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This supplementary material contains the following contents:

– The difference between the training processes of FAT and SAT methods on
the more datasets. (see Sec. 1).

– Detailed algorithms of FGSM-BP, FGSM-EP and FGSM-MEP in Sec. 3.3
of the manuscript (see Sec. 2).

– Proof of Proposition 1 in Sec. 3.4 of the manuscript.(see Sec. 3).
– Detailed hyper-parameter settings. (see Sec. 4).
– Experiments with a larger model as the backbone (see Sec. 5).
– More comparative experiments with using a cyclic learning rate strategy (see

Sec. 6).

1 Difference between the Training Processes of FAT and
SAT Methods

In Fig.2 of the manuscript (Sec.3.1), we compared the intermediate results of
the training processes of FAT and SAT on the CIFAR-10 dataset. Here, we also
reinvestigate catastrophic overftting on more datasets, i.e., CIFAR-100 [6] and
Tiny ImageNet [2]. We adopt ResNet18 [3] as the backbone on CIFAR-100 and
PreActResNet18 [4] on Tiny ImageNet. The training setting is presented in the
Sec.4.1 of the manuscript.

We observe a similar overfitting phenomenon on CIFAR-100 and Tiny Ima-
geNet. There is also a distinct difference between the attack success rates (ASRs)
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Fig. 1. The difference between the training processes of FAT and SAT methods on the
CIFAR-100 dataset. Left: the attack success rate of generated AEs. Right: the PGD-10
robust accuracy of the target model.
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Fig. 2. The difference between the training processes of FAT and SAT methods on
the Tiny ImageNet dataset. Left: the attack success rate of generated AEs. Right: the
PGD-10 robust accuracy of the target model.

of AEs used in FAT and SAT in the late training stage. The results on CIFAR-
100 are shown in Fig. 1. It can be observed that the ASRs of FGSM-RS drop
sharply at the 26-th epoch, resulting in the dramatic decreases of the robust
accuracy. But the ASRs of PGD-2-AT do not drop sharply during the whole
training. PGD-2-AT does not suffer from catastrophic overftting. The results
on Tiny ImageNet are shown in Fig. 2. It can be observed that the ASRs of
FGSM-RS drop sharply at the 105-th epoch.

2 Detailed Algorithms of FGSM-BP, FGSM-EP and
FGSM-MEP

FGSM-BP uses the adversarial perturbations from the previous batch onto clean
images and then conduct FGSM based on the perturbed examples. The FGSM-
MEP algorithm is shown in Algorithm 1. FGSM-EP uses the adversarial per-
turbations from the previous epoch onto clean images and then conduct FGSM
based on the perturbed examples. The FGSM-EP algorithm is shown in Algo-
rithm 2. And The FGSM-MEP algorithm is shown in Algorithm 3.
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3 Proof of Proposition 1

Proof. The first part of the desired result is true by the Jensen’s inequality as

(
Eδ̂adv∼Ω

[∥∥δ̂adv∥∥2])2 ≤ Eδ̂adv∼Ω

[∥∥δ̂adv∥∥22]. (1)

In the following we focus on Eδ̂adv∼Ω

[
∥δ̂adv∥22

]
. Denote

∇ = ∇xL(f(x+ δpgi;w),y), (2)

we have

Eδ̂adv∼Ω

[
∥δ̂adv∥22

]
= Eδ̂adv

[∥∥ΠΩ

[
δpgi + α · sign(∇)

]∥∥2
2

]
=

d∑
i=1

Eδpgi(i)

[
ΠΩ

[
δpgi(i) + α · sign(∇i)

]2]

≤ d · Eδpgi(i)

[
min

{ϵ2
d
,
(
δpgi(i) + α · sign(∇i)

)2}]
= d · Eri

[
Eδpgi(i)

[
min

{ϵ2
d
,
(
δpgi(i) + α · sign(∇i)

)2}] ∣∣∣∣∣ sign(∇i) = ri

]
,

(3)
where the last setp follows the low of total expectation as ri := sign(∇i) is also
a random variable depending on δt(i).

