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Abstract. Adversarial training is an effective approach for improving
the robustness of deep neural networks against adversarial attacks. Al-
though bringing reliable robustness, adversarial training (AT) will reduce
the performance of identifying clean examples. Meanwhile, Adversarial
training can bring more robustness for large models than small models.
To improve the robust and clean accuracy of small models, we intro-
duce the Multi-Teacher Adversarial Robustness Distillation (MTARD)
to guide the adversarial training process of small models. Specifically,
MTARD uses multiple large teacher models, including an adversarial
teacher and a clean teacher to guide a small student model in the ad-
versarial training by knowledge distillation. In addition, we design a dy-
namic training algorithm to balance the influence between the adversarial
teacher and clean teacher models. A series of experiments demonstrate
that our MTARD can outperform the state-of-the-art adversarial train-
ing and distillation methods against various adversarial attacks. Our code
is available at https://github.com/zhaoshiji123/MTARD.
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1 Introduction

Deep Neural Networks (DNNs) have become powerful tools for solving complex
real-world learning problems, such as image classification [18,34], face recog-
nition [38], and natural language processing [33]. However, Szegedy et al. [35]
demonstrates that DNNs are vulnerable to adversarial attacks with impercepti-
ble adversarial perturbations on input, which causes wrong predictions of DNNs.
This phenomenon raises concerns about the robustness of DNNs in safety-related
areas, such as autonomous driving [11], finance [23], and medical diagnosis [26].

To defend against adversarial attacks, adversarial training is proposed and
shows effectiveness to acquire the adversarial robust DNNs [2,8,27]. In a broad
sense, adversarial training can be regarded as a data augmentation method,
where adversarial examples generated by the adversarial attacks are used as part
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of the model training set to enhance the model robustness against adversarial
attacks. At the mathematical level, a min-max optimization problem can express
the adversarial training process, where the inner maximization can be regarded
as generating adversarial examples, and outer minimization is to train the model
by adversarial examples generated in maximization.

While improving the robustness of DNNs, adversarial training has several
shortcomings in some general scenes. Firstly, the robustness of models obtained
from adversarial training is related to the size of models. In general, the larger
model means the better robust performance [41,48,12,7,47]. However, due to the
limitations of various practical factors, a large model is often not favored in
actual deployment [32]. Secondly, the accuracy of identifying clean examples by
adversarial trained DNNs is far worse than normal trained DNNs, which limits
large-scale use in practical scenarios. Some researchers [45] try to reduce the
negative effects of adversarial training bringing for clean accuracy, but the effect
is still not ideal.

In this paper, we investigate the method to improve both the clean and ro-
bust accuracy of small DNNs by adversarial distillation. Adversarial Robustness
Distillation (ARD) is used to boost the robustness of small models by distilling
from large robust models [12,7,47], which treats large models as teachers and
small models as students. Although the previous work (RSLAD) [48] improves
the robustness via robust soft labels, the clean accuracy is still not ideal com-
pared with the performance of regular training. Inspired by multi-task learning
[37], we propose Multi-Teacher Adversarial Robustness Distillation (MTARD)
by using different teacher models, each teacher model is responsible for what
they are proficient in. To improve both robustness of the student model and the
accuracy of identifying clean examples, we apply a robust teacher model and a
clean teacher model to guide robustness and accuracy simultaneously. However,
due to the complexity of neural networks, teacher models have different degrees
of influence on student models, which can even cause catastrophic forgetting. To
alleviate this phenomenon, we design a joint training algorithm to dynamically
adjust the influence of the teacher models on the student network at different
stages in adversarial distillation. All in all, the main contributions of this work
are three-fold:

– We propose a novel adversarial robustness distillation method called Multi-
Teacher Adversarial Robustness Distillation (MTARD), which applies mul-
tiple teacher models to improve student models’ clean and robust accuracy
by adversarial distillation.

– We design a joint training algorithm based on the proposed Adaptive Nor-
malization Loss to balance the influence on the student model between the
adversarial teacher model and the clean teacher model, which is dynamically
determined by the historical training information.

– We empirically verify the effectiveness of MTARD in improving the perfor-
mance of small models. For the models trained by our MTARD, the Weighted
Robust Accuracy (a metric to evaluate the trade-off between the clean ac-
curacy and robust accuracy) has been greatly improved compared with the
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state-of-the-art adversarial training and distillation method against white-
box and black-box attacks. Especially for black-box Square Attack, MTARD
can most enhance the Weighted Robust Accuracy by 6.87% and 5.12% for
MobileNet-V2 on CIFAR-10 and CIFAR-100 respectively.

