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Abstract. Though deep neural networks (DNNs) have demonstrated
excellent performance in computer vision, they are susceptible and vul-
nerable to carefully crafted adversarial examples which can mislead DNNs
to incorrect outputs. Patch attack is one of the most threatening forms,
which has the potential to threaten the security of real-world systems.
Previous work always assumes patches to have fixed shapes, such as cir-
cles or rectangles, and it does not consider the shape of patches as a
factor in patch attacks. To explore this issue, we propose a novel De-
formable Patch Representation (DPR) that can harness the geometric
structure of triangles to support the differentiable mapping between con-
tour modeling and masks. Moreover, we introduce a joint optimization al-
gorithm, named Deformable Adversarial Patch (DAPatch), which allows
simultaneous and efficient optimization of shape and texture to enhance
attack performance. We show that even with a small area, a particu-
lar shape can improve attack performance. Therefore, DAPatch achieves
state-of-the-art attack performance by deforming shapes on GTSRB and
ILSVRC2012 across various network architectures, and the generated
patches can be threatening in the real world.
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1 Introduction

Despite achieving considerably excellent performance on various computer vi-
sion tasks [52,53,66,67,68,16,13,14,17,15,26,25,63,46,59,61,4,58], deep neural net-
works (DNNs) have been shown to be susceptible and vulnerable to adversarial
examples, where an adversary introduces an imperceptible perturbation to an
image for inducing network misclassification [48]. Currently, adversarial exam-
ples have been found in most visual tasks, such as object detection [21,23] and
visual tracking [8,36]. Previous attacks and defenses place emphasis on the clas-
sic setting of adversarial examples that have a global small Lp distance on the
benign example [48,12,38,22,60]. However, the classic Lp setting requires global
perturbation to an image, which is not always practical in the physical world.

In this paper, we focus on patch attacks. It is one of the most dangerous forms
of adversarial examples that an adversary can arbitrarily modify the pixels of
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Fig. 1. Adversarial patches are generated by different methods under the untargeted
attack setting. Previous work always assumes patch shapes to be circles or rectangles
but our proposed DAPatch can deform the patches. As a result, DAPatch obtains a
higher attack performance.

a continuous region, and the region has to be small enough to reach the victim
object in the physical world. For example, GAP [3] creates physical adversarial
image patches, which cause the classifiers to ignore the other items in the scene
and report a chosen target class. Then Lavan [24] shows that networks can also
be fooled by much smaller patches of visible noise that cover a substantially
smaller area of the image when relaxing the requirement in the digital domain.

The current patch attacks mainly consider generating robust perturbations
and the shape of the patch is usually fixed, such as circles or rectangles. However,
both shape and texture are shown to be essential clues for the identification of
objects. Geirhos et al. [11] show that ImageNet-trained CNNs are strongly biased
towards recognizing textures rather than shapes. Then Li et al. [34] find shape
or texture bias has a massive impact on performance and shape-texture debiased
learning can improve the accuracy and robustness. However, existing work and
other physical attacks [10,8] ignore the importance of shape and assume patches
to have fixed shapes, such as circles or rectangles. Specifically, adversarial patches
are typically generated using gradients iteratively, and adversarial perturbations
within patches could be equivalently regarded as a kind of texture. As previously
mentioned, existing studies tend to concentrate on obtaining a robust adversarial
texture to fool DNNs, but in this paper, we focus on another perspective of patch
attacks, that is shape.

To explicitly explore the effect of shape in patch attacks, the direct approach
is to deform the patch in the adversarial attack. Hence, an iterative and dif-
ferentiable shape representation is required. Existing deform-related work [7,57]
needs additional data for training and cannot compute differentiably during the
attack patch generation. Rethinking shape modeling, we first need a deformable
contour which can be represented by a point and a series of rays in the Cartesian
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coordinate system. Then we also need a differentiable calculation procedure to
determine whether each position is outside or inside the contour.

To address this issue and explore the effect of shape on patch attacks, we pro-
pose a novel Deformable Patch Representation (DPR). The geometric structure
of the triangle is used to construct a judgment point whether the point is inside
or outside the contour, and the shape model can be mapped into a binary mask
while ensuring the computation is differentiable. Then, to achieve a better attack
performance, we propose a shape and texture joint optimization for adversarial
patches. As illustrated in Figure 1, Deformable Adversarial Patch (DAPatch)
improves attack performance by deforming the shape of patches. Extensive ex-
periments on ILSVRC2012 and GTSRB show that, under the same constraint
of area, DAPatch have higher attack performance and are effective for various
network architectures, such as CNNs [47,19,20,44,49] and Vision Transformer
(ViT) [9,37]. Our main contributions are summarized as below:
• We propose a novel Deformable Patch Representation (DPR) that can

harness the geometric structure of triangles to support the differentiable map-
ping between contour modeling and masks, and the shape can be differentiably
deformed during patch generations.
• Based on DPR, we propose a shape and texture joint optimization algo-

rithm for adversarial patches, named DAPatch, which can effectively optimize
the shape and texture to improve attack performance.
•We show that a particular shape can improve attack performance. Extensive

experiments on GTSRB and ILSVRC2012 demonstrate the adversarial threats
of shapes with different networks in both digital and physical world.
• DRP first explicitly investigates the significance of shape information on

DNNs’ robustness through an adversarial lens and contributes to understanding
and exploring the very nature of DNNs’ vulnerability.

