equal to
training with sliding windows as in [17]. The differences are (1) the windows are
dynamically sampled rather than pre-generated; (2) windows without foreground
actions are removed. When using a input seqence length of 512, similar to what
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Table A. Ablation study on loss weight. We report mAP at tIoU=0.5 and 0.7,
and the average mAP in [0.3 : 0.1 : 0.7] on THUMOS14 by varying the loss weight
λreg in Eq. 7.

Method λreg 0.5 0.7 Avg

Ours 0.2 69.7 40.9 65.6
Ours 0.5 71.3 42.4 66.7
Ours 1 71.0 43.9 66.8
Ours 2 69.5 43.9 66.2
Ours 5 69.1 43.0 65.4

was considered in [17] (512), our method only has a minor drop in average mAP
(-1.1%) and significantly outperforms [17].

Table B. Ablation study on maximum input sequence length during train-
ing. We report mAP at tIoU=0.5 and 0.7, and the average mAP in [0.3 : 0.1 : 0.7] on
THUMOS14 by varying the maximum input length Tmax for training.

Method Tmax 0.5 0.7 Avg

Ours 576 69.6 42.5 65.7
Ours 1152 71.0 42.7 66.3
Ours 2304 71.0 43.9 66.8

Temporal Feature Resolution. Some of the previous works considered video
features with lower temporal resolution. For example, a feature stride of 8 was
used by PGCN [18] and ContextLoc [20]. To understand the effects of temporal
feature resolution, we downsample our input I3D features and study the perfor-
mance variation when using different feature strides. Table C report the results.
When using a lower resolution (stride=8), the results of our model only drop
slightly (-0.5% in average mAP). Further reducing the resolution (e.g , stride=16)
leads to larger performance degradation, yet our results remains favourable.

Table C. Ablation study on temporal feature resolution. We report mAP at
tIoU=0.5 and 0.7, and the average mAP in [0.3 : 0.1 : 0.7] on THUMOS14 by varying
the feature stride.

Method stride 0.5 0.7 Avg

Ours 4 71.0 43.9 66.8
Ours 8 69.8 43.9 66.3
Ours 16 65.8 38.4 61.9
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B Further Error Analyses

We present further analyses of our results on THUMOS14. These analyses are
obtained using the tool provided by [1]. We refer the readers to [1] for more
details.
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Fig.A. False negative (FN) profiling of our results on THUMOS14 using [1]. This
figure shows the FN rates under different video contents. From this figure we can find
that our model will suffer from extra short or extra long instances. Also, our model
will suffer from video inputs which have a large number of action instances.
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Fig. B. Sensitive analysis of our results on THUMOS14 using [1]. Left : normalized
mAP at tIoU=0.5 under different video contents. Right : The relative normalized mAP
change at tIoU=0.5 with respect to different characteristics of the ground truth in-
stances.

Metrics. In [1], several characteristic metrics were defined given a dataset (e.g
THUMOS14), including coverage, length, and the number of instances. Specifi-
cally, coverage presents the relative length of the actions (compared to the whole
video), categorized into five bins: Extra Small (XS: (0, 0.02]), Small (S: (0.02,
0.04]), Medium (M: (0.04, 0.06]), Large (L:(0.06, 0.08]), and Extra Large (XL:
(0.08, 1.0]). Length denotes the absolute length (in seconds) of actions, organized
into five length groups: Extra Small (XS: (0, 3]), Small (S: (3, 6]), Medium (M:
(6, 12]), Long (L: (12, 18]), and Extra Long (XL: > 18). Moreover, number of
instances refers to the total count of instances (from the same class) in a video.
This number is further divided into four parts, including Extra Small (XS: 1);
Small (S: [2, 40]); Medium (M: [40, 80]); Large (L: > 80).
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Fig. C. False positive (FP) profiling of our results on THUMOS14 using [1]. Left :
FP error breakdown when considering the predictions for the top-10 ground-truth
(G) instances. Right : The impact of error types. Localization error and background
confusion are the top two error types.

Results and Analyses. Fig. A presents the false negative profiling. In Fig.
A, we breakdown the false negative rates under the different coverage, length,
and the number of instances. Our results have similar false negative rates across
different coverage categories, yet have much higher false negative rates on action
instances that are either very shot or very long (length), and on videos that
contains many action instances (#instances). These action instances and videos
are naturally more challenging.

