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Abstract. Dynamic neural networks could adapt their structures or
parameters based on different inputs. By reducing the computation re-
dundancy for certain samples, it can greatly improve the computational
efficiency without compromising the accuracy. In this paper, we investi-
gate the robustness of dynamic neural networks against energy-oriented
attacks. We present a novel algorithm, named GradAuto, to attack both
dynamic depth and dynamic width models, where dynamic depth net-
works reduce redundant computation by skipping some intermediate lay-
ers while dynamic width networks adaptively activate a subset of neu-
rons in each layer. Our GradAuto carefully adjusts the direction and
the magnitude of the gradients to efficiently find an almost impercep-
tible perturbation for each input, which will activate more computa-
tion units during inference. In this way, GradAuto effectively boosts
the computational cost of models with dynamic architectures. Com-
pared to previous energy-oriented attack techniques, GradAuto obtains
the state-of-the-art result and recovers 100% dynamic network reduced
FLOPs on average for both dynamic depth and dynamic width mod-
els. Furthermore, we demonstrate that GradAuto offers us great con-
trol over the attacking process and could serve as one of the keys to
unlock the potential of the energy-oriented attack. Please visit https:

//github.com/JianhongPan/GradAuto for code.

1 Introduction

Deep neural networks(DNNs) have made great progress in a large variety of
computer vision tasks such as image classification [12, 22, 26, 36, 37], segmenta-
tion [1, 8, 21, 38, 39] and object detection [5, 16, 21, 33, 35]. However, with the
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advance of the research on neural architectures as well as the developments in
hardware, DNNs have become deeper and deeper with millions or even billions of
parameters nowadays, especially after the introduction of the Transformer [43].
The computation heavy models pose great threats to the deployment to em-
bedded and mobile devices and motivate more researches on developing more
efficient models [9, 10] to accelerate the training/inference.

Dynamic Neural Network [19] renders one potential path towards accelera-
tion in inference stage by adaptively executing a subset of layers/neurons con-
ditioned on the properties of the input sample. Typically, gating mechanism is
introduced into dynamically neural networks to adaptively determine if their
corresponding layers/neurons should be executed based on the input. By skip-
ping the redundant computations within the models on the fly, dynamic neural
networks provide a better trade-off between the accuracy and the efficiency.
Moreover, the adaptive mechanism enlarges the parameter space and unlocks
more representation power with better interpretability [19].

Despite the fast developments in dynamic neural networks architecture and
training techniques, the robustness of dynamic neural network to adversarial
examples have only attracted attention [20] recently. Studying the adversarial
attacks on the dynamic neural network provides an alternative view over the ro-
bustness on the efficiency of the model. As shown in ILFO [20], although dynamic
neural networks offer notable advantages on accuracy, computational efficiency,
and adaptiveness, these networks are highly vulnerable to energy-oriented at-
tacks, i.e. adversarial attacks aimed at boosting the energy consumption and
computation complexity.

By adding a well-designed perturbation on the input, the adversarial ex-
amples can easily activate more gates controlling the execution of the mod-
ules, therefore incuring more computations and drastically reducing the FLOPs
(floating-point operations per second) saved by the state-of-the-art dynamic net-
works. For example, with the adversarial attack technique proposed in ILFO [20],
the computation overhead of the state-of-the-art SkipNet [45] recovered by more
than 84% and 81% on CIFAR-10 and ImageNet, respectively. ILFO [20] estab-
lishes a good baseline for energy-oriented adversarial attacks on dynamic depth
neural networks. Nevertheless, ILFO is not evaluated on dynamic width net-
works. In our experiments, we adapt ILFO to attack dynamic width networks.