2 Related Work

2.1 Adversarial Attack

Since Szegedy et al. [35] proposed that adversarial examples can mislead the
deep neural network, lots of effective adversarial attack methods, such as Fast
Gradient Sign Method (FGSM)[13], Projected Gradient Descent Attack (PGD)
[27], Carilini and Wagner Attack (CW) [5], and Jacobian-based Saliency Map
Attack (JSMA) [29] are proposed. Existing attack methods can be divided into
white-box attacks and black-box attacks. White-box attacks are to know all
the parameter information of the attacked model when generating adversarial
examples, and black-box attacks are to know only part of the attacked model’s
output when generating adversarial examples. In general, black-box attacks sim-
ulate the model gradient by repeatedly querying the target model (query-based
attack) [4,6,1,40,43] or searching for an alternative model similar to the target
model (transfer-based attack) [9,19,24]. Since attackers hardly know the model
parameters of the target model in practical applications, the model’s perfor-
mance against black-box attacks can better reflect the real robustness.

2.2 Adversarial Training

Adversarial Training [25,20,46,45,3] is seen as an effective way to defend against
adversarial attack [48]. Madry et al. [27] formulate Adversarial Training as a
minimax optimization problems formulated as follows:

min
θ

E(x,y)∼D[max
δ∈Ω

L(f(x+ δ; θ), y)], (1)

where f represents a deep neural network, θ represents the weight of f , D rep-
resents a distribution of the clean example x and the ground truth label y.
L(f(x+ δ; θ), y) represents loss function of updating the training model. δ rep-
resents the adversarial perturbation, and Ω represents a bound, which can be
defined as Ω = {δ : ||δ|| ≤ ϵ} with the maximum perturbation strength ϵ.

Much work has been proposed to further improve the robustness by adver-
sarial training. Zhang et al. [45] try to make a balance between robustness and
clean performance (TRADES), Wang et al. [39] further improves performance
by Misclassification-Aware adveRsarial Training (MART). Wu et al. [41] believe
the use of bigger models can improve the model robustness.

Previous work [21,30] use two indexes: clean accuracy and robust accuracy, as
the metric to evaluate the comprehensive performance of the model. Nezihe et al.
[16] proposes a metric named Weighted Robust Accuracy to balance the trade-off
between clean accuracy and robust accuracy, which is used in our experiments.
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2.3 Adversarial Robustness Distillation

Knowledge distillation can transfer the performance of other models to the target
model. Due to the ability to transfer better model performance to other model
performance, it has been widely studied in recent years and works well in some
actual deployment scenarios combined with network pruning and model quan-
tization [17,28,15]. Knowledge distillation has a wide range of practicality and
can also be applied to various practical tasks such as classification [42], image
detection [10], and natural language processing [36]. Knowledge distillation can
briefly be formulated as the following optimization:

argmin
θS

(1− α)L(S(x), y) + ατ2KL(Sτ (x), (T τ (x)), (2)

where KL is Kullback–Leibler divergence loss, τ is a temperature constant used
in the output of network (combined with softmax operation), L represents the
loss function of updating the training model, which can usually be regarded as
cross-entropy in traditional knowledge distillation method.

In general, adversarial training can bring better robustness for the larger
model[31,48,12,7,47]. RAD [12] proposes that using a bigger and stronger model
as the teacher model in adversarial training allows better adversarial train-
ing methods. IAD [47] performs adversarial knowledge distillation by using the
teacher model with the same structure as the student model. RSLAD [48] uses
the soft label generated by the teacher model instead of the one-hot label as
the label used for producing adversarial examples in the process of adversarial
training, which can also improve the robustness of the student model.

3 Methodologies

In this section, we propose our MTARD method to guide the process of adver-
sarial distillation with multiple teacher models and design a dynamic training
method that controls the degree of influence between the adversarial teacher
model and the clean teacher model toward the student model.

3.1 Multi-Teacher Adversarial Robustness Distillation

As we mentioned before, although adversarial training is very effective in im-
proving robustness, the improvement of standard adversarial training methods
for small models is not as obvious as that for large models. Therefore, many
methods on transferring the robustness of large models to small models through
knowledge distillation have been proposed [45,12,48]. Although these methods
can improve the robustness of small models, the adversarial training itself will
hurt the ability of models to identify clean examples. Therefore, the core problem
to be solved in this section is how to improve both clean and robust accuracy in
the adversarial training, then our Multi-Teacher Adversarial Robustness Distil-
lation (MTARD) is proposed.
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Fig. 1. The framework of our Multi-Teacher Adversarial Robustness Distillation
(MTARD). In the process of MTARD, we firstly generate adversarial examples by
student model. Then we produce Lnat and Ladv of the student by the guide of the
clean teacher and the adversarial teacher respectively. Finally, we use Adaptive Nor-
malization Loss to balance the influence between clean teacher and adversarial teacher
and update student model.

