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Abstract. Fast adversarial training (FAT) effectively improves the ef-
ficiency of standard adversarial training (SAT). However, initial FAT
encounters catastrophic overfitting, i.e., the robust accuracy against ad-
versarial attacks suddenly and dramatically decreases. Though several
FAT variants spare no effort to prevent overfitting, they sacrifice much
calculation cost. In this paper, we explore the difference between the
training processes of SAT and FAT and observe that the attack success
rate of adversarial examples (AEs) of FAT gets worse gradually in the
late training stage, resulting in overfitting. The AEs are generated by the
fast gradient sign method (FGSM) with a zero or random initialization.
Based on the observation, we propose a prior-guided FGSM initializa-
tion method to avoid overfitting after investigating several initialization
strategies, improving the quality of the AEs during the whole training
process. The initialization is formed by leveraging historically generated
AEs without additional calculation cost. We further provide a theoretical
analysis for the proposed initialization method. We also propose a sim-
ple yet effective regularizer based on the prior-guided initialization, i.e.,
the currently generated perturbation should not deviate too much from
the prior-guided initialization. The regularizer adopts both historical and
current adversarial perturbations to guide the model learning. Evalua-
tions on four datasets demonstrate that the proposed method can prevent
catastrophic overfitting and outperform state-of-the-art FAT methods.
The code is released at https://github.com/jiaxiaojunQAQ/FGSM-PGI.
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Fig. 1. PGD-10 robust accuracy and training time of different FAT methods with
ResNet18 as the backbone on the CIFAR-10 dateset. x-axis denotes training time
(lower is more efficient) and y-axis denotes PGD-10 accuracy (higher is more robust).

1 Introduction

Deep neural networks (DNNs) [27,5,55,16,48,44,20,29,30,28] are vulnerable to
adversarial examples (AEs) [43,8,14,12,31,51,21,17,13,3,4] generated by adding
imperceptible perturbations to benign images. Standard adversarial training
(SAT) [32,46,22] is one of the most efficient defense methods against AEs. It
adopts projected gradient descent (PGD) [32], a multi-step attack method, to
generate AEs for training. But, SAT requires much time to calculate gradients
of the network’s input multiple times.

To improve efficiency, fast adversarial training (FAT) methods [15,35,53,23]
have been proposed. Goodfellow et al. first [15] adopt FGSM to generate AEs for
training, i.e., FGSM-AT, but it encounters the catastrophic overfitting. Wong
et al. [49] propose to combine FGSM-AT with random initialization along with
early stopping to overcome the overfitting. Andriushchenko et al. [2] propose
a method from the view of regularization to enhance the quality of AEs, i.e.,
GradAlign. Kim et al. [25] propose a simple method to determine an appropriate
step size of FGSM-AT to generate stronger AEs, i.e., FGSM-CKPT. Sriramanan
et al. [41] introduce a relaxation term in the training loss to improve the qual-
ity of the generated AEs, i.e., GAT. Then, Sriramanan et al. [42] propose a
Nuclear-Norm regularizer to enhance the optimization of the AE generation and
the model training. These methods not only prevent catastrophic overfitting but
also achieve advanced defense performance by enhancing the quality of AEs.
However, compared with FGSM-RS, these advanced methods require high addi-
tional calculation costs to generate stronger AEs.

As AEs are critical for adversarial training, we study the AEs of both FAT
and SAT during their training processes to explore the reason for catastrophic
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Fig. 2. The difference between the training processes of FAT and SAT methods on the
CIFAR-10 dataset. Left: the attack success rate of generated AEs. Right: the PGD-10
robust accuracy of the target model. FGSM-AT and FGSM-RS encounter catastrophic
overfitting after training a few epochs. But PGD-2-AT and our method can prevent
the overfitting.

