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Appendix

A Related Work

Deep neural networks (DNNs) trained using standard gradient descent optimiz-
ers [45] have been shown vulnerable to adversarial examples [53]. A number of
white- and black-box attacks have been proposed [6–8,24,49–51,58] to construct
adversarial examples with small ℓp distances to the original data that mislead
these DNN models. Besides adversarial attacks, recent studies have devoted ef-
forts to characterizing model performance under common corruptions [4, 22],
where natural corruptions lead to a significant impact on the accuracy of SOTA
ML models. Thus, it has become imperative to study how ML models can be
made robust to test data coming from different distributions when the models
are deployed in the real world.
Certified Robustness and Defenses. The authors in [53] have discovered
the adversarial examples in DNN models, after which many defenses have been
presented to mitigate such vulnerability [3]. However, many of the proposed
countermeasures have been shown to rely on gradient obfuscation, limiting ma-
licious agents from accessing the accurate gradients. Such defenses are vulnerable
to adaptive attacks, which give a false sense of security [3] of the models. Certified
defenses are thus highly desirable. Along with a prediction on the test point, these
defenses output a certified radius r such that for any ||δ||2 < r, the model contin-
ues to have the same prediction. Such techniques include convex polytope [57],
recursive propagation [17], and linear relaxation [42,67]. These methods provide
a lower bound on the perturbation required to change the model’s prediction on
a target point. However, such methods can merely be applied to shallow models,
which limits their practicality. Recently, [9,32,33,40] have proposed randomized
smoothing (RS)-based certified defenses that produce better lower bounds and
are scalable to large networks. In this paper, we study the corruption robustness
of such certified defenses. Unlike a recent work [37], which uses data poisoning
attacks to hurt the robustness guarantees of the RS-based models, our work
demonstrates the failure of these models on test-time corruptions, which might
be encountered by the model deployed in the real world.
Robustness against Common Corruptions – Benchmarks and Defenses.
Pioneering studies have identified vulnerabilities of deep learning models to com-
mon corruptions. Dodge et al . find that standard trained DNNs are vulnerable to
blur and Gaussian noise [13]. Hendrycks et al . [22] present CIFAR-10/100-C and
ImageNet-C, consisting of fifteen different common corruptions with five severity
levels to facilitate robustness evaluations of CIFAR [31] and ImageNet [12] mod-
els. Sun et al . [52] present common corruption benchmarks for 3D point cloud
data. Recently, Mintum et al . further propose CIFAR-10/100-C̄ and ImageNet-C̄
to provide new corruptions [38]. There are two popular lines of work on improv-
ing the robustness against common corruptions: test-time adaptation [48] and
data augmentation [11,23]. The authors in [46] propose a method to update the
batch normalization (BN) statistics for improving domain adaptation. Another
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Fig. 7. Average Certified Radius (ACR) of Fourier Basis Analysis on CIFAR-100 with
ϵ = 4 (AutoAug: AutoAugment, F-Mix: FourierMix ).

Table 2. Average Certified Radius (ACR) of Models Trained with Different Methods
on CIFAR-10-C. Models trained with FourierMix and HCR achieve significant im-
provements in the certified robustness (ACR) guarantees on all corruption types from
the CIFAR-10-C dataset.

Augmentation CIFAR-10 mACR -low -mid -high Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Gaussian 0.461 0.363 0.301 0.353 0.435 0.448 0.448 0.421 0.380 0.346 0.338 0.357 0.394 0.347 0.187 0.439 0.137 0.342 0.420 0.440

+JSD 0.535 0.439 0.346 0.451 0.520 0.529 0.514 0.528 0.471 0.445 0.443 0.453 0.449 0.378 0.235 0.485 0.185 0.444 0.506 0.521

+AutoAugment 0.411 0.372 0.312 0.364 0.431 0.451 0.452 0.419 0.411 0.356 0.342 0.360 0.403 0.354 0.201 0.446 0.158 0.352 0.429 0.445

+JSD 0.432 0.400 0.343 0.395 0.464 0.473 0.476 0.443 0.423 0.385 0.394 0.390 0.427 0.403 0.212 0.483 0.189 0.382 0.453 0.473