Inspired by multi-task learning [37], we hope to not only improve the robust-
ness of the model but also maintain the clean accuracy in Adversarial Distil-
lation. The previous adversarial distillation method only brings a single model
trained by adversarial training, which has strong robustness but weak recogni-
tion ability for clean image. As the only guide, the student model often fits the
distribution of the teacher model, resulting in a lower ability to identify clean
examples. Using GT one-hot labels as a learning objective to improve the clean
recognition rate is still not an ideal option [48]. Therefore we additionally bring a
pre-trained clean teacher model to guide the process of Adversarial Distillation.

The training of the student in MTARD is still based on adversarial training.
With the guidance of an adversarial teacher and a clean teacher in knowledge dis-
tillation, we hope the student can learn robustness from the adversarial teacher
and the ability to identify clean examples from the clean teacher. To produce
the soft label of fulfilling the responsibilities of both teachers, the inputs of
the clean teacher are initial clean examples from original datasets. In contrast,
the inputs of the adversarial teacher are adversarial examples produced by the
student model in the inner maximization. The student inputs are divided into
clean examples and adversarial examples. The outputs of clean examples and
adversarial examples will be guided by adversarial soft label and clean soft label
to supervise the student model training in outer minimization. The minimax
optimization framework of basic MTARD is defined as follows:

argmin
θS

(1− α)KL(S(xnat), Tnat(xnat)) + αKL(S(xadv), Tadv(xadv)), (3)
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xadv = argmax
δ∈Ω

CE(S(xnat + δ; θS), y), (4)

where xadv are adversarial examples produced by clean examples xnat, S(x)
are the abbreviations for S(x; θS), which represents student network S with
parameters θS . Tnat and Tadv respectively represent the clean teacher model
and adversarial teacher model. α is a constant in the basic proposal. The value
p could be specified as different values according to the requirement. We choose
cross-entropy as previous work in the maximization.

The goal of MTARD is to learn a small student network that has both robust
performance as the adversarial pre-trained teacher network and clean perfor-
mance as the clean pre-trained teacher network. In the actual operation process,
however, the simultaneous knowledge distillation of different teacher models will
affect the learning of the student model. The student’s learning intensity from
multiple teachers can not be easily controlled. If a teacher dominates students’
learning, the student model can hardly learn the relative ability from another
teacher, even causing catastrophic forgetting. So handling situations with mul-
tiple teachers becomes a problem to be solved in the next subsection.

3.2 Adaptive Normalization Loss in MTARD

In order to get both clean and robust accuracy, a strategy is needed to balance
the influence between the adversarial teacher and the clean teacher. On the
mathematical level, the total loss in MTARD ultimately used for the student
model update at time t can be represented as Ltotal(t), which can be formulated
as follows:

Ltotal(t) = wadv(t)Ladv(t) + wnat(t)Lnat(t). (5)

Since the degree of the teacher’s influence on the student can be expressed as
the value of the adversarial loss Ladv(t) and clean loss Lnat(t), the vital to control
the learning degree from multiple teachers is to control the loss weight of wadv(t)
and wnat(t). Inspired by gradient regularization methods in multi-task learning
[2], we propose an algorithm to control the steady learning from the adversarial
teacher and clean teacher, which is called as the Adaptive Normalization Loss
used in our MTARD.

To better introduce the Adaptive Normalization Loss, we give a formal de-
scription from a generalized view. Suppose there are multiple teacher models to
jointly guide the training process of the student network. Each teacher model is
associated with a loss function Li, and a loss weight wi, thus the total loss Ltotal

can be considered as the optimization of multiple losses as follows:

Ltotal(t) =

N∑
i=1

wi(t)Li(t), (6)
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where N represents the number of multiple losses, Li(t) and wi(t) respectively
mean the i-th loss and loss weight at time t. The goal is to place Li(t) on a
common scale through their relative magnitudes by dynamically adjusting wi(t)
with similar rates at each update and each Li(t) has a relatively fair drop after
the entire update process. The final trained model can be equally affected by
various influencing factors behind the losses.