overfitting. Surprisingly, we observe a distinct difference between the attack suc-
cess rates of their AEs in the late training stage. The attack success rate of FAT
drops sharply after a few training epochs while the robust accuracy decreases
to 0 (see FGSM-AT and FGSM-RS in Fig. 2). This phenomenon indicates that
overfitting happens when the quality of AEs becomes worse. However, the over-
fitting does not exist in the two-step PGD (PGD-2-AT) that can be treated
as FGSM-AT with an adversarial initialization. It means adversarial initializa-
tion could be a solution to overfitting. Based on the observation, we raise a
question “can we obtain an adversarial initialization for FGSM-AT to maintain
the high quality of AEs for avoiding catastrophic overfitting without additional
calculation cost?” We investigate several initialization strategies and propose
a prior-guided initialization by leveraging historically generated AEs, dubbed
FGSM-PGI. Specifically, we first use the buffered perturbations of AEs from the
previous batch and the previous epoch as the initialization for FGSM, respec-
tively, called FGSM-BP and FGSM-EP. The two strategies are demonstrated to
be effective. To exploit complete prior information, we then propose to leverage
the buffered gradients from all previous epochs via a momentum mechanism as
an additional prior, dubbed FGSM-MEP, which works the best. Furthermore,
we provide a theoretical analysis for the proposed initialization method.

Moreover, we also propose a simple yet effective regularizer based on the
above prior-guided initialization to guide model learning for better robustness.
The current perturbation can be generated via FGSM using the prior-guided ini-
tialization. The regularizer prevents the current perturbation deviating too much
from the prior-guided initialization, which is implemented by using a squared L2

distance between the predictions of adversarial examples generated based on the
current perturbation and the prior-guided initialization.

The proposed method not only prevents catastrophic overfitting but also im-
proves the adversarial robustness against adversarial attacks. Fig. 1 illustrates
the robustness and training efficiency of different FAT methods. Our main contri-
butions are in three aspects: 1) We propose a prior-guided adversarial initializa-
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tion to prevent overfitting after investigating several initialization strategies. 2)
We also propose a regularizer to guide the model learning for better robustness
by considering both the currently generated perturbation and the prior-guided
initialization. 3) Extensive experiments on four datasets demonstrate that the
proposed method can outperform state-of-the-art FAT methods in terms of both
efficiency and robustness.

2 Related Work

2.1 Adversarial Training

Adversarial training (AT) variants [54,37,50] are effective in defending against
AEs. Madry et al. [32] first formulate AT as a minimax optimization problem
formulated as follows:

min
w

E(x,y)∼D[max
δ∈Ω

L(f(x+ δ;w),y)], (1)

where f(·;w) represents a deep neural network with parameters w, D repre-
sents a joint data distribution of the benign image x and the GT one-hot label
y. L(f(x;w),y) represents the classification loss function. δ represents the ad-
versarial perturbation, and Ω represents a threat bound which can be defined as
Ω = {δ : ∥δ∥ ≤ ϵ} with the maximum perturbation strength ϵ. Multi-step AT
methods generate AEs by a multi-step adversarial attack method, i.e., projected
gradient ascent (PGD) [32]. It can be defined as:

δt+1 = Π[−ϵ,ϵ] [δt + α · sign (∇xL (f (x+ δt;w) ,y))] , (2)

where δt+1 represents the perturbation at the t+1-th iteration, α represents the
attack step size, and Π[−ϵ,ϵ] is the projection that maps the input to the range
[−ϵ, ϵ]. This is a prime PGD-based AT framework proposed in [32]. Following
this work, many advanced variants [45,47,6,24,34,38] have been proposed from
different perspectives to improve model robustness. An early stopping version
[37] of PGD-based AT stands out amongst them.

2.2 Fast Adversarial Training

Although multi-step AT methods can achieve good robustness, they require lots
of calculation costs to generate AEs for training. Fast adversarial training vari-
ants that generate AEs by the one-step fast gradient sign method (FGSM) [15]
are proposed to improve the efficiency, which can be dubbed FGSM-based AT
methods. The perturbation of FGSM-AT [15] is defined as:

δ = ϵ · sign (∇xL(f(x;w),y)) , (3)

where ϵ is the maximal perturbation strength. Though FGSM-based AT acceler-
ates the training speed of AT, it encounters catastrophic overfitting. Specifically,
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after a period of training, the trained model suddenly cannot defend against the
AEs generated by PGD. Wong et al. [49] propose to conduct FGSM-based AT
with a random initialization. Its perturbation can be defined as:

δ = Π[−ϵ,ϵ] [η + α · sign (∇xL(f(x+ η;w),y))] , (4)

where η ∈ U(−ϵ, ϵ) represents the random initialization, U is a uniform distri-
bution, and α is set to 1.25ϵ. After that, a series of FAT methods enhances the
quality of AEs to improve the defense performance. In detail, Andriushchenko
et al. [2] demonstrate that using the random initialization cannot prevent catas-
trophic overfitting. They propose a regularizer to generate stronger AEs, i.e.,
FGSM-GA. Kim et al. [25] reveal that FGSM-RS adopts AEs with the maxi-
mum perturbation instead of ones in the adversarial direction, resulting in the
overfitting. They then propose a method to determine an appropriate step size
to generate powerful AEs to improve model robustness. Sriramanan et al. [41]
enhance the quality of the generated AEs by using a relaxation term for the
classification loss, i.e., GAT. Besides, Sriramanan et al. [42] design a Nuclear-
Norm regularizer to enhance optimization of the AEs generation to improve the
model robustness, i.e., NuAT. Though these methods can prevent overfitting and
achieve advanced defense performance, they require much additional calculation
cost to conduct AT.

3 The Proposed Approach

We first present our observations of revisiting catastrophic overfitting in Sec. 3.1
and then explore several prior-guided adversarial initialization strategies for
FGSM-AT to prevent the overfitting in Sec. 3.2, i.e., FGSM-PGI. We propose a
simple yet effective regularization method for the FGSM-PGI to further improve
model robustness in Sec. 3.3. Moreover, we also provide a theoretical analysis
for the proposed initialization method in Sec. 3.4.

3.1 Revisting Catastrophic Overfitting

Catastrophic overfitting is a phenomenon that the robust accuracy of FAT drops
sharply to 0% in the late training stage (see the left figure of Fig. 2), which was
noticed by Wong et al. [49]. They then found random initialization of FGSM
can help avoid the overfitting with training for limited epochs. However, if the
training process of FGSM-RS goes on, catastrophic overfitting still appears, as
revealed in [2], which indicates that random initialization must be conducted
with early stopping. Hence, FGSM-RS does not solve the overfitting fundamen-
tally. FGSM-GA [2] proposes a method from the perspective of regularization in
the loss to generate stronger AEs. FGSM-CKPT [25] proposes a method for ad-
justing the step size of FGSM to improve the quality of AEs in different training
stages. GAT [41] adopts a relaxation term for the classification loss to gener-
ate stronger AEs during the AEs generation. NuAT [42] uses a Nuclear Norm
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regularizer to improve the optimization of the AEs generation. These methods
prevent catastrophic overfitting by improving the quality of AEs during the
training. However, FGSM-GA requires calculating gradients multiple times for
regularization, FGSM-CKPT requires multiple times of forwarding propagation
for step size selection, and GAT and NuAT require much more time to conduct
regularization for generating powerful AEs, which significantly reduces efficiency.

We reinvestigate catastrophic overfitting by comparing the intermediate re-
sults of the training processes of FAT and SAT on the CIFAR-10 dataset [26].
For FAT, we study two methods, i.e., FGSM-AT and FGSM-RS. For SAT, we
study PGD-AT [32] with the iteration time of 2, i.e., PGD-2-AT. As AEs are
the key that distinguishes adversarial training from conventional training, we
observe the quality of adversarial examples during the whole training process,
i.e., whether adversarial examples can successfully attack the target model. The
quality is evaluated by attack success rate (ASR). Fig. 2 illustrates the curves
of the robust accuracy and the ASR of the above methods as well as ours. We
also observe similar phenomenons on other benchmark datasets that are shown
in the supplementary material.

We summarize the observations as follows. First, it can be observed that the
ASRs of FGSM-AT and FGSM-RS drop sharply at the 20-th and 74-th epoch,
respectively, leading to the dramatic decreases of the robust accuracy. This in-
dicates that the model robustness would collapse against adversarial attacks if
the generated adversarial examples fail in attacking against the model during
training. Note that the investigation from the perspective of the quality of adver-
sarial example (i.e., ASR) is ignored by previous works. Second, FGSM-RS with
random initialization delays the overfitting from the 20-th epoch to the 70-th
epoch. Enhancing the initialization could alleviate the overfitting, but cannot es-
sentially prevent it, which is also observed in [2]. Third, surprisingly, PGD-2-AT
does not suffer from the overfitting, which draws our attention. PGD-2-AT can
be treated as FGSM-AT with an adversarial initialization of FGSM for adversar-
ial example generation. Even after 110 training epochs, there are still a portion
of high-quality adversarial examples that can fool the model. It indicates that
adversarial initialization can improve the quality of adversarial examples. The
initialization requires additional gradient calculation, which is not desirable.

Table 1. Comparisons of clean and robust accuracy (%) and training time (minute)
on the CIFAR-10 dataset. Number in bold indicates the best.