2 Related Work

Adversarial Patch. The adversarial patch currently can be mainly divided into
iterative-based and generative-based methods. For the iterative-based method,
GAP [3] proposes adversarial physical image patches, which cause the classifiers
to predict a target class. With relaxed requirements in the digital domain, La-
VAN [24] shows that networks can also be fooled by much smaller patches of
visible noise that cover a much smaller area of the image. For the generative
method, PS-GAN [35] refers to the patch generation via a generator as a patch-
to-patch translation and simultaneously enhances both the visual fidelity and the
attacking ability of the adversarial patch. Other visual tasks are also threatened
by patch attacks, such as object segmentation [56,31,28,29,32,30,51,50,65,64],
object detection [21,23] and visual tracking [8,36]. The above work can only
generate patches of fixed shapes, such as circles or rectangles, without consid-
ering the impact of shape on attack performance. The generative-based method
requires additional data to train a generator, which requires additional time.
Furthermore, the shape of the patch cannot be deformed according to the ad-
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versarial attack. In this work, we propose Deformable Patch Representation,
which can differentiably deform the patch during the adversarial attack without
additional data.

Defenses Against Patch Attacks. Several empirical patch defenses are pro-
posed such as Digital Watermark [18] and Local Gradient Smoothing [40]. How-
ever, Chiang et al. [6] demonstrate that that these empirical defenses can easily
be breached by white-box attacks that take advantage of the pre-processing pro-
cedures during the optimization process. Wu et al. [54] and Sukrut et al. [42]
adapt adversarial training to increase the robustness of a model against adver-
sarial patches. Chiang et al. [6] propose the first certifiable defense against patch
attacks, which gives a certificate when an output lies in the interval bound formed
during the training process. Despite this, both robustness approaches require ad-
ditional training and are inefficient at the ImageNet scale [6,62]. Derandomized
Smoothing [27], DPGLC [33], Patchguard [55] and ECViT [5], recently proposed
to improve certifiable robustness and to extend the defense to ImageNet, further
improve the defense. We select patch defense that can be extended to ImageNet
as the benchmark to test the effectiveness of patch attacks. Existing work has
demonstrated favorable performance in defending against patch attacks. In this
paper, by introducing adversarial shapes, we establish a new baseline to reflect
the robustness of the defending methods against adversarial patch attacks from
a novel perspective.

Shape versus Texture. Object recognition relies on two prominent and com-
plementary cues: shape and texture. The cue that dominates object recognition
has been the subject of a long-running debate. Prior to deep learning, object
recognition relied on a variety of handcrafted features, such as shape [2] and
texture [39]. Recently, Geirhos et al. [11] suggest that CNNs pre-trained on Ima-
geNet exhibit a strong texture bias. Shape-based representations improve object
detection and provide previously unknown robustness in the face of a range of im-
age distortions. Furthermore, Li et al. [34] shows the benefits of shape-texture de-
biased neural network training on boosting both accuracy and robustness. Gen-
erating adversarial perturbations within patches could be equivalently regarded
as generating a kind of texture. Previously, patch attacks consider patches more
for their texture rather than their shape, so there is no deformation method in
adversarial attacks. In deformable-related work, Deformable Convolution [7] and
contour-based instance segmentation [57] can explicitly model deformations, but
they all rely on lots of training data, and can not be differentiably mapped into
a mask to participate in the generation of texture. Motivated by this dilemma,
we propose the Deformable Adversarial Patch for the shape and texture joint
optimization. Note that some work [54,42] has demonstrated that the positions
of patches can also affect the threat of an attack, but this paper focuses on
investigating the significance of shape information on DNNs’ robustness. There-
fore, we randomly select and fix the positions of patches to control the effect of
positions on attack performance in the experiments.
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Fig. 2. Introduction of Deformable Adversarial Patch. (a) represents the contour mod-
eling composed of one point and rays. (b) represents the deformation from (a) by up-
dating r. (c) shows the mask obtained by differentiable calculation in a local triangle.
(d) summarizes the multi-anchor mechanism on Deformable Patch Representation.

3 Method

In this section, we first introduce the problem of adversarial patch attacks on
image classification and then propose our Deformable Patch Representation to
deform patches during the patch generation. Then, we propose a joint optimiza-
tion algorithm for improving the attack performance.

3.1 Problem Definition

For a image classifier f : x → y, we denote the clean image as x ∈ Rc×h×w

and the corresponding label as y. In the traditional adversarial patch attack,
adversaries attempt to find an adversarial patch δ to significantly degrade the
performance of the classifier over per image. When the adversarial image at the
k-th iteration is xk

adv ∈ Rc×h×w, then the solving iteration will be:

xk
adv = δk−1 ⊙M + x⊙ (I −M), (1)

where ⊙ represents the element-wise Hadmard product; M ∈ {0, 1}c×h×w de-
notes binary masks for xk

adv; I represents all-one matrices with the same dimen-
sion as M .

We denote the prediction result of x by f is ŷ. For untargeted attacks, the
adversarial patch makes the model predict the wrong label, namely ŷ ̸= y. For
target attacks, the adversarial patch makes the model predict specified target
class yt, namely ŷ = yt, and the target class is pre-specified.