Furthermore, we identify two more key pitfalls of the existing energy-oriented
attacks towards dynamic neural networks like ILFO, as shown in Sec. 4.1 and
Sec. 4.2. First, the drastic difference between the magnitude of the gradients
across the gates could potentially lead to some gates dominate the others during
the training process. This imbalance between the gradient magnitude across
different gates will impede the training and convergence of the model. Second,
the gradients of different gates will not always in harmony. Gradients computed
from inactivated gates could potentially disagree with the one that computed
from activated gates, which will deactivate the already activated gates after a
few updates.
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To mitigate such issues at their root, we propose the GradAuto, a unified
method for energy-oriented attacks on both dynamic depth and width networks.
Specifically, we directly modify the gradient magnitudes to meet Lipschitz con-
tinuity, which will provide convergence guarantee during the training phase. To
address the second pitfall, we make the gradient direction of the deactivated gate
orthogonal to the gradient direction of the activated gates in every update step,
which mitigates the influence of the gates that have already been optimized.

In summary, we propose GradAuto to perform effective energy-oriented at-
tacks against the dynamic neural networks. The contribution of our work is three
folds: (1) We provide a unified formulation to construct adversarial samples to
attack both the dynamic depth and width networks. (2) To address the drastic
magnitude differences among gradients as well as the disagreement in gradients
for activated/inactivated gates, we propose GradAuto to rectify both of them.
(3) We demonstrate the efficacy of our algorithm on multiple dynamic neural
network structures as well as various datasets. Our GradAuto bumps up more
computations with less perceptable perturbations.

2 Related Work

2.1 Dynamic Neural Networks

Dynamic neural network [31, 44, 45, 48] addresses the trade-off between the ac-
curacy and the efficiency of deep neural networks by adaptively adjusting model
architectures to allocate appropriate computation conditioned on each instance.
As a result, the redundant computations on those “easy” samples are reduced
and the inference efficiency is improved [19]. Below we briefly review the dynamic
depth networks and dynamic width networks. A more comprehensive review of
dynamic neural networks can also be referred to [19].

Dynamic depth networks achieve efficient inference in two ways, early
termination and conditional skipping. The early-termination based models could
optionally finish the inference early from shallower layers, when high confidences
on the predictions have been achieved. The conditional-skipping based models
skip the execution of a few intermediate layers/blocks, while the prediction is
always obtained at the end of the model. Adaptive Computation Time (ACT)
[17] augments an RNN with a scalar named halting score to save computational
cost. Figurnov et al. [14] further extended this idea to ResNet for vision task by
applying ACT to each groups of residual blocks. SkipNet [45] attempts to skip
convolutional blocks using an RL-based gating network.

Dynamic width networks selectively activate multiple components of the
same layer, such as channels and neurons based on each instance. Early studies [3,
4,11] achieve dynamic width by adaptively controlling the activation of neurons.
The MoE [13, 27] structure builds multiple “experts” (which can be complete
models or network modules) in a parallel structure, and dynamically weights the
output of these “experts” to get the final prediction. Dynamic channel pruning in
CNNs [25,32,34,46,47] adaptively activates different convolution channels based



4 J. Pan et al.

on different instances, thereby achieving computational efficiency improvements
while maintaining model capacity.

In this paper, we propose a unified algorithm to generate adversarial samples
to perform energy-oriented attacks. We showcase the efficacy of our algorithm
on both the dynamic depth network (SkipNet [45] and SACT [14]) as well as
dynamic width network (ManiDP [42]). Thanks to the general formulation, our
algorithm could be extended to other instances of dynamic depth and width
networks easily.

2.2 Energy-oriented Attack

Although dynamic neural network is appealing in reducing the computation
overhead specific to the input samples, its robustness under various adversarial
attacks remains unclear. The adversarial attacks could be broadly separated
into accuracy-oriented attacks and energy-oriented attacks. In accuracy-oriented
attacks, the adversary aims at altering the predictions of the target models while
in energy-oriented attacks, the adversary focuses on delaying the inference speed
of the target model by incurring more computations within the model. With the
extra computation overhead, the energy consumption of inference also increases
accordingly, leaving the dynamic neural network no longer efficient and therefore
defeats the whole purpose of the dynamic neural networks.

