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LGV: Boosting Adversarial Example Transferability from
Large Geometric Vicinity (Appendix)

In appendix of “LGV: Boosting Adversarial Example Transferability from Large
Geometric Vicinity”, we provide the following:

– Background and related work
– Theoretical developments of:

• The connection between Gaussian noise in feature space and Gaussian
noise in the weight space

• The connection between attacking LGV-SWA and attacking the ensem-
ble of LGV weights

– Additional experimental results:

• Additional details on the experimental protocol and the studied models
• The preliminary experiences on adding Gaussian noise in the feature
space, or in the weight space, for transferability

• Comparison to state of the art for the L2 attack
• The flatness in the weight space with random directions
• The flatness in the weight space with weights interpolation
• The flatness in feature space
• The transferability of individual LGV weights
• The construction of the “LGV-SWA + RD” surrogate
• The subspace spanned by LGV weights densely related to transferability
• Details on the decomposition of the deviation matrix
• The shift of the subspace spanned by LGV weights to solutions

– Discussion and selection of LGV and attack hyperparameters:

• The LGV learning rate
• The number of LGV epochs
• The number of collected LGV weights per epoch
• The number of I-FGSM attack iterations

A Background and Related Work

Adversarial attacks and transferability. [24] observes early the transferability
of adversarial examples: an adversarial example for one model is likely to be
adversarial for another one. [20] formalizes the leverage of this property in black-
box threat models. White-box attacks are applied on a surrogate model to craft
adversarial examples for the unknown target model. The I-FGSM attack [15] is
the workhorse of adversarial machine learning for both white-box and transfer
black-box attacks. It performs gradient ascent steps projected into the Lp ball
of radius ϵ centred on the original example to optimize the loss with respect to
the input. See Algorithm 2 for the complete description.
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Techniques for transferability. Several techniques prove useful to increase trans-
ferability. Each one provide a different perspective on the phenomenon. Up to
our knowledge, no previous work boosts transferability using geometrical prop-
erties of the loss. As revealed by Section 3, our LGV approach alone consistently
beats all combinations of the four following techniques. [27] favours the gradients
from skip connections rather than residual modules, and claims that the form-
ers are of first importance to generate highly transferable adversarial examples.
We find the local loss geometry to have such relevance. In line with our results,
residual connections flatten the natural loss [31] and increase transferability. [17]
use dropout or skip connection erosion to generate Ghost Networks, and iden-
tify the diversity of surrogate models as key. Neither of these improves LGV,
suggesting that they may be poor local loss geometry proxies. [29] suggest that
input diversity, i.e., random transformations applied to inputs at each iteration,
is a strong baseline to study transferability. [5] adds momentum to the attack
gradients to stabilize them and escape from local maxima with poor transfer-
ability. We find a more effective way to do so. Overall, we shed a new major
light on the transferability of adversarial examples.

Table 3: Combinations of transferability techniques evaluated by previous work.

Reference Combinations of Techniques Evaluated

MI [5] MI
GN [17] GN, GN+MI
DI [29] DI, MI, DI+MI

SGM [27]
MI, DI, SGM, MI+SGM, DI+SGM, MI+DI,
MI+DI+SGM

Geometry of transferability. Previous studies [26,3] analyse the geometry of
transferable adversarial examples in the input space without proposing an ac-
tionable method, whereas we study them in the weight space and provide insights
to improve surrogates. On MNIST, [26] shows that among the 44 dimensions ad-
versarial input space, a dense 25 dimensions subspace is shared between models,
thus enabling transferability. [3] proves with a geometric perspective that trans-
ferable adversarial directions exist with high probability for linear classifiers
trained on independent sets drawn from the same distribution.

Geometry of DNNs. Numerous work study the generalization of DNNs and SGD
from a geometric perspective. [16] establishes that the intrinsic dimension of
the objective landscapes is smaller than expected by applying SGD in a ran-
domly oriented parameter subspace. [10] observes that SGD happens in a tiny
parameter subspace, which is mostly preserved during training. [14] correlates
large-batch SGD to both sharp solutions and a generalization gap compared to
small-batch SGD. [13] shows that averaging weights along the trajectory of SGD
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iterates lead to wider optima and better natural generalization than SGD. Some
techniques explicitly minimizes the loss sharpness for natural [7] or robust gen-
eralization [28]. Up to our knowledge, no previous work relates loss flatness to
transferability.

SGD with constant learning rate (cSGD). LGV rests upon sampling weights
along the trajectory of SGD with constant learning rate. This idea has been
explored extensively to improve natural accuracy or calibration in deep learning
[19,13,18]. [19] proves that under some assumptions, cSGD simulates a Markov
chain with a stationary distribution, which can be tuned to approximate the
Bayesian posterior. Our results corroborate the relationship between the pos-
terior predictive distribution and transferability established by [9], with a new
plug-in technique. LGV is inspired by the SGD trajectories used in SWA [13],
SWAG [18], and SI [12]. A key difference is that LGV uses a higher learning
rate to improve attack transferability that degrades the natural accuracy of the
surrogate ensemble (Figure 21). We analyse extensively SWA on top our LGV
surrogate in Section 4.