As ri is a binary random variable, d is the feature dimension, and α < ϵ, it
holds that

− ϵd−1/2 > − ϵ+ α

ϵd−1/2 < ϵ+ α,

and we could separate the procedure into the following two cases:
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(i) ri = 1, the inner conditional expectation has the form:∫ ϵ

−ϵ

min

{
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d
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}
1

2ϵ
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(ii) ri = −1, the inner conditional expectation will be:∫ ϵ

−ϵ
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(5)

Combining (4) and (5) together with (3), we obtain

Eδ̂adv∼Ω

[
∥δ̂adv∥2

]
≤
√

Eδ̂adv∼Ω

[
∥δ̂adv∥22

]
≤
√

1

d
· ϵ.

Remark. If Ω is a bounded set like Ω =
{
δ̂adv : ∥δ̂adv − δpgi∥22 ≤ ϵ2

}
, we can

obtain the upper bound of the proposed method which is
√

1
d · ϵ. It is less than
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Algorithm 1 FGSM-BP

Require: The epoch N , the maximal perturbation ϵ, the maximal label perturbation
ϵy, the step size α, the dataset D including the benign sample batch xB and the
label yB , the dataset batch number MB , the network f(·,w) with parameters w,
the decay factor µ, the hyper-parameter λ, the adversarial initialization set Dδ.

1: for n = 1, ..., N do
2: for i = 1, ...,MB do
3: if i == 1 then
4: δpgi = U(−ϵ, ϵ)
5: gc = sign (∇xiL(f(xi + δpgi;w),yi))
6: δadv = Π[−ϵ,ϵ][δpgi + α · gc]
7: Dδ = δadv

8: w← w−∇w[L(f(xi+δadv;w),yi)+λ·∥f(x+ δadv;w)− f(x+ δpgi;w)∥22]
9: else
10: δpgi = Dδ

11: gc = sign (∇xiL(f(xi + δpgi;w),yi))
12: δadv = Π[−ϵ,ϵ][δpgi + α · gc]
13: Dδ = δadv

14: w← w−∇w[L(f(xi+δadv;w),yi)+λ·∥f(x+ δadv;w)− f(x+ δpgi;w)∥22]
15: end if
16: end for
17: end for

the bound
√

d
3 · ϵ of FGSM-RS provided in [1] when d>

√
3. It requires that the

prior-guided adversarial perturbation δpgi is not far from the current adversarial

perturbation δ̂adv. Moreover, d represents the dimension of image data whose
value is much larger than 4.

4 Detailed Hyper-parameter Settings

In this section, we present the detailed hyper-parameter settings of the proposed
FGSM-MEP. There are two hyper-parameters in the proposed FGSM-MEP: the
decay factor µ and the lambda λ. To evaluate the influence of the decay factor
on FGSM-MEP, we perform an experiment on the CIFAR-10 database. The
metric is the robust accuracy under PGD-50, C&W and AA attack. The results
are shown in Fig 3. It is observed that when the decay factor µ is set to 0.3,
FGSM-MEP achieves the best performance under all attack scenarios.

To evaluate the influence of the lambda λ, we conduct an experiment by
using FGSM-MEP with different lambda values λ. The metric is also the robust
accuracy unde rPGD-50, C&W and AA attack. The results are shown in Fig 3.
It can be observed that when the lambda λ is set to 10, FGSM-MEP achieves
the best performance under all attack scenarios. Hence, we set the the decay
factor µ to 0.3 and the lambda λ to 8 for FGSM-MEP to conduct adversarial
training.
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Algorithm 2 FGSM-EP

Require: The epoch N , the maximal perturbation ϵ, the maximal label perturbation
ϵy, the step size α, the dataset D including the benign sample x and the label y,
the dataset size M , the network f(·,w) with parameters w, the decay factor µ, the
hyper-parameter λ, the adversarial initialization set Dδ.