Important as it is, the study on adversarial attacks on dynamic neural net-
works is quite limited. ILFO [20] was the first work investigating the robustness
of dynamic neural networks. Specifically, they study the energy-oriented adver-
sarial attacks on dynamic depth networks and leverage the intermediate output
within the dynamic neural network to infer the energy consumption of each
layer. Deepsloth [23] attacks the early-termination based dynamic neural nets.
An adversarial example crafting technique is proposed to slowdown the inference
speed.

Different from existing methods that mainly focus on studying the robustness
of the dynamic depth network, we provide a more universal formulation that
could adapt to the attack on both the dynamic depth network and dynamic width
network. Moreover, we also showcase that directly searching for the adversarial
examples based on gradients could be unstable and sub-optimal. To address
this, we additionally propose two remedies to rectify the gradients, leading to
improved adversary performance with less perceptible perturbations.

3 Computational Complexity Attack

3.1 Introduction of Two Types of Dynamic Neural Architectures

Depth-Dynamic Neural Architecture, such as SkipNet [45], adjusts the
network depth by skipping some of the network layer to reduce the compu-
tational complexity. Given a conditional skipping network, the output feature
maps xl+1 ∈ RCl+1×Hl+1×Wl+1 from the gated layer l + 1 can be computed by

xl+1 = gl · Fl(xl) + (1− gl) · xl; (1)
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where Fl(xl) = wl ∗ xl + bl denotes the output of the lth layer before the gate

function gl ∈ {0, 1}. wl ∈ RCl+1×Cl×Kl×Kl

denotes the weights of the convolu-
tion kernels, and ∗ denotes the convolution operation. We omit the nonlinearity
in Eq. 1 for clarity. Note that the gated function makes binary decisions (0 or 1),
instead of predicting a continuous value to weightedly combine the output and
the input of the layer l. This means, when gl = 0, the convolution computation
Fl(xl) in layer l can be skipped to reduce computation cost.

Width-Dynamic Neural Architecture, such as [2, 7, 15, 32], employs a
gate function to predict the activation status of each channel: gl ∈ {0, 1}Cl+1 .
The predicted activation status is then used to mask out the convolution oper-
ations on selective channels: xl+1 = Fl(xl, gl) = (gl ◦ wl) ∗ xl + gl ◦ bl, where
◦ denotes the Hadamard product over the dimension of output channel Cl+1.
When glc = 0, the computation of the cth channel at the lth layer could be
skipped and the corresponding computation cost could thus be saved.

Gate Generation. In many works [18,28–30,40,44,45,49], the gate is often

generated by a gating network Gl(·) as: gl =

{
1, Gl(xl) ≥ τ
0, Gl(xl) < τ

, where Gl(xl) ∈

(Gmin, Gmax) is the estimated gating value of the lth layer, and τ ∈ (Gmin, Gmax)
denotes the threshold. Note that, (Gmin, Gmax) indicates that Gl(·) is bounded,
e.g., Gmin = 0, Gmax = 1 if sigmoid is adopted as the activation function of
the gating network. For dynamic width networks, the gating network predicts a
vector-based mask corresponding to the activation status of each channel, which

could be constructed in a similar way: glc =

{
1, Glc(xl) ≥ τ
0, Glc(xl) < τ

. Therefore, to

perform energy-oriented attack, we could perturb the input samples to raise the
intermediate gating values to go beyond the threshold τ , which leads to the
corresponding gates being activated and incurs extra computational cost to the
dynamic neural networks.

3.2 Overall Objective of Computational Complexity Attack

In traditional accuracy-oriented attacks, to construct an adversarial example, a
human imperceptible perturbation is created to modify a given input. A specific
objective function (e.g., changing the predicted logits of an image classification
network yet keeping the minimum amount of changes) is often constructed to
guide the search for the perturbation. After iterative updates on the perturba-
tions, the modified input could alter the predictions of the threatened models.
Similarly, we can also construct perturbed input samples to invalidate the accel-
eration strategy of the dynamic neural architecture, such as raising the gating
value to activate more gates and accordingly computes more layers or more
channels. We detail this kind of attack below:

First, we initialize a specific perturbation δ ∈ R3×H×W and use it to modify
the input image by:

x′
0 = x0 + δ (2)
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whereH,W denote the height and width of the input image, x0,x
′
0 ∈ [0, 1]3×H×W

denote the original input and modified input, respectively. The value of the input
image should be in [0, 1]. Hence, we follow Carlini et al. [6] to use tanh(·) ∈ [−1, 1]
to refine Eq. 2 to force the modified input x′

0 ∈ [0, 1]3×H×W by:

x′
0 =

1

2
· (tanh(x0 + δ) + 1). (3)

To make the perturbation δ being able to increase the complexity of the network,
we refer to Szegedy et al. [41] and formally define the objective as:

min
δ

1

3HW
∥1
2
· (tanh(x0 + δ) + 1)− x0∥2, s.t. Gl(x0, δ) ≥ τ, (4)

where ∥ · ∥2 denotes the L2-norm, and 1
3HW ∥ · ∥2 denotes the mean-square error,

which is used to minimize the deviation between the original input and the
modified input to prevent them from being differentiated. The constraint is to
guarantee the gating value Gl (or Glc for width-dynamic neural architecture)
being above the threshold to activate the execution of the lth convolutional layer
for more computational complexity. Here, we use Gl(x0, δ) as the gating function
to indicate that it depends on both the input and the perturbation.

3.3 Complexity Loss

To increase the network complexity, we drive the gating value Gl to be larger
than the threshold τ to satisfy the constraint: Gl(x0, δ) ≥ τ in Eq. 4 to get the
corresponding layer executed. The constraint can be considered as equivalent to
max(τ −Gl(x0, δ), 0) = 0. We adopt Lagrangian relaxation to approximate Eq.
4 as:

min
δ

1

3HW
∥1
2
· (tanh(x0 + δ) + 1)− x0∥2 +

∑
l

λl ·max(τ −Gl(x0, δ), 0), (5)

where λl is the chosen positive weight for the lth layer. We define the right part
in Eq. 5 as the Complexity Loss:

LC(x0, δ) =
∑
l

λl ·max(τ −Gl(x0, δ), 0), (6)

which can rise all the deactivated gating values, i.e., Gl(x0, δ) < τ , until being
activated, i.e., being above the threshold τ . Then, we define λl as: λl =

Cl∑
l Cl

,

where Cl denotes the computational complexity of the lth layer, i.e., λl denotes
the complexity proportion of lth layer to all the convolutional layers. Using dif-
ferent λl for different gating values can reweight the losses of different convolu-
tional layers according to their corresponding complexities. For example, when
C0 = C1 + C2, then the penalty for skipping the 0th layer will be the same as
the penalty for skipping both the 1th layer and the 2th layer.
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For simplicity, we rewrite Eq. 5 to:

min ∥1
2
·
[
tanh(x0 + δ) + 1

]
− x0∥2 + 3HW · LC(x0, δ), (7)

as the final objective. The Complexity Loss measures the computational com-
plexity difference between the current state and the desirable state whose com-
plexity is maximized. The final objective leads the modified input to increase
the network complexity while keeping the deviation to the original input small.

For the width-dynamic neural architecture, the Complexity Loss becomes:

LC(x0, δ) =
∑
l,c

λlc ·max(τ −Glc(x0, δ), 0), (8)

where λlc is computed as the complexity proportion of the corresponding channel
to the entire network.

4 GradAuto

In Sec. 3.3, we formulate the objective function as Eq. 7, where we minimize
the combination of the overall magnitude of the perturbation δ and the amount
of gate value Gl(x0, δ) below the activation threshold τ . However, in practice,
we found that directly optimizing the perturbation based on the gradient of
Eq. 7 is suboptimal due to two main reasons: 1) The gradient becomes unstable
and could change drastically when the status of the gate changes, as shown in
plots A, B, and C of Fig. 1. 2) The gradient for bumping up the gate value
of inactivated gates may disagree with the gradients to keep the activated gate
activated, leading to previously activated gates deactivated, as shown in gate 1
in plot D of Fig. 1. These two issues impede the effective and efficient search of
the optimal perturbation, leading to suboptimal attack performance as shown
in our ablation studies in Sec. 5.3. To address these two issues, we propose two
rectified based approaches to regularize the gradients, enabling faster and more
effective energy-oriented attacks.