Method Clean PGD-10 PGD-20 PGD-50 C&W AA Time(min)

FGSM-BP
Best 83.15 54.59 53.55 53.2 50.24 47.47

73
Last 83.09 54.52 53.5 53.33 50.12 47.17

FGSM-EP
Best 82.75 54.8 53.62 53.27 49.86 47.94

73
Last 81.27 55.07 54.04 53.63 50.12 46.83

FGSM-MEP
Best 81.72 55.18 54.36 54.17 50.75 49.00

73
Last 81.72 55.18 54.36 54.17 50.75 49.00
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3.2 Prior-Guided Adversarial Initialization

The above three observations motivate us to dive into the question “how to ob-
tain adversarial initialization without additional calculation cost”. We come up
with using the adversarial perturbations of historical AEs as the initialization
for FGSM to conduct adversarial training, dubbed FGSM-PGI. Such perturba-
tions serve as the prior knowledge that we can freely obtain without additional
gradient calculation except for extra storage. We explore three strategies of ex-
ploiting historical perturbations, i.e., taking perturbations from the previous
batch, from the previous epoch, and from the momentum of all epochs, i.e.,
FGSM-BP, FGSM-EP, and FGSM-MEP.

Prior From the Previous Batch (FGSM-BP). We store the perturbations
of AEs from the previous batch and regard them as the initialization of FGSM to
generate AEs in the current batch. As the batch is randomly sampled, there is no
correspondence between perturbations from the previous batch and samples from
the current batch. Specifically, for a data point x, we first add the perturbation
from the previous batch onto it and then conduct FGSM based on the perturbed
example. The adversarial perturbation can be defined as:

δBt+1
= Π[−ϵ,ϵ] [δBt

+ α · sign (∇xL(f(x+ δBt
;w),y))] , (5)

where δBt+1
is the adversarial perturbation in the t+1-th batch. Compared with

FGSM-RS (see Eq. 4), we replace the random initialization with the adversarial
perturbation from the previous batch.

Prior From the Previous Epoch (FGSM-EP). We store the perturbations
of all adversarial samples from the previous epoch and use them as initialization
of FGSM to generate adversarial perturbations for the samples in the current
epoch. Note that there is a correspondence between each perturbation from the
previous epoch and the sample in the current epoch. The adversarial perturba-
tion is defined as:

δEt+1
= Π[−ϵ,ϵ] [δEt

+ α · sign (∇xL(f(x+ δEt
;w),y))] , (6)

where δEt+1
is the adversarial perturbation in the t+1-th epoch. Compared with

FGSM-RS (see Eq. 4), we replace the random initialization with the adversarial
perturbation from the previous epoch.

Prior From the Momentum of All Previous Epochs (FGSM-MEP).
To completely leverage historical adversarial perturbations during the whole
training process, we propose to compute the momentum of one sample’s gradients
across all previous training epochs. Then, the gradient momentum is used as the
initialization of FGSM for AE generation in the current epoch. There is also a
correspondence between the gradient momentum and the sample in the current
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epoch. The adversarial perturbation can be defined as:

gc = sign
(
∇xL(f(x+ ηEt

;w),y)
)
, (7)

gEt+1
= µ · gEt

+ gc, (8)

δEt+1
= Π[−ϵ,ϵ]

[
ηEt

+ α · gc

]
, (9)

ηEt+1
= Π[−ϵ,ϵ]

[
ηEt

+ α · sign(gEt+1
)
]
. (10)

Similar to FGSM-AT (Eq. 3), gc is regarded as the signed gradient and gEt+1

is the signed gradient momentum in the t+ 1-th epoch. µ represents the decay
factor. δEt+1

is the adversarial perturbation, similar to that of FGSM-EP. ηEt+1

is the projected perturbation, which is used as adversarial initialization in the
next epoch. Compared with FGSM-EP, FGSM-MEP exploits the gradient mo-
mentum involving information of all previous epochs as initialization, instead of
using only information in the previous epoch.