1: for n = 1, ..., N do
2: for i = 1, ...,M do
3: if n == 1 then
4: δpgi = U(−ϵ, ϵ)
5: gc = sign (∇xiL(f(xi + δpgi;w),yi))
6: δadv = Π[−ϵ,ϵ][δpgi + α · gc]
7: Dδ

i = δadv

8: w← w−∇w[L(f(xi+δadv;w),yi)+λ·∥f(x+ δadv;w)− f(x+ δpgi;w)∥22]
9: else
10: δpgi = Dδ

i

11: gc = sign (∇xiL(f(xi + δpgi;w),yi))
12: δadv = Π[−ϵ,ϵ][δpgi + α · gc]
13: Dδ

i = δadv

14: w← w−∇w[L(f(xi+δadv;w),yi)+λ·∥f(x+ δadv;w)− f(x+ δpgi;w)∥22]
15: end if
16: end for
17: end for

5 Experiments with a Larger Model as the Backbone

As for using a larger architecture, we conduct an experiment on CIFAR-10 with
WideResNet34-10 [13] as the backbone. The results are shown in Table 1. It can
be observed that compared with other FAT methods, the proposed FGSM-MEP
can achieve the best robustness performance under all attack scenarios. In terms
of training efficiency, the proposed FGSM-MEP requires a bit more calculation
cost than FGSM-RS, but much less time than other FAT variants.

6 Experiments with a Cyclic Learning Rate Strategy

In the manuscript, we conducted all experiments using the multi-step learn-
ing rate strategy. Here, we also conduct comparative experiments using a cyclic
learning rate strategy [9] on CIFAR-10 and CIFAR-100. Following [1,5], we set
the maximum learning rate of FGSM-GA [1] and FGSM-CKPT [5] to 0.3. Follow-
ing [12], we set the maximum learning rate of FGSM-RS [12], Free [8], GAT [10]
and NuAT [11], and the proposed method to 0.2.

The results are shown in Table 2 and Table 3. We can observe the similar
phenomenons as the models trained using a multi-step learning rate strategy.
Specifically, compared with other fast AT methods, the proposed FGSM-MEP
can achieve the best adversarial robustness among the fast AT methods under
all adversarial attack scenarios. As [1] discovered, using the cyclic learning rate
strategy can improve the robustness against adversarial examples. But it also
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Algorithm 3 FGSM-MEP

Require: The epoch N , the maximal perturbation ϵ, the maximal label perturbation
ϵy, the step size α, the dataset D including the benign sample x and the label y,
the dataset size M , the network f(·,w) with parameters w, the decay factor µ, the
hyper-parameter λ, the adversarial initialization set Dδ and the historical model
gradient Dm.

1: for n = 1, ..., N do
2: for i = 1, ...,M do
3: if n == 1 then
4: δpgi = U(−ϵ, ϵ)
5: gc = sign (∇xiL(f(xi + δpgi;w),yi))
6: Dm

i = gc

7: δadv = Π[−ϵ,ϵ][δpgi + α · gc]
8: Dδ

i = δadv

9: w← w−∇w[L(f(xi+δadv;w),yi)+λ·∥f(x+ δadv;w)− f(x+ δpgi;w)∥22]
10: else
11: δpgi = Dδ

i

12: gc = sign (∇xiL(f(xi + δpgi;w),yi))
13: Dm

i = µ · Dm
i + gc

14: δadv = Π[−ϵ,ϵ][δpgi + α · gc]
15: Dδ

i = Π[−ϵ,ϵ][δpgi + α · sign(Dm
i )]

16: w← w−∇w[L(f(xi+δadv;w),yi)+λ·∥f(x+ δadv;w)− f(x+ δpgi;w)∥22]
17: end if
18: end for
19: end for

reduces the accuracy of clean images. Compared with FGSM-GA, the proposed
FGSM-MEP achieves a higher robustness accuracy. For example, the FGSM-
GA achieves the accuracy of about 43.06% under AA attack while the proposed
FGSM-MEP achieves the accuracy of about 46.65% under AA attack. In terms
of efficiency, our training process is about 3 times faster than Free-AT, 2.5 times
faster than FGSM-GA, and 1.4 times faster than GAT and NuAT.
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Fig. 3. Selection of the hyper-parameters decay factor µ and lambda λ uesd in the
proposed method. Left: robust accuracy (%) of different decay factor values on the
CIFAR10 database using ResNet18. Right: robust accuracy (%) of different lambda
values on the CIFAR10 database using ResNet18.