In order to choose the criterion to measure the decline of multiple losses, we
choose a relative loss L̃(t) following Athalye et al. [2], which is defined as follows:

L̃i(t) = Li(t)/Li(0), (7)

where Li(0) is the i-th loss value at time 0. Especially in our setting, we assume
that the smaller value of Li(t) compared with Li(0) means the model fitting the
target. L̃i(t) as a metric can reflect the change amplitude of Li(t) from begin
to time t. Lower value of L̃i(t) corresponds to a relatively faster training speed
for Li(t). By introducing relative loss L̃i(t), we can dynamically balance Li(t)
influence toward Ltotal(t) as an objective standard to get relative loss weight
ri(t), which can be formulated as follows:

ri(t) = [L̃i(t)]
β/

N∑
i=1

[L̃i(t)]
β , (8)

where [L̃i(t)]
β denotes the L̃i(t) power of β, and β is set to empower the Li(t)

on the disadvantaged side to control the degree of updating the loss weight. The
bigger β strengthens the disadvantaged losses, which is applicable when the loss
value is too different. β equal to 1 is in line with the situation that all Li(t) have
similar influence abilities. We simplify the update formula for wi(t), which can
be formulated as follows:

wi(t) = rwri(t) + (1− rw)wi(t− 1), (9)

where rw means the learning rate of wi(t). Our MTARD can be considered as an
Adaptive Normalization Loss optimization with N = 2, the Ladv(t) and Lnat(t)
can be regarded as L1(t) and L2(t). In the framework of Adaptive Normalization
Loss, the update process of wadv(t) and wnat(t) can be formulated as follows:

wadv(t) =
rw[Ladv(t)/Ladv(0)]

β

[Lnat(t)/Lnat(0)]β + [Ladv(t)/Ladv(0)]β
+ (1− rw)wadv(t− 1), (10)

wnat(t) = 1− wadv(t). (11)

On a practical level, the Adaptive Normalization Loss used in MTARD can
inhibit the rapid growth of a stronger teacher throughout the training cycle. If a
teacher over-instructs a student compared with another teacher over a period of
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Algorithm 1 MTARD

Require Initialize student model S(x|θS), pretrained teacher model Tadv and Tnat,
the dataset D including the benign clean example xnat and the label y, the threat
bound Ω, the initialized perturbation δ

1: for t = 0 to max-step do
2: Acquire adversarial example xadv = argmaxδ∈Ω CE(S(xnat + δ; θS), y)
3: Compute Adversarial Loss Ladv(t) = KL(S(xadv), Tadv(xadv))
4: Compute Clean Loss Lnat(t) = KL(S(xnat), Tnat(xnat))
5: if t = 0 then
6: Record Ladv and Lnat as Ladv(0) and Lnat(0) respectively
7: end if
8: Update wnat(t) and wadv(t) by Eq. 10 and Eq. 11

9: θS ← θS − η∇θS

{
wadv(t)Ladv(t) + wnat(t)Lnat(t)

}
10: end for

time, the Adaptive Normalization Loss can dynamically suppress the teacher’s
teaching ability by controlling the loss weight, while the ability of the other
teacher will become stronger in the following period. However, this trend is not
absolute. If noticing that the original strong teacher has become weaker, Adap-
tive Normalization Loss will make the original strong teacher stronger again.
Finally, the student can learn well from two teachers to gain both clean and
robust abilities rather than appearing partial ability under the adjustment of
Adaptive Normalization Loss.

The complete process of MTARD with Adaptive Normalization Loss is in
Algorithm 1. Compared with other existing adversarial distillation, our method
has several advantages. Firstly, the loss weights are dynamically updated without
any deliberate tuning of loss weight hyper-parameters and can fit the changes
as training epochs increase, which is important to fit various changing scenarios
but not limited in adversarial training. Secondly, our method can fit on different
teacher models and student models no matter how strong or weak the teach-
ers’ performance is, which can be controlled by Adaptive Normalization Loss.
Thirdly, our method pays more attention to the performance of Weighted Ro-
bust Accuracy, which measures the trade-off between clean and robust accuracy,
and thus is more valued and focused in the overall performance of the model.

4 Experiments

Initially, we describe the experimental setting, and evaluate the clean accuracy
and robust accuracy of four baseline defense methods and our MTARD under
prevailing white-box attack methods. Moreover, our method is evaluated under
the black-box attack including transfer-based and square-based attacks. We also
conduct an ablation study to demonstrate the effectiveness of our method.
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Table 1. Performance of the teacher networks used in our experiments, RN and WRN
are the abbreviations of ResNet and WideResNet.