B Theoretical developments

B.1 Connection between white noise in the weight space and in
feature space

We develop the theoretical relation between the two DNN-based attack variants
studied empirically as preliminaries in Appendix C.2: the addition of Gaussian
white noise to the gradients in feature space, and the addition of Gaussian white
noise in the weight space. We suppose that the loss function L(x; y, w) is twice
continuously differentiable both with respect to x in the Lp ball Bε[x], and to
w at w0. To understand the failure of noise in feature space and the success of
noise in the weight space, we consider the linear approximation of the input loss
gradient function ∇xL(x′

k; y, ·) : Rp −→ X , around w0,

∇xL(x′
k; y, w0 + ek) = ∇xL(x′

k; y, w0) + J∇xL(x′
k; y,·)(w0) ek + o(∥ek∥), (8)

with J∇xL(x′
k; y,·)(w) the Jacobian matrix of the input loss gradient function

at w, x′
k the adversarial example at iteration k, and ek ∼ N (0, σ2Ip). Empirically

σ is set to 5 × 10−3, justifying the local approximation. So, at the first order
approximation, the attack gradient is approximately sampled from:

N
(
∇xL(x′

k; y, w0), σ
2 J∇xL(x′

k; y,·)(w0)J∇xL(x′
k; y,·)(w0)

T
)

(9)

Only the noise covariance matrix changes compared to Gaussian white noise
directly added in feature space. This structured feature noise induced by local
variations of input gradients in the weight space improves transferability (Ap-
pendix C.2).
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B.2 Connection between LGV-SWA and LGV ensemble surrogates

We demonstrate that the gradient of LGV-SWA approximates the gradient of the
ensemble of LGV models. We show empirically in Section 3 that LGV-SWA is a
good single model surrogate. We develop here its relation to the LGV weights. We
extend the analysis from the original SWA paper [13] on the connection between
the natural generalization of SWA and the one of local ensemble methods. Here,
we suppose the loss function L(x; y, w) to be twice continuously differentiable
both with respect to x in the Lp ball Bε[x], and to w at every wk, for k in [[1,K]].

We perform a local analysis, since by construction, the weights collected
by LGV wk are close in the weight space and concentrated around their mean
wSWA. We consider the linear approximation of the input loss gradient function
∇xL(x; y, ·) : Rp −→ X around wk,

∇xL(x; y, wk) = ∇xL(x; y, wSWA) + J∇xL(x; y,·)(wSWA)(wk − wSWA)

+o(∥wk − wSWA∥) ,

with J∇xL(x; y,·)(w) the Jacobian matrix of ∇xL(x; y, w) at w. The gradient of

the ensemble of LGV models is the ensemble of individual gradients, ∇x :=
∇x

1
K

∑K
k=1 L(x; y, wk) =

1
K

∑K
k=1 ∇xL(x; y, wk). Then, the difference between

the average of gradients and the gradient of the weights average is

∇x −∇xL(x; y, wSWA)

=
1

K

K∑
k=1

[
J∇xL(x; y,·)(wSWA)(wk − wSWA) + o(∥wk − wSWA∥)

]
= J∇xL(x; y,·)(wSWA)

(
1

K

K∑
k=1

wk − wSWA

)
+ o(∥∆w∥)

= o(∥∆w∥),

with ∆w = maxKk=1(∥wk − wSWA∥). It follows that LGV-SWA is a good single-
model approximation of the ensemble of LGV models for gradient-based attacks.
It captures some diversity of gradients in the vicinity of the weight space.

C Additional Experimental Results

C.1 Experimental Settings

Target models We select 8 pretrained models distributed by the torchvision li-
brary [21]. The architectures are diverse and belong to different families. We
choose ResNet-50 to study the intra-architecture transferability, ResNet-152 for
the effect of increasing the number of layers, ResNeXt-50 32×4d andWideResNet-
50-2 for other variants in the ResNet family, DenseNet-201, VGG19, Inception
v1 (GoogLeNet) and Inception v3 to represent other families. Table 4 contains
their natural accuracy and negative log likelihood (NLL).
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Table 4: Natural accuracy and loss of target models computed on the test set.

Name Architecture Test Accuracy Loss (NLL)

RN50 ResNet-50 76.01% 0.963
RN152 ResNet-152 78.25% 0.876
RNX50 ResNext-50 77.63% 0.941
WRN50 WideResNet-50 78.46% 0.883
DN201 DenseNet-201 76.93% 0.926
VGG19 VGG19 72.36% 1.115
IncV1 Inception v1 (GoogLeNet) 69.74% 1.283
IncV3 Inception v3 76.25% 1.041

Surrogate models We retrieve the independently trained ResNet-50 DNNs from
[1]. All DNNs share the same hyperparameters, and have different random ini-
tializations. For each experiment run, we select without replacement a random
DNN, and call it interchangeably “1 DNN”, the initial DNN, or the DNN with
weights w0. LGV starts from the weights w0 of this DNN. . “1 DNN + RD” is
defined in Appendix C.2 and “LGV-SWA” in Section 2. Table 5 contains their
natural accuracy and negative log likelihood.

Table 5: Natural accuracy and loss of surrogate models computed on the test
set.

Method Test Accuracy Loss (NLL) Number of models

1 DNN 76.14% ±0.14 0.945 ±0.003 1
1 DNN + RD 76.17% ±0.10 0.948 ±0.003 50
LGV-SWA 72.17% ±0.10 1.128 ±0.002 1
LGV (ours) 70.83% ±0.10 1.310 ±0.011 40

Threat model We study untargeted adversarial examples, the attack objective is
misclassification. We consider the less restrictive threat model for transfer-based
attack, where no query access to the target model is granted. Therefore, we
do not compare with query-based black-box attacks. This experimental setup is
standard for transfer-based attack evaluation.

Attack The I-FGSM attack performs 50 iterations with a step size equal to one
tenth of the maximum perturbation norm ε. For the L∞ attack ε equals 4

255 , and
for the L2 one it equals 3. The number of iterations is selected on a validation set
for both the initial DNN surrogate and its resulting LGV surrogate (Figure 25).
Each iteration compute a single gradient on a randomly selected model if several
are available for the method considered. If the number of iterations is higher
than the number of models, we cycle on models in the same order. Therefore,
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the attack cost, measured as the number of backward passes, is kept constant
regardless of the number of the size of the surrogate. We do not consider the
ensemble of models for fairness with the single model surrogate baselines.