3.2 Deformable Patch Representation

To model a deformable patch we first need a deformable contour. For simplicity,
we use a polygon to represent the contour which consists of one center O and
R rays in the Cartesian coordinate system, as shown in Figure 2 (a). Then the
contour deforms through the updating of the length of rays r = {r1, r2, ..., rR}
during attacking. The deformation is shown in Figure 2 (b).
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Two rays and a center form a triangle and the whole patch mask can be di-
vided into R triangles, with the angle interval ∆θ = 2π/R. As shown in Figure 2
(c), for △AOB, we define |AO| = rA, |BO| = rB . Therefore, for ∀C ∈ x, the
mask M is expressed as:

M(C) =

{
1, C ∈ △AOB

0, C /∈ △AOB.
(2)

Fig. 3. The effectiveness of the activa-
tion function Φ(x). Step function rep-
resents the same effect as Equation 3
and our activation function Φ(x) well
approximates the step function.

Therefore, we convert the contour rep-
resentation into the question of whether
the point is inside or outside the con-
tour. Next, we use the geometric proper-
ties of triangles to differentiably calculate
and obtain a deformable mask. For any
C falling in the area covered by ∠AOB,
there will always be CO or the extended
line of CO intersects AB at D. Note
that Equation 2 needs to be converted

into computable, so we use |CO|
|DO| to judge

whether C is inside the △AOB. Obvi-

ously, if |CO|
|DO| < 1, then C ∈ △AOB and

vice versa. Since |CO|
|DO| ∈ R+, we want M

to be approximately binary and mapped to {0, 1}. To address the issue, we
choose a special activation function Φ, which is expressed as:

Φ(x) =
tanh (λ(x− 1)) + 1

2
. (3)

Here, λ controls the sparsity of activation function and we take λ = −100.
Figure 3 reflects the effectiveness of the activation function Φ(x). In the Cartesian
coordinate system, the coordinates of A and B can be calculated from the ray
length r and angle intervals so D can be solved by gaussian eliminations via
A,B and O. So Equation 2 can be rephrased as:

M(C, r) = Φ(
|CO|
|DO|

) ∈ {0, 1}. (4)

By focusing on the global mask M , we pre-calculate where △i belongs based
on the ∠COx. Using the ray length r and angle interval ∆θ, we can directly
calculate the coordinates of the ray endpoint P = {P 1, P 2, ..., PR} via triangular
properties in the Cartesian coordinate system. For ∀C ∈ △i, we solve the linear
equations of AB and CO, calculate the coordinates of D, and determine the
corresponding mask value M(C, r) according to Equation 4. Based on parallel
computing, the time complexity of calculating the global mask is O(R) and the
space complexity is O(hw).

The proposed modeling strategy can be easily extended to more complex
contours, as shown in Figure 2 (d). This situation mainly occurs when the ray
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Algorithm 1 Deformable Patch Representation (DPR)

Input: the center O, the number of rays R, ray length array r = {r1, r2, ..., rn}
Output: the mask M

1: ∆θ ← 2 ∗ π/R
2: Calculate each pixel C belongs to △i

3: Calculate the coordinates of the ray endpoint P by ∆θ
4: for i ∈ [1, R] do
5: Select the point set C in the △i

6: A0, B0, C0 ← Gaussian Elimination(P i, P i+1)
7: A1, B1, C1 ← Gaussian Elimination(O,C)
8: d← A0 ∗B1 −A1 ∗B0

9: Dx ← (B0 ∗ C1 −B1 ∗ C0)/d
10: Dy ← (A1 ∗ C0 −A0 ∗ C1)/d

11: M(x,y)∈p = Φ
(

|CO|
|DO|

)
12: end for
13: MO ← 1
14: return M

passes through the contour multiple times. Specifically, in order to enhance the
modeling ability and achieve more complex contour modeling, we introduce a
multi-anchor mechanism:

r(0) = {r(0)1 , r
(0)
2 , ..., r

(0)
R }, (5)

e(i) = {e(i)1 , e
(i)
2 , ..., e

(i)
R }, i = 0, 1, ..., R− 1, (6)

r(i+1) = r(i) + e(i), i = 0, 1, ..., R− 1, (7)

where r(i) represents the length of the ray in the i-th anchor and e(i) denotes the
margin between r(i) and r(i+1). In practice, Deformable Patch Representation
with a single anchor can obtain promising attack performance. Due to the space
limitation of the paper, we mainly elaborate the single anchor strategy in this
work, and the specific implementation is illustrated in Algorithm 1.

3.3 Deformable Adversarial Patch

Although Deformable Patch Representation provides a deformation modeling,
generating adversarial patches with better attack performance is still a challeng-
ing issue. In this section, we propose our Deformable Adversarial Patch by the
joint optimization of shape and texture.

Area denotes the percentage of pixels of the patch relative to the image
and deformation affects the area of the patch. Obviously, the larger the area,
the stronger its attack performance. In order to explicitly control the area of the
patch and facilitate the joint optimization of shape and texture, the loss function
L can be written as:

L =

{
Ladv, area ≤ ps

Ladv + β · Lshape, area > ps
, (8)
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where area is the area of the deformable patch; ps is defined as the upper limit
of the patch area; β is the hyper-parameter to limit the margin of area and
ps. Ladv is the cross-entropy loss. In order to explicitly punish patches with too
large areas, we average the mask M and Lshape is defined as:

Lshape = mean(Mk). (9)

Suppose the deformable mask as Mk ∈ Rc×h×w at the k-th iteration, Equa-
tion 1 can be re-expressed as:

xk
adv = δk−1 ⊙Mk−1 + xk−1

adv ⊙ (I −Mk−1). (10)