Table 1. Comparisons of clean and robust accuracy (%) and training time (hour) with
WideResNet34-10 on the CIFAR-10 database. Number in bold indicates the best of
the fast AT methods.

CIFAR-10 Clean PGD-10 PGD-20 PGD-50 AA Time(h)

PGD-AT [7] 85.17 56.1 55.07 54.87 51.67 31.9h

FGSM-RS [12] 74.3 42.3 41.2 40.9 38.4 5.8h

FGSM-CKPT [5] 91.8 44.7 42.6 42.2 40.4 8.7h

NuAT [11] 85.30 55.8 54.68 53.75 50.06 11.8h

GAT [10] 85.17 56.3 55.23 54.97 50.01 12.9h

FGSM-GA [1] 82.1 48.9 47.1 46.9 45.7 20.3h

Free-AT [8] 80.1 47.9 46.7 46.3 43.9 23.7h

FGSM-MEP(ours) 85.09 57.72 56.86 56.4 50.11 8.3h



Prior-Guided Adversarial Initialization for Fast Adversarial Training 9

Table 2. Comparisons of clean and robust accuracy (%) and training time (minute)
with ResNet18 on the CIFAR-10 database. Number in bold indicates the best of the
fast AT methods. All models are trained using a cyclic learning rate strategy.

CIFAR-10 Clean PGD-10 PGD-20 PGD-50 AA Time(min)

FGSM-RS [12]
Best 83.75 48.05 46.47 46.11 42.92

15
Last 83.75 48.05 46.47 46.11 42.92

FGSM-CKPT [5]
Best 89.08 40.47 38.2 37.69 35.66

23
Last 89.08 40.47 38.2 37.69 35.66

NuAT [11]
Best 76.23 51.52 50.81 50.64 46.33

30
Last 76.23 51.52 50.81 50.64 46.33

GAT [10]
Best 81.91 50.43 49.82 49.62 45.24

33
Last 81.91 50.43 49.82 49.62 45.24

FGSM-GA [1]
Best 80.83 48.76 47.83 47.54 43.06

53
Last 80.83 48.76 47.83 47.54 43.06

Free-AT [8]
Best 75.22 44.67 43.97 43.72 40.30

58
Last 75.22 44.67 43.97 43.72 40.30

FGSM-MEP(ours)
Best 80.68 52.48 51.69 51.5 46.65

22
Last 80.68 52.48 51.69 51.5 46.65

Table 3. Comparisons of clean and robust accuracy (%) and training time (minute)
with ResNet18 on the CIFAR-100 database. Number in bold indicates the best of the
fast AT methods. All models are trained using a cyclic learning rate strategy.

CIFAR-100 Clean PGD-10 PGD-20 PGD-50 AA Time(min)

FGSM-RS [12]
Best 57.71 24.82 23.91 23.64 20.66

19
Last 57.71 24.82 23.91 23.64 20.66

FGSM-CKPT [5]
Best 70.75 10.85 7.86 6.32 2.07

25
Last 70.75 10.85 7.86 6.32 2.07

NuAT [11]
Best 59.52 27.17 22.52 20.29 11.45

31
Last 59.52 27.17 22.52 20.29 11.45

GAT [10]
Best 59.88 21.54 20.91 20.56 17.68

34
Last 59.88 21.54 20.91 20.56 17.68

FGSM-GA [1]
Best 55.44 27.14 26.43 26.19 22.08

55
Last 55.44 27.14 26.43 26.19 22.08

Free-AT [8]
Best 47.12 23.05 22.7 22.66 18.90

62
Last 47.12 23.05 22.7 22.66 18.90

FGSM-MEP(ours)
Best 56.69 29.34 28.74 28.53 23.00

24
Last 56.69 29.34 28.74 28.53 23.00
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