Batch normalisation Each time our experiments change weights (e.g. when we
apply random directions), we perform an additional forward pass over 10% of
the training data to update the batch-normalization statistics, following pre-
vious studies [12,18]. Translations in the weight space cause internal covariate
shift, which may causes our surrogate to fail, regardless of the quality of the
corresponding point in the weight space. We control this undesired experimental
artefact by updating batch-normalization statistics. LGV does not need such
extra computational cost, since regular training updates batch-normalization
statistics on the fly.

Figures Figures containing multiple subplots report the success rate on the target
indicated in subplot title of adversarial examples crafted against the surrogate
indicated in legend or in caption. In all figures containing lines surrounded with
a lighter coloured area, the lines are smoothed means5 over 3 independent runs,
and the coloured areas correspond to one standard deviation around the mean.

Implementation All experiments source code and models are available on GitHub6.
We adapt the I-FGSM attack from the Python ART library to support the four
state-of-the-art transferability techniques. The training of LGV and some ex-
periments are adapted from the code of [12] on PyTorch. We use the following
software versions: Python 3.8.8, PyTorch 1.7.1, Torchvision 0.8.2, Adversarial
Robustness Toolbox 1.6.0, and Scikit-learn 0.23.2.

Infrastructure The GPU used for the experiments is Tesla V100-DGXS-32GB,
on a server with the following specifications: 256GB RDIMM DDR4, CUDA
version 10.1, Linux (Ubuntu) operating system.

Hyperparameters We use the hyperparameters for training indicated in Table 6,
and for the attack in Table 7.

5 The smooth means are local polynomial regressions computed by the “loess()” func-
tion of the R stats package.

6 URL redacted for review. Reproducible code is provided as supplementary materials.
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Table 6: Hyperparameters used to train LGV and the initial DNN.

Hyperparameter 1 DNN LGV

Learning rate schedule
Step size decay
×0.1 each 30 epochs

Constant

Initial learning rate 0.1 0.05
Number of epochs 130 10
Optimizer SGD SGD
Momentum 0.9 0.9
Batch-size 256 256
Weight decay 1× 10−4 1× 10−4

Table 7: Hyperparameters of the I-FGSM attack and transferability techniques.

Attack Hyperparameter Values

I-FGSM Perturbation norm ε
3 for L2,
4

255
for L∞

I-FGSM Step-size α ε
10

I-FGSM Number iterations 50
Momentum (MI) Momentum term 0.9

Ghost Network (GN)
Skip connection erosion ran-
dom range

[1− 0.22, 1 + 0.22]

Input Diversity (DI) Minimum resize ratio 90%
Input Diversity (DI) Probability transformation 0.5
Skip Gradient Method
(SGM)

Residual gradient decay γ 0.2
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C.2 Preliminaries: Transferability from the Weight Space

We aim to show the importance of the geometry of the surrogate loss in im-
proving transferability. We experimentally demonstrate that adding random di-
rections in the weight space to an existing surrogate increases transferability,
whereas random directions in the feature space applied on gradients do not.
We conclude that the structure of gradient noise from the local variations in
weight space of the surrogate architecture is key to improving transferability
(Appendix B.1).

White Noise on Features We first establish that random directions in feature
space do not increase transferability. [25] observe that adding a random step to
the single-step FGSM attack hinders transferability. We extend this conclusion
to the I-FGSM attack. We add Gaussian white noise to the input gradients of
the loss function during the attack, ∇xL(x′

k; y, w0) + e′′k with e′′k ∼ N (0, σ′′2Id)
where x′

k is the adversarial example at the kth attack iteration. Gradient noise
does not improve the success rate (over all considered architectures), regardless
of the standard deviation value σ′′ used (from 1× 10−7 to 1× 10−2 ; Figure 6).

White Noise on Weights Next, we demonstrate that sampling random di-
rections in the surrogate weight space increases transferability. At each I-FGSM
iteration k, we add Gaussian white noise to every weight w0 to compute the input
gradient, ∇xL(x′

k; y, w0 + ek) with ek ∼ N (0, σ2Ip). As weights belong to high
dimensions7, the resulting surrogate is approximately uniformly distributed on
the sphere centred on w0 with radius σ

√
p. We found a consistent and significant

improvement of transferability – from 1.1 to 20.8 percentage points of success
rate – for all eight target architectures and both L2 and L∞ attacks, compared
to the initial weights w0. We call the attack RD for random directions in Ta-
ble 1 (L∞) and Table 8 (L2). RD is reported with standard deviation σ equal
to 5× 10−3 and one random direction per attack iteration. The noise standard
deviation is selected by cross-validation on a validation set (Figure 7). Due to
computational limitations to update the batch normalisation statistics, we sam-
ple only 10 random directions for cross-validation and cycle between samples
during the 50 attack iterations.

In Appendix B.1, we show that sampling random directions in the weight
space increases transferability due to the structured feature noise induced by the
surrogate architecture. We develop the connection between feature space noise
and weight space noise in Appendix B.1 and show that the latter boils down to
adding a structured Gaussian noise in feature space with a covariance matrix
based on local variations in weight space (to the first order approximation).

As a side note and in line with our results in Section 4.1, we observe in
Appendix C.6 that “RD” produces flatter adversarial examples than its vanilla
DNN counterpart.