In Equation 4, the generation of the global mask M is controlled by r. Here,
δ represents the update of texture and r represents the update of shape. Based
on gradient ∇L, the updating process can be regarded as:

δk ← δk−1 + α · sign(∇xk
adv

L), rk ← rk−1 + γ · sign(∇rk−1L). (11)

In Equation 3, we want M to be approximately binary. Although differen-
tiable computation can be realized in this way, M is only close to binarization
in numerical. To solve this problem, we introduce the shape ratio s (%) for
perturbation tuning. Specifically, when the joint optimization of shape and tex-
ture reaches the ratio s, we sharpen the mask. The fine-tuning texture is then
adapted to the sharpened mask for improving attack performance. For simplicity,
we choose the binarization for sharpening. Appendix 2 summarizes the algorithm
of our proposed Deformable Adversarial Patch.

4 Experiments

In this section, we evaluate our proposed DAPatch in the classification task.
Firstly, we analyze the significance of shape information on DNNs’ robustness
through an adversarial lens. Second, we evaluate the effectiveness of the proposed
DAPatch in the digital domain. Next, we verify the performance of patch attacks
under patch defenses. Then, we generate patches and achieve physical attacks
in the real world. Finally, we conduct ablation study for hyper-parameters in
Appendix 6.

4.1 Experimental Setup

In our experiments, we use Pytorch [41] for the implementation and test on
NVIDIA Tesla V100 GPUs. The proposed DAPatch compares with state-of-
the-art methods, such as GAP [3], LaVAN [24] and PS-GAN [35]. Following the
setting of previous work [3,24,35], we evaluate on two datasets, including German
Traffic Sign Recognition Benchmark (GTSRB) and Imagenet Large Scale Visual
Recognition Challenge (ILSVRC2012) [43]. We randomly select 1000 images from
the ILSVRC2012 validation set and 500 images from the GTSRB test set. To
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(a) Visualizations of different adversarial patches in untargeted attacks.

(b) Deformation process of DAPatch in the adversarial attack.

Fig. 4. Visualizations of patch attacks. Disabling Texture is the top of (b) and the
deformation process is the bottom of (b). More details are shown in Appendix 7.

provide a fair platform for comparison, all the experimental results are reported
under the white-box adversarial attack. Since attackers can design the white-box
or adaptive attack according to models easily, the white-box setting can better
reflect the robustness of models against patch attacks.

We explore the effectiveness of our proposed DAPatch on various model
architectures. We divide the model architectures into three categories: CNN
(VGG19 [47], Resnet-152 [19], DenseNet-161 [20] and MobileNet V2 [44]), ViT
(ViT-B/16 [9] and Swin-B [37]), and NAS (EfficientNet-b7 [49]). To study the
impact of different shapes on attack performance, we give patches different ini-
tial shapes. GAP s and GAP c represent the square and circular patch, and so
does LaVAN. The initial shape of the DAPatch is the same as the circular patch.
Here s is 70 and β is 200. For more details, please see the Appendix 3 and 6.

Attack Success Rate (ASR) is a quantitative metric in the attack perfor-
mance. Here, we define ASR as the classification error rate. For untargeted at-
tacks, if the predicted label ŷ is inconsistent with the ground truth y, the attack
is considered successful. For targeted attacks, we choose the most difficult setting
to evaluate the attack performance. Specifically, we set the class with the small-
est one in logits as the target class yt. Only when ŷ = yt, the attack is successful.
Here, we do not consider the impact of locations on patches. All patches are ran-
domly initialized at fixed locations for attacking 100 iterations under different
areas. We select different patch areas and choose the size of squares and circles



10 Z. Chen et al.

Table 1. A specific shape can improve
ASR even if the area is small.

Network Shape
≈0.5% ≈1% ≈2% ≈3%

ASR Area ASR Area ASR Area ASR Area

MoblieNet v2
Circle 1.5 0.510 2.2 0.964 4.5 2.040 6.8 3.031
Square 1.4 0.504 1.7 1.054 3.3 2.010 4.4 3.023
Ours 8.9 0.377 13.4 0.790 21.0 1.648 25.8 2.496

Vit-B/16-224
Circle 0.9 0.510 1.4 0.964 2.2 2.040 2.2 3.031
Square 0.5 0.504 0.7 1.054 1.1 2.010 1.6 3.023
Ours 8.6 0.355 12.0 0.789 16.3 1.563 20.7 2.507

ResNet-152
Circle 0.9 0.510 1.2 0.964 2.6 2.040 3.3 3.031
Square 0.5 0.504 0.6 1.054 0.8 2.010 1.3 3.023
Ours 5.8 0.371 10.3 0.776 18.4 1.618 23.6 2.449

Table 2. Experiments on Multi-anchor
DAPatch. Complex modeling can improve
the attack performance in the same area.

Network Method
≈0.5% ≈1% ≈2% ≈3%

ASR Area ASR Area ASR Area ASR Area

MoblieNet v2
Single 65.8 0.423 88.9 0.847 97.6 1.735 99.4 2.684
Multi 67.8 0.425 89.3 0.851 98.9 1.734 99.6 2.667

Vit-B/16-224
Single 56.9 0.417 80.9 0.849 95.0 1.717 98.3 2.676
Multi 57.0 0.434 80.2 0.855 97.2 1.723 99.2 2.682

ResNet-152
Single 52.2 0.409 78.8 0.845 93.1 1.699 97.9 2.623
Multi 53.2 0.421 82.3 0.832 94.5 1.711 99.4 2.636

approximately close to the area. Area (%) denotes the average area percentage
of patches over the successfully attacked images. The experiments are under the
condition of a constrained area.