+AugMix 0.452 0.385 0.324 0.383 0.449 0.459 0.460 0.436 0.412 0.369 0.372 0.391 0.413 0.374 0.216 0.457 0.159 0.371 0.439 0.453

+JSD 0.518 0.430 0.357 0.436 0.496 0.504 0.507 0.481 0.461 0.426 0.429 0.441 0.452 0.408 0.240 0.501 0.185 0.425 0.485 0.502

+HCR 0.520 0.437 0.369 0.444 0.497 0.505 0.506 0.484 0.464 0.438 0.435 0.447 0.460 0.426 0.252 0.505 0.200 0.437 0.487 0.501

+FourierMix 0.455 0.388 0.326 0.386 0.453 0.461 0.462 0.446 0.417 0.369 0.378 0.393 0.415 0.376 0.220 0.457 0.160 0.373 0.439 0.456

+JSD 0.522 0.444 0.375 0.454 0.504 0.512 0.513 0.491 0.474 0.448 0.446 0.456 0.464 0.432 0.257 0.519 0.201 0.445 0.495 0.508

+HCR 0.535 0.460 0.384 0.473 0.521 0.528 0.530 0.513 0.492 0.470 0.464 0.477 0.477 0.432 0.275 0.517 0.220 0.462 0.511 0.524

recent method, TENT [56] updates both the affine transformation and statistics
of BN by using self-entropy minimization. On the other hand, methods such as
AutoAugment [11] leverages reinforcement learning to learn an augmentation
policy that produces a diverse set of augmentations to help make the models
robust to corrupted data. Another popular method, AugMix [23] achieves im-
pressive performance improvement on corrupted data using augmentations gen-
erated by mixing up images obtained from applying randomly sampled opera-
tions along with using a Jenson-Shannon-based consistency loss during training.
The authors in [16, 60] leveraged adversarial training schemes to improve the
corruption robustness. Unlike existing data augmentation schemes which intend
to improve the empirical robust accuracy of the models, the data augmenta-
tion schemes of interest to this paper aim to improve the adversarial robustness
guarantees under common corruptions.

Certified Semantic Robustness. Recent work [14,35,41] have also focused
on developing techniques to provide performance guarantees to seen (or known)
common corruption types (such as rotation or brightness changes). However, in
this work, we are interested in more realistic scenarios with unseen (or unknown)
test-time corruptions. It is worth noting that the susceptibility analysis and
defense techniques developed in this work can be extended to SOTA semantic
robustness techniques.
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Fig. 8. The ranking of SOTA models [23,30,44] (based on empirical robust accuracy)
changes across datasets and corruption types, suggesting there is no single model which
performs the best on different corruption benchmarks.

Table 3. Average Certified Radius (ACR) of Models Trained with Different Meth-
ods on CIFAR-10-C̄. Models trained with FourierMix and HCR achieve significant
improvements in the certified robustness (ACR) guarantees on corruptions from the
CIFAR-10-C̄ dataset.

Augmentation mACR Blue Brown Checkerboard Circular Inv. Sparkle Lines Pinch Ripple Sparkles Trans. Chromatic

Gaussian 0.314 0.351 0.255 0.310 0.386 0.222 0.336 0.398 0.365 0.251 0.269
+JSD 0.393 0.458 0.303 0.395 0.452 0.252 0.430 0.492 0.463 0.306 0.376

+AutoAugment 0.304 0.351 0.263 0.312 0.395 0.223 0.348 0.406 0.248 0.235 0.256
+JSD 0.346 0.354 0.297 0.335 0.445 0.238 0.374 0.436 0.402 0.269 0.308

+AugMix 0.341 0.389 0.269 0.334 0.439 0.233 0.358 0.416 0.397 0.272 0.307
+JSD 0.382 0.429 0.303 0.372 0.483 0.255 0.404 0.467 0.450 0.306 0.350
+HCR 0.393 0.442 0.309 0.384 0.486 0.268 0.419 0.471 0.464 0.320 0.368