4.1 Rectified Magnitude of Gradient

Fig. 1 shows the gating value and the gradient during adversarial training. It
can be observed in the sub-figures A and B that the magnitude of the gradient,
i.e., ∥g∥, grows very fast at around 0th, 100th and 250th iterations, which is
the moment that the gating values of gate 1, gate 4, and gate 3 exceed the
threshold (see sub-figure C) and we add the corresponding layer into our graph.
As the result, the gradient maintains a low magnitude most of the time while
occasionally grows abruptly, which leads to an unstable optimization process
and sometimes even prevents the convergence of the Complexity Loss.

We suggest, there are two reasons for the gradient of dynamic neural architec-
ture to be unstable during training: 1) The sudden change of the activation status
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Fig. 1. Visualization of gradient and gating value. A and B show the magnitude of
gradient of every training iteration. C and D show the change of gating value during
adversarial training.

brings discontinuities to the dynamic neural networks, leading to additional lay-
ers involved into the computation graph and drastic jumps of the gradients. 2)
The range of the derivative of gating network is very large which will significantly
scale up or down the gradient propagated backward. A bounded and monotonic
activation function, such as sigmoid or hyperbolic tangent, is often adopted in
gating network to restrict the range of its output value while their derivatives in-
crease (or decreases) extremely fast. More specifically, the derivative of sigmoid
is:

σ′(x) =
1

1 + e−x
· (1− 1

1 + e−x
) = σ(x) · (1− σ(x)), (9)

where σ′(0) = 2.5× 10−1, while σ′(−5) = 6.6× 10−3.
To stabilize the gradient, we resort to limit the change of the Complexity

Loss to meet Lipschitz continuity as

dLC
(LC(δ1),LC(δ2)) ≤ Kdδ(δ1, δ2), (10)

where K ∈ R>0 denotes the Lipschitz constant, and d(·) denotes the metric on
the corresponding space of δ or LC. Hence, Eq. 10 can be written as:

|LC(δ1)− LC(δ2)|
∥δ1 − δ2∥2

≤ K. (11)

According to the mean value theorem, Eq. 11 is valid if and only if the limit

lim
∥∆δ∥2→0

|LC(δ +∆δ)− LC(δ)|
∥∆δ∥2

≤ K. (12)

holds, where ∆δ represents any change of the perturbation δ. Eq. 12 can be
formulated by directional derivative as:

lim
∥∆δ∥2→0

| ⟨∇LC(δ), ∆δ⟩ |
∥∆δ∥2

≤ K, (13)

lim
∥∆δ∥2→0

∥∇LC(δ)∥2 · ∥∆δ∥2 · | cos θ|
∥∆δ∥2

≤ K, (14)

∥∇LC(δ)∥2 · | cos θ| ≤ K, (15)
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Fig. 2. Visualization of gradient and gating value after being rectified. A and B show
the change of gating value during training, where the rectified magnitude of gradient
is adopted (A and B can be compared to C and D in Fig. 1). C shows the change
of the included angle θ between Finished Gradient and Complexity Gradient, and the
gradient projection where the curves in different color represent different input image
samples.

where ⟨·, ·⟩ denotes inner product, and θ denotes the angle between the gradient
∇LC(δ) and the change ∆δ of the perturbation, which equals to zero when the
cos θ is maximized. Therefore, the sufficient condition of Eq. 15 is:∥∥∥∥∇LC(δ)

K

∥∥∥∥
2

≤ 1, (16)

Hence, we rectify the Complexity Loss in Eq. 6 to satisfy the sufficient condition
Eq. 16 as:

LC(δ) = K ·
∑

l λl ·max(τ −Gl(x0, δ), 0)

∥∇
∑

l λl ·max(τ −Gl(x0, δ), 0)∥2
, (17)

This rectified version of the Complexity Loss is K-Lipschitz continuous, where
we can adjust K to control the slope of the Complexity Loss as well as the
magnitude of the gradient.