4.2 Delving into shape and texture

Perturbations in patch attacks can be regarded as a special texture. To evaluate
the significance of shape information on DNNs’ robustness through an adversar-
ial lens, we remove the texture and fix it to white. The patch is then deformed to
study only the effect of shape, as illustrated in Figure 4 (b). As described in Ta-
ble 1, placing a patch of the fixed shape on a white texture only slightly reduces
accuracy. Further, we exploit the convex hull formed by deformable shapes to
attack, as shown in Figure 5. The area of the convex hull is often larger than the
deformable shape, and the attack performance is not as good as the deformable
shape shape. For example, at 3% area, ResNet-152 produces the DAPatch with
an area of 2.449% and an ASR of 23.6%, but its convex hull has a larger area
(5.745%) but only a lower ASR (5.0%). In DAPatch, the deformation of shape
can significantly improve the attack performance, which shows that a particular
shape can improve ASR. Please refer to Appendix 4 for more details.

(a) Ours, 2.090% (b) Convex hull, 6.178%

Fig. 5. The area of the convex hull is
larger than DAPtach, but the attack
performance is not as good as it, which
shows that having a specific shape can
improve the attack performance.

The textures of the patch play a sig-
nificant role in magnifying the perfor-
mance of patch attack. Even if the net-
work has a bias against texture, the shape
can improve attack performance. Accord-
ing to the relationship between shape and
texture in object recognition, the shape-
biased network can be more vulnerable to
the DAPatch. Furthermore, models that
make predictions largely based on the
shape and texture of objects in images
rather than only on shape or texture can
be more adversarially robust. We consider
the Shape-Network [11] as the most sen-
sitive network to shape against DAPatch
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and Shape-Texture Debiased Network [34] is currently the best potential de-
fense against DAPatch. The Shape-Network is supposed to be insensitive to
texture, but more sensitive on shape for making predictions. ResNet50-SIN,
ResNet50-SIN+IN, and ResNet50-SIN+IN-IN are proposed by Shape-Network
and achieve ASR as 20.3%, 3.5% and 2.1% on randomly 1000 images before
attacking. ResNet50-Debiased and ResNet152-Debiased are proposed by Shape-
Texture Debiased Network and achieve ASR as 2.3% and 2.1% before attacking.
The experimental results on ILSVRC2012 in Table 3 show that DAPatch eas-
ily confuses the Shape-Network and the Shape-Texture Debiased Network with
basically no difference as against a normal deep network. In the untargeted at-
tack, ResNet50-SIN increases 54.8% on ASR under 0.5% patch percentage and
is much more than ResNet50-Debiased, which increases 44.3%. The same situa-
tion happens in the 1% patch area. In a larger area, the margin is not obvious
because the ASR is relatively high.

We further use multi-anchor to study the effect of complex shape modeling.
Here, the number of anchors is 3. The experiments show that complex modeling
can improve the attack performance in the same area, which also imlpies that the
shape is important to the robustness of DNNs, as shown in Table 2. In Figure 4,
we show the visualizations of DAPatch and other patches.

DAPatch is not limited to one particular type of attack. DAPatch not only
evaluates the robustness of existing classification models, but also shows that
a particular shape can improve the attack performance. All in all, shape infor-
mation has a great impact on the robustness of DNNs, which can be seminal
in understanding and exploring the very nature of DNNs’ vulnerability. More
details are in Appendix 4 and 7.

4.3 Digital Attacks

In this section, we evaluate the effectiveness of DAPatch in the digital domain.
Before performing the attacks, the ASR (%) of the models is 0%. The experimen-
tal results in untargeted setting on ILSVRC2012 and GTSRB are summarized
in Table 5 and Table 6. Note that when the patch area is small, DAPatch al-
ways obtains a higher ASR with a smaller area. Experiments show that under
different patch areas, DAPatch can always obtain better attack effects with a
smaller area. For the more challenging targeted setting, the experimental results
on ILSVRC2012 are reported in Table 7. We choose the most difficult setting and
the target class is the class with the smallest one in logits. According to Table 7,
DAPatch also achieves stronger attack performance under different areas.

Moreover, we test them using a traditional state-of-the-art defense method
known as Adversarial Training. Fast-AT trains with the Fast Gradient Sign
Method (FGSM) [12], when combined with the random initialization, is as ef-
fective as training based on Projected Gradient Descent (PGD) [38] but has
significantly lower cost. Feature Denoising is the state-of-the-art defense against
adversarial attacks in the white-box Lp setting and PGD only decreases the accu-
racy to 55.7% and 45.5% after 10 and 100 iterations. Fast-AT, Adv-ResNet-152,
ResNet-152-Denoise and Resnext-101-Deniose obtain ASR with 33.4%, 36.8%,
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Table 3. Untargeted attacks on shape
and texture bias.