7 The number of ResNet-50 weights p is 25 557 032.
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Fig. 6: Transfer success rate of I-FGSM with respect to the standard deviation
of the Gaussian white noise added to the inputs gradients (pseudo-log scale).
The null standard deviation is vanilla I-FGSM. The subplot title is the target
architecture. The first subplot is intra-architecture transferability.
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Fig. 7: Transfer success rate of I-FGSM with respect to the standard deviation
of the Gaussian white noise added to the weight of the initial DNN. Ten random
directions are sampled in weight space. The subplot title is the target architec-
ture. The first subplot is intra-architecture transferability.
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C.3 Comparison to State of the Art

Similarly to Table 1, we report here the L2 attack success rates of LGV, its
variants, four state-of-the-art methods, and their combination with LGV. As for
the L∞ attack, LGV alone improves over all (combinations of) other techniques
(simple underline). Contrary to the L∞ case, the vanilla LGV intra-architecture
L2 attack outperforms all techniques applied on LGV, with a margin larger
than the sum of the respective standard deviations. In six out of seven inter-
architecture targets, input diversity (DI) on top of LGV is best, and in one case,
vanilla LGV is.

Table 8: Success rates of baselines, state-of-the-art and LGV under the L2 attack.
Simple underline is best without LGV combinations, double is best overall. Gray
is LGV-based techniques worse than vanilla LGV. “RD” stands for random
directions in the weight space. In %.

Target

Surrogate RN50 RN152 RNX50 WRN50 DN201 VGG19 IncV1 IncV3

Baselines (1 DNN)
1 DNN 53.9±2.0 37.9±2.0 37.9±0.1 40.5±2.0 22.7±0.5 21.1±0.6 13.6±0.2 7.9±0.7

MI 48.7±1.2 33.5±1.3 33.7±0.7 36.5±1.8 19.9±0.3 19.3±0.8 12.0±0.5 6.6±0.5

GN 77.2±0.9 60.1±1.3 59.6±2.0 63.4±2.0 37.3±1.4 33.6±0.5 21.1±0.8 12.1±1.0

GN+MI 68.4±2.0 50.4±1.9 49.8±1.4 53.3±1.2 29.0±1.2 27.3±0.2 16.5±0.5 9.0±1.0

DI 82.2±0.6 68.0±1.6 71.8±0.6 72.5±1.9 53.8±0.4 49.8±1.1 37.5±0.9 25.4±1.3

DI+MI 79.2±0.4 63.7±1.1 66.8±0.6 68.2±1.4 47.3±0.9 45.8±1.0 32.0±0.7 20.6±0.9

SGM 63.3±0.5 49.7±3.1 50.1±0.7 51.6±1.7 30.2±0.7 33.3±1.3 20.6±0.9 11.1±0.7

SGM+MI 63.3±0.4 49.2±3.7 50.1±0.6 51.9±1.5 29.6±0.3 33.9±1.4 21.4±0.5 11.6±0.8

SGM+DI 79.5±0.7 67.5±2.3 69.0±0.9 69.6±1.1 50.1±0.2 54.6±1.3 40.5±0.8 25.8±1.0

SGM+DI+MI 78.5±0.8 66.4±2.4 68.5±1.7 69.1±1.2 49.1±1.4 54.5±0.9 39.7±0.8 25.6±0.3

Our techniques
RD 74.4±0.6 55.6±3.1 55.9±0.7 59.7±3.3 34.5±0.3 31.5±1.4 19.6±0.8 11.2±1.0

LGV-SWA 85.8±0.7 68.0±3.4 67.0±0.4 65.1±1.8 48.4±0.7 47.0±1.6 34.8±0.5 15.8±1.1

LGV-SWA+RD 92.0±0.5 77.9±3.0 76.2±1.4 75.2±2.8 58.1±0.3 55.6±1.9 42.7±0.6 20.2±0.5

LGV (ours) 96.3±0.2 90.1±0.9 88.7±0.5 87.2±1.8 79.6±1.2 78.0±1.6 71.8±0.5 42.8±0.4

LGV combined with other techniques
MI 96.0±0.1 88.3±1.7 85.8±0.7 84.3±2.6 72.6±0.8 71.8±1.9 62.7±0.7 31.1±0.3

GN 95.8±0.5 89.3±1.6 87.6±0.6 85.8±1.8 77.7±1.0 77.5±0.6 71.0±0.6 41.5±1.5

GN+MI 95.3±0.4 86.1±2.2 84.1±0.6 82.6±2.4 71.0±1.2 71.1±1.1 62.0±0.8 30.2±0.5

DI 95.3±0.3 89.5±0.9 89.5±0.5 87.3±0.9 83.9±0.9 83.7±0.2 82.2±0.9 59.0±0.8

DI+MI 95.2±0.4 88.6±0.7 88.0±0.7 85.7±1.5 81.2±0.7 81.6±0.7 79.3±1.6 50.8±0.7

SGM 85.8±0.5 74.1±2.5 73.4±0.7 71.6±2.1 59.5±0.8 68.5±1.4 62.2±2.1 34.4±1.9

SGM+MI 85.0±0.7 73.3±2.3 72.5±0.9 70.1±1.9 57.5±0.3 67.6±1.2 60.7±1.9 33.0±1.5

SGM+DI 85.0±1.1 75.2±1.4 75.5±0.7 72.5±1.7 65.2±0.8 74.2±1.6 71.6±1.6 46.0±1.7

SGM+DI+MI 84.4±0.6 74.0±1.4 74.9±0.8 71.7±1.2 63.8±0.7 73.3±1.4 70.3±1.4 44.6±1.4
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C.4 Flatness — Random Directions in the Weight Space

In addition to results in Section 4.1, we report in Figure 8, the loss of adversarial
examples crafted along 10 random directions in the weight space, for both norms
and evaluated on the eight targets. We confirm on the L2 attack and on the
inter-architecture case that the increased flatness of LGV-SWA in the weight
space comes with an increased transferability of LGV-SWA adversarial examples,
compared to the initial DNN.