+FourierMix 0.348 0.391 0.269 0.331 0.441 0.237 0.368 0.432 0.401 0.280 0.325
+JSD 0.397 0.445 0.307 0.395 0.482 0.265 0.430 0.490 0.463 0.320 0.377
+HCR 0.419 0.474 0.317 0.418 0.504 0.289 0.459 0.501 0.486 0.339 0.406

B Empirical Robust Accuracy of SOTA Models on
Corrupted Data

The results in Fig. 8 show empirical robust accuracy of state-of-the-art models on
existing corruption benchmarks. We use the recently proposed RobustBench [10]
benchmark and selected the top-performing models on CIFAR-10-C for this ex-
periment [23, 30, 44]. As evident from the figure, the performance of the models
varies across datasets and corruption types showing that a single model is not
able to achieve the best performance on all types of corruptions. Evaluating the
models on a single benchmark is not enough to obtain the true picture of the
corruption robustness of a model. Thus to eliminate the biases present in cor-
ruption benchmarks, one should gauge the corruption robustness of a model by
evaluating it on a variety of datasets. Our proposed CIFAR-10/100-F benchmark
can be used by designers to probe the spectral biases of the models.
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Table 4. Average Certified Radius (ACR) of Models Trained with Different Meth-
ods on CIFAR-100-C. Models trained with FourierMix and HCR achieve significant
improvements in the certified robustness (ACR) guarantees on corruptions from the
CIFAR-100-C dataset.

Augmentation CIFAR-100 mACR -low -mid -high Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Gaussian 0.238 0.169 0.131 0.182 0.208 0.214 0.218 0.193 0.181 0.170 0.157 0.169 0.177 0.153 0.069 0.207 0.051 0.159 0.206 0.209

+JSD 0.291 0.232 0.167 0.248 0.280 0.283 0.285 0.273 0.261 0.252 0.240 0.250 0.226 0.188 0.104 0.242 0.079 0.235 0.278 0.281

+AutoAugment + JSD 0.265 0.225 0.175 0.234 0.265 0.275 0.273 0.252 0.248 0.230 0.230 0.238 0.232 0.202 0.104 0.257 0.082 0.225 0.261 0.266

+AugMix + JSD 0.286 0.231 0.184 0.240 0.269 0.274 0.278 0.256 0.255 0.236 0.233 0.243 0.239 0.211 0.111 0.267 0.092 0.232 0.267 0.270

+AugMix + HCR 0.296 0.249 0.191 0.263 0.292 0.296 0.301 0.282 0.278 0.264 0.255 0.263 0.249 0.215 0.118 0.274 0.097 0.253 0.291 0.292

+FourierMix + JSD 0.295 0.247 0.190 0.258 0.292 0.295 0.300 0.283 0.273 0.257 0.249 0.260 0.251 0.217 0.115 0.275 0.092 0.250 0.288 0.292

+FourierMix + HCR 0.309 0.261 0.199 0.278 0.307 0.310 0.313 0.302 0.291 0.283 0.270 0.277 0.260 0.221 0.128 0.284 0.102 0.267 0.303 0.307

Fig. 9. The performance gaps (i.e., the robust accuracy) are remained
small/reasonable in state-of-the-art empirically robust models [23, 30, 44]. Severity 0
denotes the in-distribution data.

C Amplitude Spectrum of CIFAR-10-C/C

As introduced in § 2, we arrange the amplitude specturm of corruptions from
CIFAR-10-C into three groups, roughly categorized as high/mid/low-frequency
corruptions. Specifically, we compute the the E[FFT(x)] and E[FFT(C(x) = x)]
by averaging over all the validation images [65] for CIFAR-10 and each corrup-
tion in CIFAR-10-C, respectively, where C(·) denotes the corruption function.
As Fig. 10 shows, CIFAR-10 (clean) images follow a distribution of 1

fα , where

f =
√
u2 + v2 is the azimuthal frequency and α ≈ 2. Therefore, clean images

have extremely low power in the high-frequency regions (the edges and corner).
Due to this, all the noise perturbations corresponding to JPEG and pixelate

can be considered as high-frequency corruptions, relative to the clean images’
distribution. On the other hand, weather-related and contrast corruptions are
all centered in the low-frequency region. We categorize remaining perturbations
as mid-frequency corruptions.