Network Method
≈0.5% ≈1% ≈2% ≈3%

ASR Area ASR Area ASR Area ASR Area

ResNet50
-SIN

GAP s 70.4 0.510 87.3 0.964 96.9 2.040 99.1 3.031
GAP c 70.1 0.504 88.5 1.054 96.9 2.010 99.6 3.023

LaVAN s 66.2 0.510 82.2 0.964 95.1 2.040 98.1 3.031
LaVAN c 65.6 0.504 84.2 1.054 96.0 2.010 98.7 3.023
PS-GAN 70.0 0.510 85.3 0.964 96.8 2.040 99.5 3.031
Ours 74.1 0.446 90.3 0.893 98.7 1.764 99.6 2.724

ResNet50
-SIN+IN

GAP s 44.3 0.510 68.3 0.964 90.6 2.040 95.7 3.031
GAP c 44.7 0.504 72.4 1.054 90.9 2.010 96.3 3.023

LaVAN s 41.2 0.510 64.9 0.964 88.8 2.040 94.6 3.031
LaVAN c 42.4 0.504 69.4 1.054 89.4 2.010 96.1 3.023
PS-GAN 44.5 0.510 68.9 0.964 90.6 2.040 95.2 3.031
Ours 48.1 0.426 75.6 0.860 91.5 1.750 96.3 2.669

ResNet50
-SIN+IN-IN

GAP s 41.6 0.510 62.2 0.964 85.6 2.040 93.0 3.031
GAP c 44.3 0.504 68.6 1.054 87.4 2.010 94.2 3.023

LaVAN s 38.7 0.510 58.2 0.964 83.1 2.040 92.8 3.031
LaVAN c 39.6 0.504 65.3 1.054 84.7 2.010 93.4 3.023
PS-GAN 39.2 0.510 62.7 0.964 85.2 2.040 94.7 3.031
Ours 44.3 0.420 70.1 0.845 88.9 1.729 95.1 2.651

ResNet50
-Debiased

GAP s 42.5 0.510 64.2 0.964 85.8 2.040 93.1 3.031
GAP c 44.0 0.504 68.6 1.054 87.9 2.010 94.3 3.023

LaVAN s 38.2 0.510 59.7 0.964 83.3 2.040 90.9 3.031
LaVAN c 38.8 0.504 64.2 1.054 84.3 2.010 93.2 3.023
PS-GAN 43.2 0.510 67.6 0.964 88.0 2.040 93.4 3.031
Ours 46.6 0.438 68.6 0.852 88.1 1.744 94.7 2.665

ResNet152
-Debiased

GAP s 33.3 0.510 53.0 0.964 81.4 2.040 91.0 3.031
GAP c 34.1 0.504 58.9 1.054 84.1 2.010 93.0 3.023

LaVAN s 30.6 0.510 49.8 0.964 77.0 2.040 88.8 3.031
LaVAN c 29.8 0.504 52.1 1.054 77.5 2.010 90.1 3.023
PS-GAN 32.3 0.510 53.4 0.964 83.0 2.040 93.2 3.031
Ours 37.4 0.422 61.8 0.850 85.3 1.735 94.5 2.626

Table 4. Untargeted attacks on networks
with adversarial training. DAPatch can
always obtain better attack effects on AT
networks with a smaller area.

Network Method
≈0.5% ≈1% ≈2% ≈3%

ASR Area ASR Area ASR Area ASR Area

Adv-
ResNet-152

GAP s 61.0 0.510 74.5 0.964 86.6 2.040 90.3 3.031
GAP c 60.6 0.504 77.4 1.054 87.2 2.010 91.7 3.023

LaVAN s 58.4 0.510 71.1 0.964 83.9 2.040 88.8 3.031
LaVAN c 57.2 0.504 72.6 1.054 83.9 2.010 89.3 3.023
PS-GAN 59.2 0.510 77.7 0.964 84.3 2.040 89.7 3.031
Ours 62.5 0.472 78.4 0.948 88.2 1.921 92.4 2.791

ResNet-152
-Denoise

GAP s 59.3 0.510 74.5 0.964 86.5 2.040 92.6 3.031
GAP c 59.0 0.504 77.3 1.054 87.8 2.010 92.9 3.023

LaVAN s 59.6 0.510 72.6 0.964 84.7 2.040 91.8 3.031
LaVAN c 60.7 0.504 75.1 1.054 85.5 2.010 92.7 3.023
PS-GAN 61.7 0.510 75.1 0.964 86.2 2.040 92.2 3.031
Ours 62.3 0.464 77.4 0.959 88.0 1.835 92.9 2.853

Resnext-101
-Denoise

GAP s 50.4 0.510 66.3 0.964 83.8 2.040 90.2 3.031
GAP c 51.1 0.504 70.5 1.054 84.2 2.010 89.9 3.023

LaVAN s 49.7 0.510 65.0 0.964 80.6 2.040 87.6 3.031
LaVAN c 49.5 0.504 67.9 1.054 81.2 2.010 88.4 3.023
PS-GAN 51.2 0.510 68.1 0.964 80.9 2.040 89.9 3.031
Ours 52.9 0.471 68.9 0.949 85.5 1.928 90.2 2.814

Fast AT

GAP s 50.4 0.510 62.3 0.964 80.4 2.040 88.5 3.031
GAP c 50.6 0.504 65.5 1.054 80.3 2.010 88.8 3.023

LaVAN s 48.7 0.510 60.2 0.964 77.5 2.040 84.7 3.031
LaVAN c 48.7 0.504 62.6 1.054 78.0 2.010 85.3 3.023
PS-GAN 48.9 0.510 63.4 0.964 79.1 2.040 85.2 3.031
Ours 51.3 0.473 65.6 0.944 82.0 1.890 90.0 2.963

Table 5. Untargeted attacks of various network architectures on ILSVRC2012.