3.3 Prior-guided Initialization based Regularization

We propose an effective regularization method based on the prior-guided initial-
ization to improve model robustness. Specifically, given the prior-guided initial-
ization, we can generate a current perturbation via FGSM with the initializa-
tion. Both the current perturbation and the initialization can be used to create
adversarial examples. Forcing the two types of adversarial examples to have sim-
ilar predictions could help improve the smoothness of function. The proposed
regularization term can be added into the training loss to update the model
parameters wt+1, as follows:

wt+1 = argmin
w

[L(f(x+ δadv;w),y) + λ · ∥f(x+ δadv;w)− f(x+ δpgi;w)∥22],
(11)

where δpgi represents the prior-guided initialization generated by one of the
above three initialization methods. δadv represents the current adversarial per-
turbation generated via FGSM using δpgi as initialization. λ is a trade-off hyper-
parameter. The first term is the cross-entropy loss on AEs generated using the
current perturbation. The second term represents the regularization, i.e., the
squared L2 distance between the predictions of the two types of adversarial
examples. This term makes the learned model not only robust to currently gen-
erated AEs but also historically generated AEs. In this way, the proposed reg-
ularization term explicitly enforces the function smoothness around samples to
improve model robustness.

Based on the proposed prior-guided adversarial initialization and the regular-
ization, we can establish our FAT framework. We evaluate the three prior-guided
adversarial initialization approaches on CIFAR-10 (see results in Table 1) and
find that they all can prevent catastrophic overfitting and achieve advanced
model robustness against adversarial attacks. FGSM-MEP works the best in
terms of robust accuracy under all attack scenarios. The FGSM-EP, FGSM-
BP and FGSM-MEP algorithms are presented in the supplementary
material.
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3.4 Theoretical Analysis

Proposition 1. Let δpgi be the prior-guided adversarial initialization in FGSM-

BP, FSGM-EP or FSGM-MEP, δ̂adv represents the current adversarial per-
turbation generated via FGSM using δpgi as initialization, and α be the step size
of (5), (6), (9) and (10). If Ω is a bounded set like

Ω =
{
δ̂adv : ∥δ̂adv − δpgi∥22 ≤ ϵ2

}
, (12)

and the step size α satisfies α ≤ ϵ, it holds that

Eδ̂adv∼Ω

[
∥δ̂adv∥2

]
≤

√
Eδ̂adv∼Ω

[
∥δ̂adv∥22

]
≤

√
1

d
· ϵ,

(13)

where δ̂adv is the adversarial perturbation generated by FGSM-BP, FSGM-
EP or FSGM-MEP, and d is the dimension of the feature space.

The proof is deferred to the supplementary material. The upper bound of

the proposed method is
√

1
d · ϵ which is less than the bound

√
d
3 · ϵ of FGSM-RS

provided in [2]. Due to the norm of perturbation (gradient) can be treated as
the convergence criteria for the non-convex optimization problem, the smaller
expectation represents that the proposed prior-guided adversarial initialization
will be converged to a local optimal faster than the random initialization with
the same number of iterations.

4 Experiments

4.1 Experimental Setting

Dataset Settings. To evaluate the effectiveness of the proposed FGSM-MEP,
extensive experiments are conducted on four benchmark datasets that are the
most widely used to evaluate adversarial robustness, i.e., CIFAR-10 [26], CIFAR-
100 [26], Tiny ImageNet [11], and ImageNet [11]. Following the commonly used
settings in the adversarial training, we adopt ResNet18 [18] and WideResNet34-
10 [52] as the backbone on CIFAR-10 and CIFAR-100, PreActResNet18 [19] on
Tiny ImageNet, and ResNet50 [18] on ImageNet. We adopt the SGD optimizer
[36] with a learning rate of 0.1, the weight decay of 5e-4, and the momentum of
0.9. As for CIFAR-10, CIFAR-100, and Tiny ImageNet, following the settings
of [37,33], the total epoch number is set to 110. The learning rate decays with
a factor of 0.1 at the 100th and 105th epoch. As for ImageNet, following the
settings of [39,49], the total epoch number is set to 90. The learning rate decays
with a factor of 0.1 at the 30th and 60th epoch. Experiments on ImageNet are
conducted with 8 Tesla V100 and other experiments are conducted with a single
Tesla V100. For our hyper-parameters, the decay factor µ is set to 0.3 and the
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Table 2. Comparisons of clean and robust accuracy (%) and training time (minute)
using ResNet18 on the CIFAR-10 dataset. Number in bold indicates the best.