We further visualize the gradients and the gating values of the rectified Com-
plexity Loss in Fig 2. The sub-figures A and B plot the change of the gating value
under the case of K = 1. Compared to the sub-figures C and D in Fig 1, our
AutoGrad damps the growth of the gating value and leaves room for the gates
to compete with each other during the loss convergence, i.e., the activated gates
would not drop to the bottom in one shot when the value of inactivated gates
are growing towards the threshold. Once the values for the activated gates drop
below the threshold, they will be involved into our Complexity Loss (Eq. 17)
and compete against other inactivated gates.

4.2 Rectified Direction of Gradient

The Complexity Loss only penalizes the inactivated gates (gate with value below
the threshold) to drive them to be activated, while the already activated gates
(gates with values above the threshold) are excluded. However, the gradients to
boost the inactivated gates’ values may not always agree with the gradients to
make the activated gates keep activated. Hence some of the activated gates’ value
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may drop and become inactivated again. This kind of disagreement will drive
the gates switching back and forth between being activated and inactivated,
as shown in sub-figures D of Fig. 1. While the Gate 2 increases to above the
threshold, the Gate 1 drops to below the threshold and becomes inactivated.
In this case, they almost cannot be activated in the same time, which limits
the total number of activated gates. Below we study two ways to address this
problem.

Involving Activated Gates in the Complexity Loss. In this case, we
modify the Complexity Loss to encourage the gating value to rise even after
activation:

LF(x0, δ) =
∑
l

λl · (τ −Gl(x0, δ)), (18)

However, we empirically find this modification effectively leads to a tighter con-
straint:

Gl(x0, δ) = Gmax (19)

for Eq. 4, while the L2-norm also constrains the amount of the perturbation δ.
Combining these two constraints, the solution space is extremely limited. As the
result, keeping the activated gate rising induces degeneracy of the solution space
further, and poses greater challenges to the perturbation search process.

Gradient Projection for Complexity Loss. Keeping rising the activated
gate can prevent them from switching back to some extent but always keeping
them rising impedes the convergence of Complexity Loss. Moreover, encouraging
higher activation values for those activate gates does not further contribute to the
complexity increase, because their corresponding layer has already been counted.
Hence, we further propose Finished Gradient Masking to keep them only from
dropping. Firstly, we additionally compute the Finished Loss for those activated
gates as:

LF(x0, δ) = −
∑
l

λl ·max(Gl(x0, δ)− τ, 0) (20)

The Finished Loss LF(x0, δ) provides us the Finished Gradient gF ∈ R3×H×W

for the perturbation δ, which is the direction to further increase the gate value
for activated gates:

gF = ∇δLF(x0, δ). (21)

Secondly, we use the Complexity Loss to calculate the Complexity Gradient
gC ∈ R3×H×W by

gC = ∇δLC(x0, δ). (22)

Thirdly, we project the Complexity Gradient onto the Finished Gradient by

projgF
gC =

⟨gC, gF⟩
∥gF∥2

gF

∥gF∥2
, (23)
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and accordingly calculate the rejection of the Complexity Gradient from the
Finished Gradient as:

oprojgF
gC = gC − projgF

gC, (24)

whose direction is orthogonal to the Finished Gradient. Hence updating with it
dose not affect the gates that have already been activated. Finally, we rectify
the direction of Complexity Gradient as:

g′
C =

oprojgF
gC + projgF

gC,
〈
projgF

gC, gF

〉
≥ 0,

oprojgF
gC,

〈
projgF

gC, gF

〉
< 0

, (25)

which indicates that when the projection is opposite to the direction of Fin-
ished Gradient, it will be removed and only the orthogonal component of the
Complexity Gradient will be updated. With this design, we update the perturba-
tion to activate more gates and effectively avoids the activated gate from being
deactivated again.