Dataset Model Clean Acc FGSM PGDsat PGDtrades CW∞ Type

CIFAR-10
RN-56 93.18% 19.23% 0 0 0 Clean

WRN-34-10 84.91% 61.14% 55.30% 56.61% 53.84% Adv

CIFAR-100
WRN-22-6 76.65% 4.85% 0 0 0 Clean
WRN-70-16 60.96% 35.89% 33.58% 33.99% 31.05% Adv

4.1 Experimental Settings

We conduct our experiments on two datasets including CIFAR-10 and CIFAR-
100 [22], and consider natural train method and four state-of-the-art meth-
ods of adversarial training and adversarial robustness distillation as comparison
method: SAT [27], TRADES [45], ARD [12] and RSLAD [48].

Student and Teacher Networks. For the selection of models, We consider
two student networks including ResNet-18 [18] and MobileNet-V2 [32] follow-
ing previous work. As for teacher model, we choose two clean teacher networks
including ResNet-56 for CIFAR-10 and WideResNet-22-6 [44] for CIFAR-100,
and two adversarial teacher networks including WideResNet-34-10 for CIFAR-10
and WideResNet-70-16 [14] for CIFAR-100. For CIFAR-10, WideResNet-34-10
is trained using TRADES [45]; For CIFAR-100, we use the WideResNet-70-16
model provided by Gowal et al. [14], two adversarial teachers are also the teacher
models used in RSLAD [48]. The whole teachers are pre-trained before adver-
sarial distillation. The performance of the teacher models is shown in Table 1.

Training and Evaluation. We train student networks using Stochastic Gra-
dient Descent (SGD) optimizer with an initial learning rate 0.1, momentum 0.9,
and weight decay 2e-4. For our MTARD, the weight loss learning rate is initially
set as 0.025. We set the total number of training epochs to 300, the learning rate
is divided by 10 at 215th, 260th, and 285th epochs. We set batch size to 128,
and β is set to 1. For the inner maximization of MTARD, we use a 10 step PGD
(PGD-10) with random start size 0.001 and step size 2/255.

We strictly follow SAT and TRADES original settings; For ARD, we use
the same adversarial teachers as RSLAD and our MTARD. The temperature
constant τ of ARD is set to 30 following original settings on CIFAR-10 while set
to 5 on CIFAR-100, and the α is set to 0.95 following Micah [12] on CIFAR-100.
Training perturbation in the maximization process is bounded to the L∞ norm
ϵ = 8/255. For natural training, we train the networks for 100 epochs on clean
images, and the learning rate is divided by 10 at the 75th and 90th epochs.

The same as previous studies, we evaluate the trained model against 4 white
box adversarial attacks: FGSM, PGDsat, PGDtrades, CW∞, which are commonly
used adversarial attacks in adversarial robustness evaluation. PGDsat is the at-
tack proposed in Madry et al. [27], and PGDtrades is used in Zhang [45], the
step size of PGDsat and PGDtrades is 2/255, and the step is 20. the total step of
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Table 2. White-box robustness of ResNet-18 on CIFAR-10 and CIFAR-100 dataset.

CIFAR-10 CIFAR-100
Attack Defense Clean Robust W-Robust Clean Robust W-Robust

FGSM

Natural 94.57% 18.60% 56.59% 75.18% 7.96% 41.57%
SAT 84.2% 55.59% 69.90% 56.16% 25.88% 41.02%

TRADES 83.00% 58.35% 70.68% 57.75% 31.36% 44.56%
ARD 84.11% 58.4% 71.26% 60.11% 33.61% 46.86%

RSLAD 83.99% 60.41% 72.2% 58.25% 34.73% 46.49%
MTARD 87.36% 61.2% 74.28% 64.3% 31.49% 47.90%

PGDsat

Natural 94.57% 0% 47.29% 75.18% 0% 37.59%
TRADES 83.00% 52.35% 67.68% 57.75% 28.05% 42.9%

SAT 84.2% 45.95% 65.08% 56.16% 21.18% 38.67%
TRADES 83.00% 52.35% 67.68% 57.75% 28.05% 42.9%

ARD 84.11% 50.93% 67.52% 60.11% 29.4%% 44.76%
RSLAD 83.99% 53.94% 68.97% 58.25% 31.19% 44.72%
MTARD 87.36% 50.73% 69.05% 64.3% 24.95% 44.63%