Fig. B presents the sensitivity analysis of our results, i.e, normalized mAP at
tIoU=0.5 under different characteristic metrics (left) and the variance of mAP
across categories (right). Our model performs better on simple context scenarios,
including XS/S/M/L coverage, S/M length and XS #instances, and worse on
more complicated scenarios. The trend is similar to the false negative profiling
in Fig. A. Moreover, our model is robust across different categories in coverage,
length and #instances with small variances.

C Implementation Details

We now present implementation details including the network architecture, train-
ing and inference. Further details can be found in our code.

Network Architecture. We present our network architecture in Table D, as
described in Sec. 3. In the ablation study (Sec. 4), we also considered a base-
line that replaces the Transformer Units in Table D with convolution blocks,
following the design of a bottleneck block in ResNet [7]. Specifically, a stack
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Table D. The architecture of our model. Our network consists of (1) a Trans-
former encoder (first row block) and (2) a lightweight convolutional decoder with the
classification / regression heads (last row block). For each layer, we list the layer name,
layer parameters, the input to the layer, and the output feature size. We also include
its regression range (in seconds for THUMOS14 and EPIC-Kitchens 100 and in number
of time steps for ActivityNet-1.3). For convolutional layers, k is the kernel size of 1D
convolutions and s is the stride, and ci, co is the input and output feature channel,
respectively. For Transformer Unit, ds is the downsampling ratio. T is the temporal
length of input sequence and D is the input feature dimension. For classification head,
the output dimension is the number of action categories. For regression head, the out-
put dimension is 2, i.e, distances to action onset and offset.

Name Layer Input
Output Size
(T × D)

Regression
Range

encoder

input clip - - T×D -
projection1 conv k=3, s=1 (ci = D, co = 512) input clip T × 512 -
projection2 conv k=3, s=1 (ci = 512, co = 512) projection1 T × 512 -
transformer0 Transformer Unit, ds=1 projection2 T × 512 -
transformer1 Transformer Unit, ds=1 transformer0 T × 512 [0, 4)
transformer2 Transformer Unit, ds=2 transformer1 T/2 ×512 [4, 8)
transformer3 Transformer Unit, ds=2 transformer2 T/4 ×512 [8, 16)
transformer4 Transformer Unit, ds=2 transformer3 T/8 ×512 [16, 32)
transformer5 Transformer Unit, ds=2 transformer4 T/16 ×512 [32, 64)
transformer6 Transformer Unit, ds=2 transformer5 T/32 ×512 [64, +∞)

decoder
(heads)

cls / reg nets
conv k=3, s=1 (ci = 512, co = 512) transformer1,...,transformer6 [T/32×512,. . ., T×512] -
conv k=3, s=1 (ci = 512, co = 512) transformer1,...,transformer6 [T/32×512,. . ., T×512] -

conv k=3, s=1 (ci = 512, co = output) transformer1,...,transformer6 [T/32×output,. . ., T×output] -

of three 1D conv layers were used. The kernel size of three conv layers were 1,
3 and 1, respectively. The expansion factor of the bottleneck block was 2. We
added an extra strided conv layer with kernel size=1 and stride=2 to perform
downsampling when necessary.

Training Details. For training, we considered both fixed length inputs (Ac-
tivityNet) and variable length inputs (THUMOS14, ActivityNet, and EPIC-
Kitchens 100). For variable length inputs, we capped the input length to 2304
(around 5 minutes on THUMOS14 and around 20 minutes on EPIC-Kitchens
100), and randomly selected a subset of consecutive clips from an input video. Po-
sition embedding was disabled by default except for ActivityNet. Model EMA [8]
and gradient clipping were also implemented to further stabilize the training. Hy-
perparameters were slightly different across datasets and discussed later in our
experiment details.

Inference Details. For fixed length inputs (ActivityNet-1.3), we fed the full
sequence into our model. For variable length inputs (THUMOS14 and EPIC-
Kitchens 100), we sent the full sequence into the model. When using position
embeddings in our ablation study, we adopted the technique from [5]. Specifically,
for input sequences shorter than the training sequence length (2304), we fed the
full sequence into our model and clipped the position embedding using the actual
length of the video. For input sequences longer than the training sequence length,
we again fed the full sequence into our model, yet used linear interpolation to
upsample the position embeddings.
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Score Fusion. For our experiments on THUMOS14 and ActivityNet-1.3, we
sometimes consider score fusion using external classification scores. Specifically,
given an input video, the top-2 video-level classes given by external classification
scores were assigned to all detected action instances in this video, where the ac-
tion scores from our model were multiplied with the external classification scores.
Each detected action instance from our model thus creates two action instances.
We refer the readers to [18] (Appendix E) for a more detailed description of the
score fusion strategy.