Method Clean PGD-10 PGD-20 PGD-50 C&W AA Time(min)

PGD-AT [37]
Best 82.32 53.76 52.83 52.6 51.08 48.68

265
Last 82.65 53.39 52.52 52.27 51.28 48.93

FGSM-RS [49]
Best 73.81 42.31 41.55 41.26 39.84 37.07

51
Last 83.82 00.09 00.04 00.02 0.00 0.00

FGSM-CKPT [25]
Best 90.29 41.96 39.84 39.15 41.13 37.15

76
Last 90.29 41.96 39.84 39.15 41.13 37.15

NuAT [42]
Best 81.58 53.96 52.9 52.61 51.3 49.09

104
Last 81.38 53.52 52.65 52.48 50.63 48.70

GAT [41]
Best 79.79 54.18 53.55 53.42 49.04 47.53

114
Last 80.41 53.29 52.06 51.76 49.07 46.56

FGSM-GA [2]
Best 83.96 49.23 47.57 46.89 47.46 43.45

178
Last 84.43 48.67 46.66 46.08 46.75 42.63

Free-AT(m=8) [39]
Best 80.38 47.1 45.85 45.62 44.42 42.17

215
Last 80.75 45.82 44.82 44.48 43.73 41.17

FGSM-BP (ours)
Best 83.15 54.59 53.55 53.2 50.24 47.47

73
Last 83.09 54.52 53.5 53.33 50.12 47.17

FGSM-EP (ours)
Best 82.75 54.8 53.62 53.27 49.86 47.94

73
Last 81.27 55.07 54.04 53.63 50.12 46.83

FGSM-MEP (ours)
Best 81.72 55.18 54.36 54.17 50.75 49.00

73
Last 81.72 55.18 54.36 54.17 50.75 49.00

hyper-parameter λ is set to 8. More details are presented in the supplementary
material.

Evaluation Metrics. For adversarial robustness evaluation, we adopt several
widely used attack methods, i.e., PGD [32], C&W [7], and an ensemble of diverse
parameter-free attacks, AA [10] that includes APGD [10], APGD-T [10], FAB [9],
and Square [1]. We set the maximum perturbation strength ϵ to 8 for all attack
methods. Moreover, PGD attack is conducted with 10, 20 and, 50 iterations, i.e.,
PGD-10, PGD-20, and PGD-50. We report the results of the checkpoint with
the best accuracy under the attack of PGD-10 as well as the results of the last
checkpoint. All experiments in the manuscript are performed with the multi-step
learning rate strategy. We also conduct experiments by using a cyclic learning
rate strategy [40] which are presented in the supplementary material.

Competing Methods.We compare the proposed method with a series of state-
of-the-art FAT methods, i.e., Free-AT[39], FGSM-RS [49], FGSM-GA[2], FGSM-
CKPT[25], GAT [41] and NuAT [42]. We also compare with an advanced multi-
step AT method, i.e., PGD-AT[37]), which is an early stopping version of the
original PGD-based AT method [32].
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Table 3. Comparisons of clean and robust accuracy (%) and training time (minute)
using ResNet18 on the CIFAR-100 dataset. Number in bold indicates the best.

Method Clean PGD-10 PGD-20 PGD-50 C&W AA Time(min)