PGDtrades

Natural 94.57% 0% 47.29% 75.18% 0% 37.59%
SAT 84.2% 48.12% 66.16% 56.16% 22.02% 39.09%

TRADES 83.00% 53.83% 68.42% 57.75% 28.88% 43.32%
ARD 84.11% 52.96% 68.54% 60.11% 30.51% 45.31%

RSLAD 83.99% 55.73% 69.86% 58.25% 32.05% 45.15%
MTARD 87.36% 53.60% 70.48% 64.3% 26.75% 45.53%

CW∞

Natural 94.57% 0% 47.29% 75.18% 0% 37.59%
SAT 84.2% 45.97% 65.09% 56.16% 20.9% 38.53%

TRADES 83.00% 50.23% 66.62% 57.75% 24.19% 40.97%
ARD 84.11% 50.15% 67.13% 60.11% 27.56% 43.84%

RSLAD 83.99% 52.67% 68.33% 58.25% 28.21% 43.23%
MTARD 87.36% 48.57% 67.97% 64.3% 23.42% 43.86%

CW∞ is 30. Maximum perturbation is bounded to the L∞ norm ϵ = 8/255 for
all attacks. Meanwhile, we also conduct a black-box evaluation, which includes
the transfer-based attack and query-based attack to test the robustness of the
student model in a near-real environment.

Here, we use Weighted Roubst Accuracy [16] to evaluate the trade-off between
the clean and robust accuracy of the student model, it is defined as follows:

Af = πDnat
PDnat

[f(x) = y] + πDadv
PDadv

[f(x) = y], (12)

where Weighted Roubst Accuracy Af are the accuracy of a model f on x drawn
from either the clean distribution Dnat and the adversarial distribution Dadv.
We set πDnat and πDadv

both to 0.5, which means clean accuracy and robust
accuracy are equally important for comprehensive performance in the model.

4.2 Adversarial Robustness Evaluation

White-box Robustness. The performance of ResNet-18 and MobileNet-v2
trained by our MTARD and other baseline methods under the white box attack
are shown in Table 2 and 3 for CIFAR-10 and CIFAR-100. We select the best
checkpoint of baseline model and MTARD based on Weighted Robust Accuracy.

The experimental results demonstrate that our method MTARD has the
state-of-the-art W-Robust Accuracy on CIFAR-10 and CIFAR-100. For ResNet-
18, MTARD improves W-Robust Accuracy by 1.01% compared with the best
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Table 3. White-box robustness of MobileNet-V2 on CIFAR-10 and CIFAR-100
dataset.

CIFAR-10 CIFAR-100
Attack Defense Clean Robust W-Robust Clean Robust W-Robust

FGSM

Natural 93.35% 12.22% 52.79% 74.86% 5.94% 40.4%
SAT 83.87% 55.89% 69.88% 59.19% 30.88% 45.04%

TRADES 77.95% 53.75% 65.85% 55.41% 30.28% 42.85%
ARD 83.43% 57.03% 70.23% 60.45% 32.77% 46.61%

RSLAD 83.2% 59.47% 71.34% 59.01% 33.88% 46.45%
MTARD 89.26% 57.84% 73.55% 67.01% 32.42% 49.72%

PGDsat

Natural 93.35% 0% 46.68% 74.86% 0% 37.43%
SAT 83.87% 46.84% 65.36% 59.19% 25.64% 42.42%

TRADES 77.95% 49.06% 63.51% 55.41% 23.33% 39.37%
ARD 83.43% 49.5% 66.47% 60.45% 28.69% 44.57%

RSLAD 83.2% 53.25% 68.23% 59.01% 30.19% 44.6%
MTARD 89.26% 44.16% 66.71% 67.01% 25.14% 46.08%

PGDtrades

Natural 93.35% 0% 46.68% 74.86% 0% 37.43%
SAT 83.87% 49.14% 66.51% 59.19% 26.96% 43.08%

TRADES 77.95% 50.27% 64.11% 55.41% 28.42% 41.92%
ARD 83.43% 51.7% 67.57% 60.45% 29.63% 45.04%

RSLAD 83.2% 54.76% 68.98% 59.01% 31.19% 45.1%
MTARD 89.26% 47.99% 68.63% 67.01% 27.1% 47.06%

CW∞

Natural 93.35% 0% 46.68% 74.86% 0% 37.43%
SAT 83.87% 46.62% 65.25% 59.19% 25.01% 42.1%

TRADES 77.95% 46.06% 62.01% 55.41% 27.72% 41.57%
ARD 83.43% 48.96% 66.20% 60.45% 26.55% 43.50%

RSLAD 83.2% 51.78% 67.49% 59.01% 27.98% 43.50%
MTARD 89.26% 43.42% 66.34% 67.01% 24.14% 45.58%

baseline method under the attack of FGSM on CIFAR-100; For MobileNet-
V2, MTARD improves the W-Robust Accuracy by 1.96% against PGDtrades

on CIFAR-100. Moreover, our method also shows relevant superiority against
PGDsat, CW∞ compared with other methods.