The sub-figure C in Fig. 2 visualizes the change of the angle θ between
the Finished Gradient and the Complexity Gradient during training. When the
angle is obtuse, the Complexity Gradient conflicts with the Finished Gradient,
i.e., updating alongside the vanilla Complexity Gradient drags the activated
gates toward the threshold. As shown in the plot, such conflicts occur frequently
during training which drives the gate switching back and forth. Our approach
of avoiding the conflict with gradient projection can be considered as a greedy
algorithm to push the gate values of the remaining inactivated gates to as high
as possible. Therefore, we adopt it at the later stage of the training to activate
the rest of inactivated gates as much as possible.

5 Experiments

We validate our approach by using it to attack popular dynamic depth network
(SkipNet [45] and SACT [14]) and dynamic width network (ManiDP [42]) on
CIFAR-10 and ImageNet. For the experiments on dynamic depth network, we
attack SkipNet with two different settings: SkipNet+SP and SkipNet+SP+HRL,
where +SP and +HRL indicate whether supervised pre-training or hybrid rein-
forcement learning were used following [45]. SkipNet+SP+HRL achieves better
efficiency compared to SkipNet+SP. Since ILFO only attacks SkipNet+SP, we
further re-implement their code on the SkipNet+HRL and compare it with our
GradAuto.

Metric We follow the previous work [20] and evaluate the effectiveness of
our attacks. We report the average percentage of the recovery in the dynamic
neural network reduced FLOPs during inference following [20]. Dynamic neural
networks reduced the total computation complexities at inference stage and we
measure the amount of the saving computations that are invalidated by our
attacks.
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To measure the Quality, we adopt peak signal-to-noise ratio (PSNR) as
the metric, which approximates the human perceptual quality and is commonly
employed to evaluate image quality [24]. The PSNR can be defined as: PSNR =

10·log10 (
MAX2

I

MSE ), where MAXI is the maximum possible pixel value of the image.
For an original m×n image I and its corresponding adversarial example K,mean
squared error(MSE) can be calculated by: MSE = 1

mn

∑m−1
i=0

∑n−1
j=0 [I(i, j)−

K(i, j)]2.

5.1 Attack on Dynamic Depth Network

We compare our approach with the state of the art method ILFO [20]. To ensure
a fair comparison, we follow the experimental settings in [20]. Images from Ima-
geNet and CIFAR-10 are converted into 224×224×3 and 32×32×3, respectively.

Quantitative Comparison We present the comparison results in Table 1.
On both CIFAR-10 and ImageNet, our GradAuto invalidates all the reduced
FLOPs, outperforming the ILFO baseline by 15.71% & 18.64% for the SkipNet
and 27.51% & 8.94% for SACT. In these experiments, our GradAuto attacks
demolish the adaptive mechanism of SkipNet and SACT completely, effectively
reduced them to their static counterparts, which shows the effectiveness of the
proposed GradAuto.

To further evaluate the limits of our GradAuto, we additionally design and
compare the ILFO on the more powerful SkipNet+HRL, i.e., the SkipNet with
hybrid reinforcement learning. The original complexity reduction of SkipNet and
SkipNet+HRL are 15.08% and 29.94% respectively. As shown in Table 1, our
GradAuto outperforms ILFO by a large margin on attacking the SkipNet-HRL,
effectively recovers 70% more reduced FLOPs compared to ILFO.

Qualitative Comparison Fig. 3 visualizes the modified input images gen-
erated by ILFO and ours GradAuto based on SkipNet-HRL. It can be observed
that our method improves attack performance with lower deviation compared to
ILFO. ILFO greatly changes the contrast of the image, while our GradAuto is
more authentic to the original image. Results with different Lipschitz constant K
show that on the our method generates less perceptible noise at the background.

Table 1. Average recovery of the reduced FLOPs by three dynamic neural architec-
tures: SkipNet, SACT, and ManiDP on the two datasets: CIFAR-10 and ImageNet,
respectively.