PGD-AT [37]
Best 57.52 29.6 28.99 28.87 28.85 25.48

284
Last 57.5 29.54 29.00 28.90 27.6 25.48

FGSM-RS [49]
Best 49.85 22.47 22.01 21.82 20.55 18.29

70
Last 60.55 00.45 00.25 00.19 00.25 0.00

FGSM-CKPT [25]
Best 60.93 16.58 15.47 15.19 16.4 14.17

96
Last 60.93 16.69 15.61 15.24 16.6 14.34

NuAT [41]
Best 59.71 27.54 23.02 20.18 22.07 11.32

115
Last 59.62 27.07 22.72 20.09 21.59 11.55

GAT [42]
Best 57.01 24.55 23.8 23.55 22.02 19.60

119
Last 56.07 23.92 23.18 23.0 21.93 19.51

FGSM-GA [2]
Best 54.35 22.93 22.36 22.2 21.2 18.88

187
Last 55.1 20.04 19.13 18.84 18.96 16.45

Free-AT(m=8) [39]
Best 52.49 24.07 23.52 23.36 21.66 19.47

229
Last 52.63 22.86 22.32 22.16 20.68 18.57

FGSM-BP (ours)
Best 57.58 30.78 30.01 28.99 26.40 23.63

83
Last 83.82 30.56 29.96 28.82 26.32 23.43

FGSM-EP (ours)
Best 57.74 31.01 30.17 29.93 27.37 24.39

83
Last 57.74 31.01 30.17 29.93 27.37 24.39

FGSM-MEP (ours)
Best 58.78 31.88 31.26 31.14 28.06 25.67

83
Last 58.81 31.6 31.03 30.88 27.72 25.42

4.2 Results on CIFAR-10

On CIFAR-10, we adopt ResNet18 as the backbone. The results are shown in
Table 2. Note that the results of using WideResNet34-10 as the backbone are
shown in the supplementary material. The proposed FGSM-MEP prevents
catastrophic overfitting and even achieves better robustness than PGD-AT in
most cases. It costs much less time than PGD-AT. Specifically, under the AA
attack, PGD-AT achieves an accuracy of about 48% while the proposed FGSM-
MEP achieves an accuracy of about 49%.

Compared with other FAT methods, the proposed FGSM-MEP achieves com-
parable robustness to the previous most potent FAT method, NuAT. But FGSM-
MEP costs less time than NuAT (73 min VS 104 min). Besides, for the last
checkpoint, the proposed FGSM-MEP can achieve the best robustness perfor-
mance under all attack scenarios. And for the best checkpoint, the proposed
FGSM-MEP also achieves the best robustness performance under the PGD-10,
PGD-20, and PGD-50. In terms of efficiency, our training process is about 3
times faster than Free-AT, 2.5 times faster than FGSM-GA, and 1.4 times faster
than GAT and NuAT. Previous fast adversarial training variants [2,25,41,42]
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Table 4. Comparisons of clean and robust accuracy (%) and training time (minute)
using PreActResNet18 on Tiny ImageNet. Number in bold indicates the best.

Method Clean PGD-10 PGD-20 PGD-50 C&W AA Time(min)

PGD-AT [37]
Best 43.6 20.2 19.9 19.86 17.5 16.00

1833
Last 45.28 16.12 15.6 15.4 14.28 12.84

FGSM-RS [49]
Best 44.98 17.72 17.46 17.36 15.84 14.08

339
Last 45.18 0.00 0.00 0.00 0.00 0.00

FGSM-CKPT [25]
Best 49.98 9.20 9.20 8.68 9.24 8.10

464
Last 49.98 9.20 9.20 8.68 9.24 8.10

NuAT [42]
Best 42.9 15.12 14.6 14.44 12.02 10.28

660
Last 42.42 13.78 13.34 13.2 11.32 9.56

GAT [41]
Best 42.16 15.02 14.5 14.44 11.78 10.26

663
Last 41.84 14.44 13.98 13.8 11.48 9.74

FGSM-GA [2]
Best 43.44 18.86 18.44 18.36 16.2 14.28

1054
Last 43.44 18.86 18.44 18.36 16.2 14.28

Free-AT(m=8) [39]
Best 38.9 11.62 11.24 11.02 11.00 9.28

1375
Last 40.06 8.84 8.32 8.2 8.08 7.34

FGSM-BP (ours)
Best 45.01 21.67 21.47 21.43 17.89 15.36

458
Last 47.16 20.62 20.16 20.07 15.68 14.15

FGSM-EP (ours)
Best 45.01 21.67 21.47 21.43 17.89 15.36

458
Last 46.00 20.77 20.39 20.28 16.65 14.93

FGSM-MEP (ours)
Best 43.32 23.8 23.4 23.38 19.28 17.56

458
Last 45.88 22.02 21.7 21.6 17.44 15.50

improve the quality of adversarial examples in different ways. Though they can
prevent catastrophic overfitting and improve model robustness, they all require
much time for quality improvement. Differently, we improve adversarial example
quality from the perspective of initialization and propose to adopt historically
generated adversarial perturbation to initialize the adversarial examples without
additional calculation cost.

4.3 Results on CIFAR-100

On CIFAR-100, we adopt ResNet18 as the backbone. The results are shown in
Table 3. Compared with CIFAR-10, it is hard for the classification model to
obtain robustness because the CIFAR-100 covers more classes. The proposed
FGSM-MEP achieves comparable robustness to PGD-AT and costs less time
than PGD-AT. Specifically, under the AA attack, PGD-AT achieves an accuracy
of about 25%, while our FGSM-MEP also achieves an accuracy of about 25%.
Note that our training process is about 3 times faster than PGD-AT. Compared
with other FAT methods, the proposed FGSM-MEP also achieves the best ro-
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Table 5. Comparisons of clean and robust accuracy (%) and training time (minute)
using ResNet50 on the ImageNet dataset. Number in bold indicates the best.