We also visualize the amplitude spectrum of corruptions from CIFAR-10-C̄
in Fig. 11. We find that most of the corruptions from CIFAR-10-C̄ are centered
in the low/mid-frequency ranges, explaining why FourierMix achieves lager im-
provements on CIFAR-10-C̄ than CIFAR-10-C compared to spectrally-biased
baselines.
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Table 5. Average Certified Radius (ACR) of Models Trained with Different Meth-
ods on CIFAR-100-C̄. Models trained with FourierMix and HCR achieve significant
improvements in the certified robustness (ACR) guarantees on corruptions from the
CIFAR-100-C̄ dataset.
Augmentation mACR Blue Brown Checkerboard Circular Inv. Sparkle Lines Pinch Ripple Sparkles Trans. Chromatic

Gaussian 0.130 0.151 0.070 0.114 0.159 0.097 0.137 0.199 0.160 0.097 0.116

+JSD 0.196 0.228 0.106 0.186 0.233 0.124 0.221 0.274 0.242 0.151 0.193

+AutoAugment + JSD 0.176 0.211 0.087 0.152 0.229 0.119 0.184 0.236 0.217 0.140 0.185

+AugMix + JSD 0.193 0.227 0.107 0.176 0.259 0.131 0.206 0.260 0.244 0.153 0.191

+AugMix + HCR 0.211 0.253 0.120 0.199 0.276 0.136 0.224 0.283 0.263 0.156 0.203

+FourierMix + JSD 0.207 0.243 0.106 0.194 0.262 0.136 0.226 0.281 0.258 0.154 0.205

+FourierMix + HCR 0.227 0.260 0.129 0.219 0.281 0.151 0.247 0.300 0.278 0.172 0.228

D Training and Evaluation Details

Training. We train CIFAR-10/100 and ImageNet models for 200 and 90 epochs
for all methods with an SGD optimizer, respectively [45]. We exclude the input
normalization layer as it will degrade the certification performance on corrupted
data. We use different σ to train CIFAR-10/100 and ImageNet models, as spec-
ified in § 4.
Evaluation. Recall from the theorem derived in § 2 of Cohen et al ., CR(·)
approaches ∞ when pA approaches the value 1 [9]. However, this will also require
the Gaussian perturbed samples n ≈ ∞. Consider that the base classifier M(x+
δ) has observed n samples that all equal to cA, pA ≥ α(1/n) has a probability
1 − α [9]. To both constrain the computational complexity and achieve a tight
bound, we use n = 100, 000, n0 = 100, and α = 0.001 as the hyper-parameters
to get high confidence of the computed radius, following prior arts [9,25,47,66].
Since we need to evaluate corruption datasets with 125× larger sizes than the
original test sets, we certify 500 and 350 examples from each corruption and each
severity level of the CIFAR-10/100 and ImageNet corruption datasets (i.e., -
C/C̄). For the Fourier sensitivity analysis of CIFAR-10/100, each data point in
the heat map is the corresponding ACR of 200 examples.

D.1 Detailed Results on CIFAR-10-Based Corruption Benchmarks

In this section, we present detailed results for our evaluation on CIFAR-10-C/C̄.
We fix η = 10 and use λ = 40 for HCR (Equation 4) in our experiments on
CIFAR-10. Tables 2 and 3 present the ACR on individual corruption types from
CIFAR-10-C/C̄, respectively. FourierMix consistently achieves the highest ACR
on most of the corruption types in both corruption datasets. Especially, we find
FourierMix helps achieve larger improvements on weather-related corruptions,
which have real-world implications (e.g ., safety of autonomous driving). We also
perform Fourier sensitivity analysis to confirm our findings. Fig. 5 shows the
heat maps, which also corroborate our insights in § 4.1.