Model Method
GAP s GAP c LaVan s LaVan c PS-GAN Ours

ASR Area ASR Area ASR Area ASR Area ASR Area ASR Area

ResNet-152

0.5% 44.3 0.510 44.8 0.504 43.7 0.510 43.5 0.504 44.5 0.510 52.2 0.409
1% 71.0 0.964 74.4 1.054 67.5 0.964 71.2 1.054 68.9 0.964 78.8 0.845
2% 89.5 2.040 91.2 2.010 88.3 2.040 90.4 2.010 91.3 2.040 93.1 1.699
3% 96.5 3.031 97.8 3.023 95.9 3.031 96.8 3.023 97.4 3.031 97.9 2.623

Efficientnet-b7

0.5% 43.3 0.510 42.5 0.504 43.3 0.510 41.2 0.504 40.9 0.510 45.7 0.442
1% 63.5 0.964 68.8 1.054 64.7 0.964 69.2 1.054 65.8 0.964 71.1 0.956
2% 85.5 2.040 88.0 2.010 89.5 2.040 89.2 2.010 89.3 2.040 89.6 2.003
3% 91.5 3.031 94.4 3.023 95.9 3.031 95.9 3.023 95.2 3.031 95.9 3.014

Vit-B/16-224

0.5% 47.0 0.510 45.6 0.504 47.0 0.510 46.9 0.504 45.9 0.510 56.9 0.417
1% 72.0 0.964 77.2 1.054 71.8 0.964 74.9 1.054 71.9 0.964 80.9 0.849
2% 92.4 2.040 93.0 2.010 93.5 2.040 93.5 2.010 90.2 2.040 95.0 1.717
3% 97.2 3.031 97.8 3.023 98.3 3.031 98.3 3.023 97.4 3.031 98.3 2.676

30.1% and 20.5% respectively before attacking. Our results of untargeted attacks
are summarized in Table 4. Note that compared with the baselines, DAPatch can
always obtain better attack effects on AT networks with a smaller area.

4.4 Attack against Patch Defenses

We select patch defenses that can be extended to ILSVRC2012 as the benchmark
to test the effectiveness of patch attacks, including Local Gradient Smoothing
(LGS) [40], Digital Watermarking (DW) [18], PatchGuard [55] and Derandom-
ized Smoothing (DS) [27]. For empirical defenses, LGS is regarded as a differen-
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Table 6. Untargeted attacks of various
network architectures on GTSRB.

Network Method
≈0.5% ≈1% 2% ≈3%

ASR Area ASR Area ASR Area ASR Area

ResNet-152

GAP s 13.6 0.510 21.4 0.964 37.8 2.040 56.0 3.031
GAP c 13.0 0.504 22.6 1.054 38.0 2.010 57.6 3.023

LaVAN s 14.6 0.510 22.8 0.964 41.6 2.040 60.4 3.031
LaVAN c 14.8 0.504 26.0 1.054 41.8 2.010 58.4 3.023
PS-GAN 13.7 0.510 23.4 0.964 39.4 2.040 59.5 3.031
Ours 15.0 0.477 27.1 0.831 42.3 1.932 61.5 2.873

Efficientnet
-b7

GAP s 20.4 0.510 45.0 0.964 68.0 2.040 84.0 3.031
GAP c 20.6 0.504 39.4 1.054 66.6 2.010 82.6 3.023

LaVAN s 22.2 0.510 46.2 0.964 74.0 2.040 89.2 3.031
LaVAN c 22.8 0.504 51.4 1.054 74.0 2.010 89.0 3.023
PS-GAN 21.5 0.510 46.2 0.964 71.2 2.040 85.6 3.031
Ours 23.6 0.469 53.1 0.893 75.2 1.873 89.5 2.934

Vit-B
/16-224

GAP s 28.6 0.510 61.2 0.964 90.0 2.040 97.6 3.031
GAP c 28.4 0.504 68.0 1.054 90.2 2.010 98.2 3.023

LaVAN s 28.2 0.510 61.6 0.964 91.8 2.040 98.2 3.031
LaVAN c 26.2 0.504 65.4 1.054 92.0 2.010 97.4 3.023
PS-GAN 27.4 0.510 64.2 0.964 90.2 2.040 98.1 3.031
Ours 30.1 0.483 68.1 0.896 93.5 1.783 98.9 2.892

Table 7. Targeted attacks of various net-
work architectures on ILSVRC2012.

Network Method
≈1% ≈3% ≈5% ≈7%

ASR Area ASR Area ASR Area ASR Area

ResNet-152

GAP s 5.30 0.964 41.1 3.031 68.8 4.982 87.3 6.938
GAP c 8.80 1.054 44.3 3.023 72.8 4.888 88.3 6.794

LaVAN s 3.50 0.964 22.6 3.031 45.1 4.982 61.8 6.938
LaVAN c 6.00 1.054 23.9 3.023 47.7 4.888 64.7 6.794
PS-GAN 8.90 0.964 46.2 3.031 73.8 4.982 87.4 6.938
Ours 9.10 0.849 48.7 2.668 78.1 4.553 90.2 6.439

Efficientnet
-b7

GAP s 4.40 0.964 52.1 3.031 81.9 4.982 93.7 6.938
GAP c 6.20 1.054 53.6 3.023 81.4 4.888 93.4 6.794