Dataset CIFAR-10 ImageNet

Model
SkipNet SACT ManiDP SkipNet SACT SkipNet+HRL ManiDP

(%) (%) (%) (%) (%) (%) (%)

ILFO [20] 84.29 72.49 80.3 81.36 91.06 46.9 85.6
GradAuto(ours) 100 100 100 100 100 88.9 100
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Original Ours (K=1e-3) Ours (K=1e-2) Ours (K=1e-1) Ours (K=1e+0) ILFO

Fig. 3. The modified input images generated by our AutoGrad under different Lipschitz
constant K of Lipschitz continuity. The model for the experiment is SkipNet-HRL.

5.2 Attack on Dynamic Width Network

We next evaluate our attack on the dynamic width network ManiDP [42]. The
experimental setting of attack on ManiDP is same with the attack on SkipNet.
The original computation reduction of ManiDP on ImageNet is 49%. We eval-
uate our approach on the ImageNet and CIFAR-10. As shown in Table 1, our
GradAuto outperforms ILFO and recover ManiDP reduced FLOPs by 100% for
all samples.

5.3 Ablation Study

To further validate the effect of a few important design choices of our method,
we conduct ablation studies on the gains of rectified gradient, the selection of
the Lipschitz constant as well as the design of rectified direction of gradient.

Table 2. Comparison for different methods. Baseline denotes ILFO. RD and RM
denote Rectified Direction and Rectified Magnitude, respectively. GradAuto denotes
the combination of Rectified Direction and Rectified Magnitude.

Method Baseline RD (Ours) RM (Ours) GradAuto (Ours)

Complexity Increase 46.9 52.3 86.9 88.9

Rectified Gradient. Table 2 evaluates the gains brought by the Rectified
Direction and the Rectified Magnitude. Both Rectified Direction and Rectified
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Table 3. Result comparison among different Lipschitz constant K of Lipschitz conti-
nuity. Recovery denote the recovery of reduced FLOPs by the dynamic neural architec-
ture. Baseline denotes ILFO [20]. PSNR measures the deviation between the original
input and the modified input. The model for the experiment is SkipNet-HRL.

K Baseline 1e− 3 1e− 2 1e− 1 1e + 0 1e + 1 1e + 2

Recovery (%) 46.9 71.0 85.2 87.0 88.9 88.9 88.9
PSNR 54.39 78.13 67.60 57.57 54.54 53.92 53.87

Magnitude provide better attacking performance, incurring 5.4% and 40% more
computation complexity.

The Setting of K-Lipschitz. Table 3 lists the performance of Complexity
Attack and the deviation of modified input images under different Lipschitz
constant. A lower Lipschitz constant reduces the PSNR between the original
input images and the modified input images but also drops the performance
of Complexity Attack (measured by complexity increase). Note that, when the
Lipschitz constant K ∈ [1e − 3, 1e − 0], our AutoGrad significantly improves
the performance of Complexity Attack while achieves extremely high PSNR.
It can be observed that when setting the Lipschitz constant as K = 1e − 3,
the modified inputs generated by our method are hardly distinguishable from
the original input images while improves the attack performance by over 20.8%
compared to ILFO.

A higher Lipschitz constant accelerates the convergence of Complexity Loss
which activates more gates and bring better attack performance. Meanwhile, the
perturbations also becomes more noticeable. Finally, we can adjust the Lipschitz
constant based on the trade off between the perceptiveness and the performance
of the Complexity Attack in response to distinct needs.

6 Conclusion

In this paper, we investigate the robustness of dynamic neural network in terms
of computational efficiency. We construct a framework for attacking the dynamic
depth/width networks and also identify two key issues in the gradient space
causing the limit success of the prior attack. First, the magnitude of the gradient
is not stable. Sudden spikes in gradients make the network difficult to train.
Second, gradient of different gates may have conflicting directions. To address
these two issues, we proposed a new attack approach GradAuto and empirically
demonstrate that it could invalidate 100% of reduced FLOPs of both dynamic
depth and dynamic width model while keeping the perturbation imperceptible.
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