Adversarial Loss on VGG19 Target Adversarial Loss on Inception v1 Target Adversarial Loss on Inception v3 Target

Adversarial Loss on ResNext-50 Target Adversarial Loss on WideResNet-50 Target Adversarial Loss on DenseNet-201 Target
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Fig. 8: Surrogate natural loss (first subplot) and adversarial target loss (other
subplots) with respect to the 2-norm distance along 10 random directions in the
weight space from the initial model (green), LGV-SWA (orange) and randomly
drawn individual LGV weights (purple). For adversarial target losses, plain lines
are L∞ and dashed ones are L2. Ordinate scale not shared.

C.5 Flatness — Interpolation in Weight Space between LGV-SWA
and the Initial Model

We confirm the observations in Section 4.1 about flatness on another specific
direction. None of the 10 studied random directions increases transferability
on their own8. However, we know that at least one behave differently, since

8 This monotonic decrease in random directions does not contradict our findings in
Appendix C.2. Here, all the I-FGSM attack iterations are applied on a single surro-
gate, whereas previously each iteration was performed on a new iid sample.
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transferability increases from the initial DNN to LGV-SWA (Section 3). As [13],
we study the path in the weight space connecting both with α ∈ R:

w(α) = αw0 + (1− α)wSWA

We observe the same correlation between the flatness of the natural surrogate
loss (orange) and the target adversarial loss (blue and red) in Figure 9. Around
the LGV-SWA solution, the natural loss is flatter than around the initial DNN
where it explodes at α close to 1.2. The same conclusions hold for all target ar-
chitectures. Interestingly, LGV-SWA is not always the best single surrogate. The
best surrogate in the studied segment is achieved for values of α between 0.154
and 0.538 for target architectures that belong to the ResNet family. The natural
loss looks also flat in this region, so this does not contradict our observation. In
conclusion, LGV produces weights on a flatter region of the loss landscape than
where it starts from.
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Fig. 9: Adversarial target loss (plain) and surrogate natural loss (orange dashed)
with respect to the interpolation coefficient α between the LGV-SWA solution
and the initial model. The subplot title is the target architecture. The first
subplot is intra-architecture transferability.

C.6 Flatness in Feature Space

We show that flat surrogates in the weight space produce flatter adversarial ex-
amples in the feature space. We report here visualisations of the plane in feature
space defined in Section 4.1 for all eight targets and with several combinations of
surrogates. We recall that each plane contains three points: the original example,
and two adversarial examples crafted on the two surrogates of interest. The first
two steps of the Gram–Schmidt process defines an orthonormal basis (u′, v′).
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As shown in Section 4.1, the initial DNN is sharper than individual LGV
models in the weight space, and LGV-SWA is flatter than both. We show here
that the order of flatness is the same in the weight space and in feature space.
Figure 11 shows that LGV-SWA produces flatter adversarial examples. A ran-
domly sampled individual LGV weights surrogate leads to flatter adversarial
examples than the initial DNN (Figure 13), but sharper than the LGV-SWA
(Figure 14) and the LGV (Figure 15) surrogates.

Appendix B.2 shows that LGV-SWA is a good approximation to the ensemble
of LGV weights. LGV transfers better than LGV-SWA (Tables 1 and 8). We
observe in Figure 12 that the adversarial examples of the former are flatter in
average than the ones of the latter. The optimization of the I-FGSM attack
overfits the single set of weights approximation, leading to sharper minima. We
also observe that the form of the contours around the LGV-SWA surrogate can
be explained by a shift between target and surrogate.

Appendix C.2 exhibits that noise applied to the weights of a DNN increases
transferability. Figure 16 establishes that this noise also slightly flatten the ad-
versarial examples in feature space.

Target WideResNet-50 Target DenseNet-201 Target VGG19 Target Inception v1 Target Inception v3

Surrogate LGV Surrogate Initial DNN Target ResNet-50 Target ResNet-152 Target ResNext-50

10

1.0

0.1

Loss (log)

Fig. 10: LGV surrogate (first up), the initial DNN surrogate (second up) and
targets (others) losses in the plane containing the original example (circle), an
adversarial example against LGV (square) and one against the initial DNN (tri-
angle), in the (u′, v′) coordinate system. Colours are in log-scale, contours in
natural scale. The white circle represents the intersection of the 2-norm ball
with the plane.
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Target WideResNet-50 Target DenseNet-201 Target VGG19 Target Inception v1 Target Inception v3

Surrogate LGV-SWA Surrogate Initial DNN Target ResNet-50 Target ResNet-152 Target ResNext-50

10

1.0

0.1

Loss (log)

Fig. 11: LGV-SWA surrogate (first up), the initial DNN surrogate (second
up) and targets (others) losses in the plane containing the original example
(circle), an adversarial example against LGV-SWA (square) and one against the
initial DNN (triangle), in the (u′, v′) coordinate system. Colours are in log-scale,
contours in natural scale. The white circle represents the intersection of the 2-
norm ball with the plane.

Target WideResNet-50 Target DenseNet-201 Target VGG19 Target Inception v1 Target Inception v3

Surrogate LGV Surrogate LGV-SWA Target ResNet-50 Target ResNet-152 Target ResNext-50

10

1.0

0.1

Loss (log)

Fig. 12: LGV surrogate (first up), the LGV-SWA surrogate (second up) and
targets (others) losses in the plane containing the original example (circle), an
adversarial example against LGV (square) and one against LGV-SWA (triangle),
in the (u′, v′) coordinate system. Colours are in log-scale, contours in natural
scale. The white circle represents the intersection of the 2-norm ball with the
plane.
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Target WideResNet-50 Target DenseNet-201 Target VGG19 Target Inception v1 Target Inception v3

Surrogate LGV indiv. Surrogate Initial DNN Target ResNet-50 Target ResNet-152 Target ResNext-50

10

1.0

0.1

Loss (log)

Fig. 13: A randomly sampled individual LGV weights surrogate (first up),
the initial DNN surrogate (second up) and targets (others) losses in the plane
containing the original example (circle), an adversarial example against the in-
dividual LGV weights (square) and one against the initial DNN (triangle), in
the (u′, v′) coordinate system. Colours are in log-scale, contours in natural scale.
The white circle represents the intersection of the 2-norm ball with the plane.