Meanwhile, ARD, RSLAD, and MTARD outperform SAT and TRADES,
which shows the adversarial robustness distillation can bring greater improve-
ment to the small models than traditional methods. In addition, our MTARD
can achieve better performance than ARD and RSLAD without artificial hyper-
parameters adjustment, while ARD relies on the adjustment of temperature
constant τ and RSLAD relies on the adjustment of loss weight.

Black-box Robustness. In addition, we also test MTARD and other methods
against black-box attacks for ResNet-18 and MobileNet-V2 on CIFAR-10 and
CIFAR-100 separately. We choose the transfer-based attack and query-based at-
tack in our evaluation. As for the transfer-based attack, we choose our adversarial
teachers (WideResNet-34-10 and WideResNet-70-16) as the surrogate model to
produce adversarial example against the PGD-20 (PGDtrades) and CW∞ attack;
As for the query-based attack, we choose the Square attack (SA) to attack these
models. We select the best checkpoint of baseline model and MTARD based on
Weighted Robust Accuracy. The result of ResNet-18 is showed in Table 4, while
the result of MobileNet-V2 is showed in Table 5.

From the result, Our MTARD achieves better W-Robust Accuracy than any
other model against all three black-box attacks in any conditions. Under the
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Table 4. Black-box robustness of ResNet-18 on CIFAR-10 and CIFAR-100 dataset.

CIFAR-10 CIFAR-100
Attack Defense Clean Robust W-Robust Clean Robust W-Robust

PGD-20

SAT 84.2% 64.74% 74.47% 56.16% 38.1% 47.13%
TRADES 83.00% 63.56% 73.28% 57.75% 38.2% 47.98%

ARD 84.11% 63.59% 73.85% 60.11% 39.53% 49.82%
RSLAD 83.99% 63.9% 73.95% 58.25% 39.93% 49.09%
MTARD 87.36% 65.17% 76.27% 64.3% 41.39% 52.85%

CW∞

SAT 84.2% 64.88% 74.54% 56.16% 39.42% 47.79%
TRADES 83.00% 62.85% 72.93% 57.75% 38.63% 48.19%

ARD 84.11% 62.78% 73.45% 60.11% 38.85% 49.48%
RSLAD 83.99% 63.02% 73.51% 58.25% 39.67% 48.96%
MTARD 87.36% 64.65% 76.01% 64.3% 41.03% 52.67%

SA

SAT 84.2% 71.3% 77.75% 56.16% 41.27% 48.72%
TRADES 83.00% 70.33% 76.67% 57.75% 41.96% 49.86%

ARD 84.11% 73.3% 78.71% 60.11% 48.79% 54.45%
RSLAD 83.99% 72.1% 78.05% 58.25% 45.34% 51.80%
MTARD 87.36% 79.99% 83.68% 64.3% 41.03% 52.67%

Table 5. Black-box results of MobileNet-V2 on CIFAR-10 and CIFAR-100 dataset.

CIFAR-10 CIFAR-100
Attack Defense Clean Robust W-Robust Clean Robust W-Robust

PGD-20

SAT 83.87% 64.6% 74.24% 59.19% 40.7% 49.95%
TRADES 77.95% 61.07% 69.51% 55.41% 37.76% 46.59%

ARD 83.43% 63.34% 73.39% 60.45% 39.15% 49.8%
RSLAD 83.2% 64.3% 73.75% 59.01% 40.32% 49.67%
MTARD 89.26% 66.37% 77.82% 67.01% 43.22% 55.12%

CW∞

SAT 83.87% 64.16% 74.02% 59.19% 40.97% 50.08%
TRADES 77.95% 60.68% 69.32% 55.41% 38.02% 46.72%

ARD 83.43% 62.73% 73.08% 60.45% 38.53% 49.49%
RSLAD 83.2% 63.61% 73.41% 59.01% 39.92% 49.47%
MTARD 89.26% 65.67% 77.47% 67.01% 42.97% 54.99%