We opted for RS-based certification due to its scalability to large datasets
and models. Our findings and claims, however, are general. To show this, we
choose the next best baseline using improved CROWN-IBP [59]. Unfortunately,
this method cannot scale to ImageNet due to the large image size. Even on
CIFAR-10, it provides trivially loose bounds, i.e., ACR ≈ 0, for ResNet-110
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Table 6. Average Certified Radius (ACR) of Models Trained with Different Methods
on ImageNet-C. Spectrally diverse augmentations from FourierMix brings significant
gains to certified robustness of the models trained on ImageNet against corruptions
from ImageNet-C.

Augmentation ImageNet mACR -low -mid -high Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Gaussian 0.600 0.256 0.155 0.228 0.385 0.342 0.324 0.310 0.174 0.227 0.212 0.201 0.148 0.170 0.013 0.419 0.027 0.325 0.440 0.507

+JSD 0.736 0.395 0.220 0.382 0.581 0.537 0.519 0.508 0.289 0.378 0.351 0.374 0.254 0.245 0.013 0.551 0.039 0.518 0.640 0.702

+AugMix + JSD 0.717 0.391 0.238 0.387 0.550 0.496 0.489 0.473 0.329 0.395 0.376 0.352 0.255 0.286 0.041 0.542 0.064 0.481 0.622 0.668

+AugMix + HCR 0.727 0.390 0.234 0.383 0.552 0.500 0.494 0.480 0.320 0.391 0.374 0.349 0.249 0.283 0.040 0.539 0.061 0.481 0.624 0.662

+FourierMix + JSD 0.751 0.399 0.242 0.389 0.564 0.515 0.493 0.483 0.315 0.384 0.380 0.370 0.254 0.300 0.041 0.544 0.073 0.497 0.637 0.694

+FourierMix + HCR 0.750 0.397 0.239 0.387 0.567 0.518 0.499 0.492 0.312 0.382 0.377 0.370 0.249 0.295 0.039 0.544 0.069 0.494 0.637 0.689

Table 7. Average Certified Radius (ACR) of Models Trained with Different Methods
on ImageNet-C̄. Spectrally diverse augmentations from FourierMix brings significant
gains to certified robustness of the models trained on ImageNet against corruptions
from ImageNet-C̄.

Augmentation mACR Blue Brown Caustic Checkboard Cocentric Inv. Sparkle Perlin Plasma Single Freq. Sparkle
Gaussian 0.266 0.394 0.284 0.325 0.250 0.235 0.152 0.274 0.065 0.284 0.400
+JSD 0.395 0.579 0.395 0.512 0.370 0.374 0.224 0.404 0.113 0.408 0.567
+AugMix + JSD 0.379 0.560 0.381 0.461 0.365 0.342 0.212 0.413 0.121 0.397 0.538
+AugMix + HCR 0.378 0.563 0.377 0.464 0.361 0.342 0.210 0.410 0.115 0.396 0.539
+FourierMix + JSD 0.413 0.562 0.544 0.479 0.370 0.366 0.215 0.413 0.227 0.417 0.547
+FourierMix + HCR 0.411 0.565 0.535 0.481 0.365 0.367 0.210 0.408 0.215 0.415 0.550

(due to its depth) used in our paper. Thus, we use ResNet-18 in Table 9 which
shows that our low-freq brittleness finding also extends to these methods.

To distinguish FourierMix, which directly uses spectral diversity objective,
from other Fourier augmentation methods, we select a recent method FACT.
which mixes the spectra of different clean data samples. As can be seen from
Table 10, FourierMix outperforms FACT by a significant margin, which can be
attributed to its better spectral diversity.

D.2 Detailed Results on CIFAR-100-Based Corruption Benchmarks

In this section, we present detailed results for our evaluation on CIFAR-100-C/C̄
and CIFAR-100-F. We fix η = 10 and use λ = 20 for HCR in our experiments on
CIFAR-100. Tables 4 and 5 present the ACR on individual corruption types from
CIFAR-100-C/C̄, respectively. CIFAR-100 is more difficult for RS-based certi-
fication compared to CIFAR-10. We find that FourierMix+HCR helps achieve
the highest ACR on all corruption types in both datasets with significant en-
hancements compared to existing augmentation methods.