Target WideResNet-50 Target DenseNet-201 Target VGG19 Target Inception v1 Target Inception v3

Surrogate LGV indiv. Surrogate LGV-SWA Target ResNet-50 Target ResNet-152 Target ResNext-50

10

1.0
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Loss (log)

Fig. 14: A randomly sampled individual LGV weights surrogate (first up),
LGV-SWA surrogate (second up) and targets (others) losses in the plane con-
taining the original example (circle), an adversarial example against the individ-
ual LGV weights (square) and one against LGV-SWA (triangle), in the (u′, v′)
coordinate system. Colours are in log-scale, contours in natural scale. The white
circle represents the intersection of the 2-norm ball with the plane.
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Target WideResNet-50 Target DenseNet-201 Target VGG19 Target Inception v1 Target Inception v3

Surrogate LGV Surrogate LGV indiv. Target ResNet-50 Target ResNet-152 Target ResNext-50

10

1.0

0.1

Loss (log)

Fig. 15: LGV surrogate (first up), a randomly sampled individual LGV
weights surrogate (second up) and targets (others) losses in the plane contain-
ing the original example (circle), an adversarial example against LGV (square)
and one against the individual LGV weights (triangle), in the (u′, v′) coordinate
system. Colours are in log-scale, contours in natural scale. The white circle rep-
resents the intersection of the 2-norm ball with the plane.

Target WideResNet-50 Target DenseNet-201 Target VGG19 Target Inception v1 Target Inception v3

Surrogate Initial DNN Surrogate Initial DNN + RD Target ResNet-50 Target ResNet-152 Target ResNext-50

10

1.0

0.1

Loss (log)

Fig. 16: The initial DNN surrogate (first up), the initial DNN + random
directions surrogate (second up) and targets (others) losses in the plane con-
taining the original example (circle), an adversarial example against the initial
DNN (square) and one against the initial DNN + random directions (triangle),
in the (u′, v′) coordinate system. Colours are in log-scale, contours in natural
scale. The white circle represents the intersection of the 2-norm ball with the
plane.



Transferability from Large Geometric Vicinity 17

C.7 Individual LGV Weights

The success of LGV cannot be explained by the intrinsic properties of each of
its model taken on its own. Figure 17 shows that no single model sampled by
LGV improves consistently upon the baseline of the initial model it originates
from. On the contrary, the initial DNN is generally a better surrogate.
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Fig. 17: Transfer success rate of each individual LGV weights indexed by the
sampling order (plain) and the initial DNN baseline (dashed). The subplot title
is the target architecture. The first subplot is intra-architecture transferability.
Ordinate scale not shared.

C.8 Random Directions around LGV-SWA (“LGV-SWA + RD”)

The “LGV-SWA + RD” surrogate is defined by:

{wSWA + e′k | e′k ∼ N (0, σ′Ip), k ∈ [[1,K]]} , (10)

where σ′ is selected by cross validation. Figure 18 reports the success rate for
various values of σ′. Similarly to “RD” in Appendix C.2, we tune this hyper-
parameter on 10 random directions, and generate the final “LGV-SWA + RD”
surrogate on 50 directions.

In accordance with our findings about the respective flatness of the DNNs and
LGV-SWA, the optimal standard deviation for “LGV-SWA + RD” (1×10−2) is
larger than the one for “RD” (5× 10−3). A flatter solution implies that we can
sample further along random directions before exiting the vicinity of low loss.
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Fig. 18: Transfer success rate of I-FGSM with respect to the standard deviation
σ′ of the Gaussian white noise added to the weight of LGV-SWA. Ten random
directions are sampled in the weight space. The subplot title is the target archi-
tecture. The first subplot is intra-architecture transferability.

C.9 Random Directions in LGV Subspace

We show that the LGV deviation subspace is densely related to transferability,
in the sense that it is a dense subspace of good surrogates. We form a new
surrogate called “LGV-SWA + RD in S” by sampling random directions in the
LGV deviations subspace S,

{wSWA +Pzk | zk ∼ N (0, IK), k ∈ [[1,K]]} ⊂ S, (11)

where P = (w1 − wSWA, . . . , wK − wSWA)
⊺ is the projection matrix of LGV

weights deviations from their mean. Table 9 reports the success rates of this sur-
rogate along with other techniques. We observe that the transferability of random
directions in the subspace is close to the original LGV surrogate (average differ-
ence of 1.45 percentage point, with values between -0.6 and 5.65), especially for
ResNet-like targets. The negative difference correspond to the intra-architecture
transferability, where “LGV-SWA + RD in S” outperforms LGV (significantly
for L∞ and non-significantly for L2). Sampling random directions in the full
weigh space (“LGV-SWA + RD”) instead of the subspace hinders transferabil-
ity of 14.7 percentage points in average (4.7—24.73). Therefore, the subspace S
is densely and intrinsically related to transferability.
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Table 9: Transfer success rate of random directions sampled in LGV deviations
subspace.