LaVAN s 1.50 0.964 33.1 3.031 65.0 4.982 82.2 6.938
LaVAN c 2.30 1.054 34.0 3.023 62.1 4.888 83.6 6.794
PS-GAN 4.90 0.964 53.6 3.031 81.5 4.982 93.2 6.938
Ours 7.60 0.869 53.6 2.953 82.0 4.851 93.7 6.713

Vit-B
/16-224

GAP s 6.20 0.964 48.8 3.031 85.4 4.982 97.3 6.938
GAP c 7.90 1.054 50.6 3.023 85.7 4.888 97.2 6.794

LaVAN s 3.10 0.964 25.4 3.031 52.8 4.982 78.3 6.938
LaVAN c 4.20 1.054 24.7 3.023 54.9 4.888 78.4 6.794
PS-GAN 5.30 0.964 49.3 3.031 85.8 4.982 97.1 6.938
Ours 9.60 0.850 50.7 2.697 86.2 4.688 97.4 6.727

Table 8. Patch attacks on patch defenses. A greater ASR means better.

Type Model Method
Clean GAP s GAP c LaVan s LaVan c PS-GAN Ours

ASR ASR Area ASR Area ASR Area ASR Area ASR Area ASR Area

Empirical

ResNet-152
Non-Defense 0 89.5 2.040 91.2 2.010 88.3 2.040 90.4 2.010 91.3 2.040 93.1 1.699

LGS 3.7 51.0 2.040 51.4 2.010 47.3 2.040 47.3 2.010 44.8 2.040 53.9 2.003
DW 10.2 69.4 2.040 68.5 2.010 64.3 2.040 67.5 2.010 57.6 2.040 69.5 1.862

ViT-B
Non-Defense 0 92.4 2.040 93.0 2.010 93.5 2.040 93.5 2.010 90.2 2.040 95.0 1.717

LGS 3.0 56.6 2.040 57.5 2.010 54.7 2.040 56.8 2.010 53.4 2.040 58.1 1.891
DW 10.3 68.0 2.040 69.5 2.010 66.4 2.040 69.3 2.010 60.1 2.040 69.8 2.001

Certifiable
BagNet-17 PatchGuard 24.8 31.2 2.040 31.3 2.010 30.8 2.040 30.9 2.010 26.7 2.040 32.7 1.998
ResNet-50 DS 7.8 13.3 2.040 13.3 2.010 13.1 2.040 12.9 2.010 10.2 2.040 13.4 2.001

tiable pre-processing process to generate patches, and DW is added to Backward
Pass Differential Approximation (BPDA) [1] to ignore the operator in backward
propagation approximate gradient. For certifiable defenses, the patches are gen-
erated to attack the modified CNN model using PatchGuard and DS, which
changes the forward propagation function of the CNN model.

Table 8 shows patch attacks under 2% area on patch defenses. With the help
of DPR, DAPatch achieves better attack performance under all patch defense
methods. We establish a new baseline to reflect the robustness of defending
methods against patch attacks from the perspective of adversarial shapes.

4.5 Physical Attacks

Physical attacks are conducted to verify the effectiveness of DAPatch in real-
world scenarios. We take 10 common classes from ILSVRC2012 [43] and 50 im-
ages in total are taken at five different placements (5 in each class). We conduct
experiments with angles and lighting under 5% area in the untargeted setting
with Total Variation (TV) loss [45]. After printing patches with CANON iR-
ADV C5535, we place them next to the corresponding item and photograph via
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(a) Envelope → Switch (b) Pen → Ladle (c) Ruler → Spotlight (d) White DAPatch

Fig. 6. Physical attacks of DAPatch in the untargeted setting. When the light and
shadow remain unchanged, for example, (a) is originally predicted as envelope, we use
the camera to photograph and generate a patch, and attach it near the object. It is
predicted as the switch after photographing again.

an iPhone 12. The initial ASR (%) on 50 original images is 16. Then, the ASR
in these angles (−30◦, 0◦, and 30◦) are 40, 60, and 44 in the middle lightning,
respectively. The ASR (%) in different lightning (low, middle, and high lighting)
are 56, 60, and 60 in 0◦, respectively. Figure 6 shows some examples of physical
attacks. We choose GAP and PS-GAN for comparison. Under the same exper-
imental parameters (middle lighting, 0◦), the ASR (%) is 34 and 44, which is
26 and 16 less than DAPatch (60). In general, our DAPatch is less robust to
angles (since it affects the shape of patches), but still outperforms other patch
attacks. We also try to use the white DAPatch to attack. Although the white
DAPatch only receives 30 of the ASR, it also proves that the deformation attack
is effective. Please refer to Appendix 5 for more details.

5 Conclusions

As a special form of adversarial attack, patch attacks have been extensively
studied and analyzed due to their threatening nature to the real world. However,
due to the lack of an effective modeling strategy, previous work has to restrict
the patches to fixed shapes, such as circles or rectangles, which neglects the
shape of patches as a factor in patch attacks. In this paper, we present a new
Deformable Patch Representation that exploits triangle geometry and adopts
a differentiable mapping process between contour modeling and masking. To
further improve attack performance, we propose a joint optimization algorithm
named Deformable Adversarial Patch which supports simultaneous and efficient
optimization of shape and texture. Extensive experiments show that a particular
shape can improve attack performance. Finally, DAPatch poses a great threat
in both the digital and real-world against various DNN architectures.
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