SA

SAT 83.87% 69.94% 76.91% 59.19% 43.35% 51.27%
TRADES 77.95% 66.3% 72.13% 55.41% 41.39% 48.4%

ARD 83.43% 71.82% 77.63% 60.45% 47.08% 53.77%
RSLAD 83.2% 71.11% 77.16% 59.01% 42.95% 50.98%
MTARD 89.26% 79.73% 84.50% 67.01% 50.77% 58.89%

Square Attack, ResNet-18 and MobileNet-V2 trained by MTARD outperformW-
Robust Accuracy by 4.97% and 6.87% respectively on CIFAR-10 compared to the
second-best method; Moreover, MTARD brings 2.13% and 5.12% improvements
to ResNet-18 and MobileNet-V2. In addition, MTARD has different margins in
defending against attacks from PGD-20 and CW∞ transfer attack, which shows
the superior performance of MTARD in defending the black-box attacks.

4.3 Ablation Study

To better understand the impact of each component in our MTARD, we con-
duct a set of ablation studies. Baseline denotes using one well-trained adversarial
teacher (WideResNet-34-10) to guide ResNet-18 student network on CIFAR-
10, and Baseline+MT denotes using an adversarial teacher (WideResNet-34-10)
and a clean teacher (ResNet-56) to guide student from adversarial and clean
aspects, respectively, where the weight wadv and wnat are constant at 0.5. Base-
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Fig. 2. Ablation study with ResNet-18 student network distilled using variants of our
MTARD and Baseline method on CIFAR-10. MT and ANL are abbreviations of multi-
teacher and Adaptive Normalization Loss. Baseline+MT means using multiple teachers
in Baseline. Baseline+MT+ANL means our MTARD method.

Fig. 3. The training loss with ResNet-18 student network distilled using variants of
Baseline, Baseline+MT, and Baseline+MT+ANL (our MTARD) on CIFAR-10. MT
and ANL are abbreviations of multi-teacher and Adaptive Normalization Loss. The y
axis is the Ltotal in the training epoch x. The left is the change curve of Ltotal in the
whole training process, the right is the change curve of Ltotal in final 60 epochs.

line+MT+ANL (MTARD) term denotes adding the Adaptive Normalization
Loss to dynamically adjust the weight wadv and wnat based on Baseline+MT.

The final result is shown in Fig. 2. The change of total loss Ltotal is shown
in Fig. 3, and the change of relative loss L̃nat and L̃adv is shown in Fig. 4.
Compared to the baseline method, MTARD’s improvement is remarkable, which
confirms the importance of each component. Multiple teachers positively affect
the student model to learn both clean and robust accuracy. However, it is not
enough to use multiple teacher models without Adaptive Normalization Loss due
to the poor performance of Baseline+MT.

In Fig. 4, the lower L̃ means the student has learnt more ability from the
corresponding teacher. The gap between L̃nat and L̃adv can represent the trade-
off between each teacher. Compared with Baseline+MT, the MTARD’s training
loss is less oscillating, and relative loss can achieve a better ideal state. In the final
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Fig. 4. The relative training loss with ResNet-18 student network distilled on CIFAR-
10. The left is Baseline+MT and the right is MTARD (Baseline+MT+ANL). MT and
ANL are abbreviations of multi-teacher and Adaptive Normalization Loss. The x axis
means the training epochs, the y axis is the adv relative loss L̃adv and the adv relative
loss L̃nat in the training epoch x.

training period, MTARD’s L̃nat outperforms the Baseline+MT’s, while L̃nat can
reach the same level as the Baseline+MT’s. Meanwhile, the MTARD’s trade-off
between L̃nat and L̃adv are more tiny. All the results demonstrate Adaptive
Normalization Loss can better balance the influence between the adversarial
teacher and the clean teacher to maximize the role of each other and obtain a
more capable student with both accuracy and robustness.

5 Conclusion

In this paper, we investigated the problem of enhancing the accuracy and ro-
bustness of a small model via adversarial distillation. We revisited several state-
of-the-art adversarial training and adversarial robustness distillation methods.
To improve both the robust and clean accuracy of small models, we proposed
Multi-Teacher Adversarial Robustness Distillation (MTARD) to guide the learn-
ing process of the small student models. To balance the influence toward students
between adversarial teachers and clean teachers, we designed a method to use
Adaptive Normalization Loss in MTARD. The effectiveness of MTARD over
existing adversarial training and distillation methods were validated on both
benchmark datasets. In the future, our method can be applied by other knowl-
edge distillation tasks with multiple optimization goals, but not just limited to
adversarial robustness distillation, which has greater potential to be developed.
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