Target

Norm Surrogate RN50 RN152 RNX50 WRN50 DN201 VGG19 IncV1 IncV3

L∞ LGV 95.5±0.1 85.5±2.1 83.6±1.1 82.2±2.4 69.6±1.0 67.8±0.9 58.4±0.6 25.6±1.7

L∞ LGV-SWA
+ RD in S

96.0±0.2 85.6±2.5 83.6±0.6 82.1±2.8 68.6±1.1 65.7±1.5 54.5±0.9 23.5±0.4

L∞ LGV-SWA
+ RD

90.4±0.3 71.9±3.4 70.0±1.2 69.2±3.4 50.0±1.0 47.4±1.9 34.9±0.4 13.4±0.7

L2 LGV 96.3±0.1 90.1±1.0 88.8±0.4 87.5±1.6 79.8±1.1 78.1±1.6 71.9±0.6 43.1±0.6

L2 LGV-SWA
+ RD in S

96.6±0.3 90.1±1.4 88.7±0.5 87.3±2.0 77.6±1.0 75.6±1.5 67.4±1.9 37.4±0.4

L2 LGV-SWA
+ RD

91.9±0.6 78.2±2.9 76.2±1.3 75.4±2.5 58.1±0.3 55.8±1.6 42.7±0.6 20.0±0.6
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C.10 Decomposition of the LGV Projection Matrix

In addition to Figure 5 in Section 4.2, we report in Figure 19 the success rate
of surrogates projected into an increasing number of eigenvectors of the LGV
weights deviations matrix P, evaluated on all eight targets. The plain lines are
smoothed means (local polynomial regression). We observe that the relation-
ship between the weight space variance ratio and the transferability gets pro-
gressively less linear as the target architecture is different from the surrogate
one (ResNet-50 here). Inception family targets are pretty close to the case of
equal contribution of each dimension to transferability (dashed), independently
of its variance. From an information theory perspective view of PCA, this would
mean that the information contained in the weight space is directly relevant for
intra-architecture transferability, and is not discriminant for dissimilar targets9.
DenseNet-201 and VGG19 are intermediary cases. We show that the increase
in transferability from the subspace S depends fundamentally on the functional
similarity between the target and the surrogate architectures.
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Fig. 19: Transfer success rate of the LGV surrogate projected on an increasing
number of dimensions with the corresponding ratio of explained variance in the
weight space. The plain line is the smooth mean, and the area corresponds to
one standard deviation. The dashed line is the hypothetical average case of equal
contributions of all subspace dimensions. Ordinate scale not shared.

9 However, we recall that these directions remain more relevant than random directions
in the full weight space, even for these target architectures.
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C.11 Shift of LGV Subspace to Other Solutions

Tables 10 and 11 reports detailed results about the shifts of LGV deviations
to other shift vectors. Results are discussed in Section 4.2. In the following
paragraph, we cover specifically the scaling of LGV deviations for the shift to a
regularly trained DNN.

Table 10: Transfer success rate of LGV deviations shifted to other independent
solutions, for target architectures in the ResNet family.

Target

Norm Surrogate RN50 RN152 RNX50 WRN50

L∞ LGV-SWA + (LGV’ - LGV-SWA’) 94.3±0.5 81.5±2.3 79.1±1.4 78.1±2.4

L∞ LGV-SWA + RD 90.4±0.3 71.9±3.4 70.0±1.2 69.2±3.4

L∞ LGV (ours) 95.4±0.1 85.3±2.1 83.7±1.1 82.1±2.5

L∞ 1 DNN + γ (LGV’ - LGV-SWA’) 73.3±2.0 52.8±2.9 52.6±1.6 56.6±2.8

L∞ 1 DNN + RD 60.8±1.6 40.8±2.7 40.2±0.3 44.8±2.7

L2 LGV-SWA + (LGV’ - LGV-SWA’) 95.2±0.5 86.1±1.9 84.2±1.0 82.7±1.6

L2 LGV-SWA + RD 92.0±0.5 77.9±3.0 76.2±1.4 75.2±2.8

L2 LGV (ours) 96.3±0.1 90.2±1.1 88.6±0.6 87.6±1.7

L2 1 DNN + γ (LGV’ - LGV-SWA’) 84.2±0.8 68.7±2.6 70.0±1.3 72.4±1.5

L2 1 DNN + RD 74.6±0.5 55.8±3.1 56.1±0.6 59.9±3.2

Table 11: Transfer success rate of LGV deviations shifted to other independent
solutions, for non-ResNet targets.

Target

Norm Surrogate DN201 VGG19 IncV1 IncV3

L∞ LGV-SWA + (LGV’ - LGV-SWA’) 62.2±0.4 57.4±1.5 45.4±0.6 18.7±0.5

L∞ LGV-SWA + RD 50.0±1.0 47.5±1.9 34.9±0.4 13.4±0.7

L∞ LGV (ours) 69.7±1.0 67.5±1.1 58.6±0.8 25.4±1.5

L∞ 1 DNN + γ (LGV’ - LGV-SWA’) 32.6±0.2 30.0±0.9 18.4±0.1 9.6±0.3

L∞ 1 DNN + RD 23.1±0.8 22.8±0.4 14.1±0.1 6.8±0.6

L2 LGV-SWA + (LGV’ - LGV-SWA’) 69.8±0.6 65.7±0.7 55.0±1.0 27.4±0.5

L2 LGV-SWA + RD 58.1±0.3 55.6±1.9 42.7±0.6 20.2±0.5

L2 LGV (ours) 79.6±1.1 78.0±1.5 71.8±0.6 42.9±0.9

L2 1 DNN + γ (LGV’ - LGV-SWA’) 47.4±0.9 42.2±0.2 29.2±0.3 17.2±0.2

L2 1 DNN + RD 34.7±0.3 31.5±1.3 19.8±0.7 11.4±1.1

Scale of LGV deviations shifted to another DNN To shift LGV deviations
to another independently obtained DNN, we need to consider that this new shift
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vector is sharper than LGV-SWA. A sharper shift vector means that deviations
around it needs to be smaller to stay in the desirable vicinity. We adapt LGV
deviations, scaling them by a scalar called γ. The surrogate obtained by shifting
independently obtained LGV’ deviations to the initial model w0 is:

{w0 + γ(w′
k − w′

SWA) | k ∈ [[1,K]]} . (12)

We choose the γ hyperparameter by cross-validation (Figure 20). For compu-
tational efficiency, we randomly draw without replacement a subset of 10 LGV’
deviations for each random seed.