ImageNet Epsilon Clean PGD-10 PGD-50 Time (hour)

Free-AT(m=4)[39]
ϵ =2 68.37 48.31 48.28

127.7ϵ =4 63.42 33.22 33.08
ϵ =8 52.09 19.46 12.92

FGSM-RS [49]
ϵ =2 67.65 48.78 48.67

44.5ϵ =4 63.65 35.01 32.66
ϵ =8 53.89 0.00 0.00

FGSM-BP (ours)
ϵ =2 68.41 49.11 49.10

63.7ϵ =4 64.32 36.24 34.93
ϵ =8 53.96 21.76 14.33

bustness against AEs under all attack scenarios on the best and last checkpoints.
In terms of training efficiency, we observe similar results on CIFAR-10.

4.4 Results on Tiny ImageNet and ImageNet

Results on Tiny ImageNet. Following the setting of [25,37], we adopt PreAc-
tResNet18 to conduct AT. The results are shown in Table 4. Compared with com-
peting FAT methods, our FGSM-MEP achieves higher robust accuracy. Com-
pared with PGD-AT, our FGSM-MEP achieves better robustness performance
under all attack scenarios on the best and last checkpoints. In terms of training
efficiency, we observe similar results on CIFAR-10 and CIFAR-100.
Results on ImageNet. Following the setting of [39,49], we adopt ResNet50
to conduct experiments. Specifically, ResNet50 is trained with the maximum
perturbation strength ϵ = 2, ϵ = 4, and ϵ = 8. The proposed FGSM-EP and
FGSM-MEP require memory consumption to store the adversarial perturba-
tion of the last epoch, which limits their application on ImageNet. Fortunately,
FGSM-BP does not require memory consumption to conduct AT. Hence, on the
ImageNet, we compare our FGSM-BP with FGSM-RS and Free-AT. The results
are shown in Table 5. Compared with FGSM-RS and Free-AT, our FGSM-BP
achieves the highest clean and robust accuracy. Our FGSM-BP requires a bit
more calculation cost than FGSM-RS, but much less time than Free-AT.

4.5 Ablation Study

In this paper, we propose a regularization loss term to enforce function smooth-
ness, resulting in improving model robustness. To validate the effectiveness of
the proposed regularization, we adopt ResNet18 as the classification model to
conduct ablation experiments on CIFAR-10. The results are shown in Table 6.
It can be observed that combined with our regularization method, FGSM-BP,
FGSM-EP, and FGSM-MEP can achieve better robustness performance under
all attack scenarios.
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Table 6. Ablation study of the proposed method.

CIFAR-10 Clean PGD-50 C&W AA Time(min)

FGSM-RS
Best 73.81 41.26 39.84 37.07

51
Last 83.82 00.02 0.00 0.00

FGSM-BP w/o regularizer
Best 86.51 45.77 44.8 43.30

51
Last 86.57 44.39 43.82 42.08

FGSM-EP w/o regularizer
Best 85.97 45.97 44.6 43.39

51
Last 86.3 44.97 43.8 42.84

FGSM-MEP w/o regularizer
Best 86.33 46.71 45.5 43.99

51
Last 86.61 45.69 44.8 43.26

FGSM-RS with regularizer
Best 84.41 50.63 48.76 46.80

73
Last 84.41 50.63 48.76 46.80

FGSM-BP with regularizer
Best 83.15 53.2 50.24 47.47

73
Last 83.09 53.33 50.12 47.17

FGSM-EP with regularizer
Best 82.75 53.27 49.86 47.94

73
Last 81.27 53.63 50.12 46.83

FGSM-MEP with regularizer
Best 81.72 54.17 50.75 49.00

73
Last 81.72 54.17 50.75 49.00

5 Conclusion

In this paper, we investigate how to improve adversarial example quality from
the perspective of initialization and propose to adopt historically generated ad-
versarial perturbations to initialize adversarial examples. It can generate power-
ful adversarial examples with no additional calculation cost. Moreover, we also
propose a simple yet effective regularizer to further improve model robustness,
which prevents the current perturbation deviating too much from the prior-
guided initialization. The regularizer adopts both historical and current adver-
sarial perturbations to guide the model learning. Extensive experimental evalua-
tions demonstrate that the proposed method can prevent catastrophic overfitting
and outperform state-of-the-art FAT methods at a low computational cost.
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