Experiment Details. Our experiment details vary across datasets, as each
dataset includes videos of different resolution and frame rate, and considers dif-
ferent types of features. We now describe our experiment details for THUMOS14,
ActivityNet-1.3, and EPIC-Kitchens 100.

• THUMOS14: We used two-stream I3D [3] pretrained on Kinetics to ex-
tract the video features on THUMOS14, following [13,19]. We fed 16 con-
secutive frames as the input to I3D, used a sliding window with stride 4
and extracted 1024-D features before the last fully connected layer. The
two-stream features were further concatenated (2048-D) as the input to our
model. mAP@[0.3:0.1:0.7] was used to evaluate our model. Our model was
trained for 50 epochs with a linear warmup of 5 epochs. The initial learning
rate was 1e-4 and a cosine learning rate decay is used. The mini-batch size
was 2, and a weight decay of 1e-4 was used.

• ActivityNet-1.3: We used two-stream I3D [3] for feature extraction, yet
increased the stride of the sliding window to 16. Following [12,11,16], the
extracted features were downsampled into a fixed length of 128 using linear
interpolation. For evaluation, we used mAP@[0.5:0.05:0.95] and also reported
the average mAP. Our model was trained for 15 epochs with a linear warmup
of 5 epochs. The learning rate was 1e-3, the mini-batch size was 16, and the
weight decay was 1e-4. For ActivityNet, we find it is helpful to train our model
to generate proposals by considering all actions from a single category, and
then use external classification scores for the recognition. This strategy was
also used in previous single-stage TAL methods [10].

• EPIC-Kitchens 100: We used a SlowFast network [6] pre-trained on EPIC-
Kitchens for feature extraction. This model is provided by [4]. We fed 32
frame window with a stride of 16 to extract 2304-D features. Our model was
trained on the training set and evaluated on the validation set. A window size
of 9 was used for local self-attention. For evaluation, we usedmAP@[0.1:0.1:0.5]
and report the average mAP following [4]. Our model was trained for 30
epochs with learning rate 1e-4, mini-batch size 2, and weight decay of 1e-4.

Reproducibility of Our Results. All results reported in the paper were ob-
tained with the same random seed using PyTorch 1.10, CUDA 10.2 and CUDNN
7.6.5 on an NVIDIA Titan Xp GPU, using deterministic GPU computing rou-
tines. On the same machine, our code will always produce the same results when
using the same random seed. Across machines/GPUs and computing environ-
ments, we have observed minor variation of average mAP scores (up to 0.5%
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Fig.D. More visualization of our outputs. For each item from top to bottom: (1) the
input video frames; (2) action scores at each time step; (3) histogram of action onsets
and offsets computed by weighting the regression outputs using the action scores. Left :
successful cases; Right : failure cases. This figure is best viewed in color and when
zoomed in.

average mAP on THUMOS, less than 0.2% average mAP on ActivityNet, and
under 0.8% average mAP on EPIC Kitchens), yet those minor variations do not
erode the clear performance gains of our method.

Code. We have included our source code in the supplement. The ECCV author
guideline strongly discourages authors to include links to websites created for
the purpose of their submission to ECCV’22 (e.g., to offer code or data, share
demos or videos), even if steps were taken to anonymize them. For this reason,
we are unable to share all video features that are necessary to reproduce all our
results. Nonetheless, we included scripts to download and process the publicly
available TSP features [2] for ActivityNet 1.3 (with the best average mAP score
on this dataset). The processed features can be used with our code to reproduce
our best results on ActivityNet. Further, we also included a pre-trained model
with its training logs in the supplement. We refer the readers to the instructions
provided in our code to use our code and reproduce our results.
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D Additional Visualizations

Further, we present more visualizations of our results in Fig. D, extending Fig.
3 of the main paper. Our model is able to detect the occurrence of actions
and estimate their temporal boundaries for the most of the cases (see the first
column of Fig. D). The major failure modes of our model, as demonstrated in
the second column of Fig. D, include (1) incorrect classification of action centers,
i.e background confusion (classification errors); (2) inaccurate regression of the
action’s onset and offset (localization errors). We plan to address these issues in
our future work.

E Limitations

A main limitation of our method is the use of pre-extracted video features, also
faced by many previous approaches. Another limitation is the need for many hu-
man labeled videos for training and the constraint of a pre-defined vocabulary
of actions. Interesting future directions include pre-training for action localiza-
tion [2,15], and learning from videos and text corpus [14,9] without human labels.
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