The original scale of LGV deviations is clearly not appropriate for a DNN.
The optimal γ value is 0.5 for all eight targets. The difference between the original
scale (γ = 1) and the optimal one (γ = 0.5) is as high as 32.8 percentage points on
average (6.52–59.47). Therefore, considering the flatness around the shift vector
is of first importance to construct a good surrogate from weight deviations.

The optimal scale is consistent with the previously found optimal length
along random directions. The optimal Gaussian standard deviation for a DNN
is also half of the one optimal for LGV-SWA. Flatness is consistent in that aspect
between LGV and random subspaces. These observations also corroborate our
observations that LGV-SWA is flatter than the initial DNN.
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Fig. 20: Transfer success rate with respect to the γ hyperparameter, the scale
of the LGV’ deviations applied to an independent DNN (“1 DNN + γ (LGV’ -
LGV-SWA’)”).
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D Hyperparameters

This section reports the success rates of the I-FGSM transfer attack for the LGV
and I-FGSM attack hyperparameters: the LGV learning rate, the number of LGV
epochs, the number of collected LGV weights per epoch, and the number of I-
FGSM attack iterations. We select all hyperparameters by cross-validation. A
random subset of 2000 examples from the ImageNet train set is used as validation
set to craft adversarial examples. The selected hyperparameter value is unique
and does not depend on the target to respect the black-box threat model where
the architecture is unknown.

Each figure includes the eight studied targets (subfigure title), both L∞ (red)
and L2 (blue) attacks, and the adversarial examples from the validation set
(dashed) for hyperparameter selection and from the test set (plain) for indepen-
dent evaluation.

D.1 Sensibility to the Learning Rate

We study the sensitivity of LGV on the constant learning rate value. LGV pro-
vides reliable transferability improvements for a wide range of learning rate,
between 0.01 and 0.1 (Figure 21). The effectiveness of LGV degrades quickly
as the learning rate goes larger than 1 × 10−1 or smaller than 5 × 10−3. We
suppose that small learning rates produce surrogates with gradients that overfit
the initial model.

We describe the type of high learning rates suitable for LGV10. We can iden-
tify several kinds of high learning: (a) the highest possible learning rate that does
not make the model leave the current local minimum; (b) the highest possible
learning rate that makes the model jump between different local minima but
does not cause deterministic chaos; (c) the highest possible learning rate that
causes deterministic chaos but does not lead to numerical divergence. “High”
in our case refers to the definition (b). With a learning rate of 0.05, LGV exits
the initial local minimum, as indicated by the spike of the training loss during
the first LGV epochs from 0.95 of the initial DNN to 3.1. This creates a drop
of 5.31 percentage points in natural test accuracy between the initial DNN and
the ensemble of 40 LGV models (Figure 21). Our learning rate allows SGD to
explore a larger vicinity in the weight space. This leaves (mostly) definition (a)
out. Numerical divergence appears for a learning rate of 50, which is three orders
of magnitude above the optimal one. Transferability drops suddenly when de-
terministic chaos appears (from 95% to 9% along with the natural test accuracy
from 67% to 33% when changing the learning rate from 0.1 to 1). Determinis-
tic chaos is more dangerous to LGV than exploring without leaving the local
minimum. Very low LGV success rates might be an indication of convergence to
local a maximum due to an excessively high learning rate. These observations
exclude definition (c), leaving definition (b) coherent with our results.

10 We would like to thank the reviewers for raising this interesting discussion.
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Fig. 21: Transfer success rate against the ResNet-50 target (red, blue) and nat-
ural test accuracy (orange) of the LGV surrogate trained with a wide range of
constant learning rate, in pseudo-log scale. The null learning rate refers to the
initial DNN.

We select a learning rate equal to 0.05, half of the learning rate at the be-
ginning of training, based on a validation set, both attack norms, and the eight
target models. These observations are valid for the three other target architec-
tures of the ResNet family (Figure 22). However, the best learning rate against
Inception v1 and v3 targets is 0.1 for both norms. This tolerance to a higher
learning rate is coherent with our observation in Section 4.2 that transferabil-
ity to these targets is less sensitive to the locally meaningful directions in the
subspace spanned by LGV weights.

D.2 Number of LGV epochs

In the paper, LGV performs 10 additional epochs on the training set, which reach
convergence (Figure 23). The computational cost of LGV is low, as it represents
less than 7.7% of the training of the initial DNN. If the attacker has limited
computational capability, five epochs are enough to obtain close results for most
targets.
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Fig. 22: Transfer success rate with respect to the LGV learning rate, for the eight
targets.
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Fig. 23: Transfer success rate with respect to the number of LGV epochs.
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D.3 Number of LGV weights per epoch

In the paper, LGV save four weights per epoch. As developed in Appendix B.2
a heavily restricted threat model where the memory is limited to a single model,
can leverage the LGV-SWA surrogate. A threat model with intermediary limita-
tion memory-wise could sample two LGV weights per epoch with minor success
rate loss.
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Fig. 24: Transfer success rate with respect to the number of LGV weights saved
per epoch.

D.4 Number of attack iterations

The number of I-FGSM iterations is set to 50 based on the validation success
rate of both the initial DNN (“1 DNN”) and the LGV surrogate. The attack on
the initial DNN converges to its maximum around 50 iterations for all targets.
The same is true for the LGV surrogate against the ResNet family targets, but
not against the Inception v1 and v3 architectures, where the success rate is
already decreasing. For fairness, we choose 50 iterations in favour of the 1 DNN
surrogate.
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Fig. 25: Transfer success rate with respect to the number of iterations of the
I-FGSM attack.
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