D.3 Detailed Results on ImageNet-Based Corruption Benchmarks

ImageNet appears to be the most challenging dataset for certified defenses, to
which only RS-based techniques can be applied [9]. We select representative
combinations of augmentations and regularization schemes that perform well on
CIFAR-10/100 for our experiments on ImageNet. We exclude the input normal-
ization layer, which trades off the ACR on clean data for the ACR on corrupted
data. We use η = 5 and λ = 5 for our experiments with HCR. Tables 6 and 7
present the detailed results on our evaluation on ImageNet-C/C̄. Note the the
corruption types in ImageNet-C̄ are different from the ones in CIFAR-10/100-C̄.
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Table 8. Average Certified Radius (ACR) of Clean (CIFAR-10) and Corrupted
(CIFAR-10-C) Data with σ = 0.25 Using SOTA Certified Defense Methods.

Method clean mACR Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Gaussian 0.461 0.363 0.448 0.448 0.421 0.380 0.346 0.338 0.357 0.394 0.347 0.187 0.439 0.137 0.342 0.420 0.440

MACER 0.539 0.426 0.509 0.509 0.492 0.460 0.436 0.422 0.433 0.443 0.381 0.232 0.477 0.185 0.428 0.490 0.503

SmoothAdv 0.519 0.411 0.483 0.485 0.471 0.448 0.426 0.423 0.425 0.418 0.361 0.222 0.451 0.175 0.415 0.472 0.483

Table 9. RACC of RS and CROWN-IBP on CIFAR-10-C at ϵ = 0.25.

ResNet-18 ResNet-110
RACC (%)↑ CIFAR-10 CIFAR-10-C High Mid Low CIFAR-10 CIFAR-10-C High Mid Low

IBP 39.1 32.0 37.0 34.2 24.9 N/A N/A N/A N/A N/A
RS-Gaussian 65.0 52.4 61.6 52.9 42.8 65.4 53.4 61.9 53.7 44.6
RS-FourierMix 67.8 55.7 62.5 58.5 46.2 69.2 60.3 66.8 61.9 52.2

We find that the spectral biases of other baselines become much more notice-
able on ImageNet-based corruption benchmarks. Gaussian+JSD accomplishes
the highest ACR on high-frequency corruptions, while AugMix+JSD performs
the best on several low-frequency corruptions in ImageNet-C. As RS-based mod-
els generally suffer performance degradation on low-frequency corruptions, Gaus-
sain+JSD beats AugMix+JSD in terms of overall mACR. However, FourierMix
performs well across the spectrum, reaching the highest mACR on both datasets.

However, HCR does not play an essential role in ImageNet. We find this
might also related to the difficulty of certification on ImageNet. HCR as a strict
regularization term will trade off certified radius for accuracy, resulting in similar
ACR, i.e., the area under the radius-accuracy curve. This observation is consis-
tent with prior studies on in-distribution data certification [25]. Despite HCR
not making a significant difference over JSD regularization, it is worth noting
that substantial improvements can still be gained by FourierMix on ImageNet
due to its broad spectral coverage. Although tangible improvements have been
realized by FourierMix on ImageNet-based corruption benchmarks, we want to
highlight that there is still large room for future research to improve over our
baselines. We hope this work will motivate more studies on certified defenses for
ImageNet under common corruptions, as discussed in § 6.

E FourierMix Details

Hyper-parameter Settings. We detail the chosen hyper-parameters used in
the experiments with FourierMix. As illustrated in Algorithm 1 and Equa-
tions 1 and 2, we leverage 5 different severity levels and truncated Gaussian
distribution. We use a large σ = 5 for the truncated Gaussian distribution to
make FourierMix render more diverse augmentation. For CIFAR-10/100, we set
sA ∈ [0.2, 0.3, 0.4, 0.5, 0.6] and sP ∈ [ π12 ,

π
10 ,

π
8 ,

π
6 ,

π
4 ] as the 5 severity levels in

Equations 1 and 2, respectively. For ImageNet, we use the same set of sA and
set sP ∈ [π4 ,

3π
10 ,

3π
8 , π

2 ,
3π
4 ] since high-resolution images can tolerate more pertur-

bations in the phase spectrum.

Sample Images from FourierMix . We visualize randomly sampled images
from CIFAR-10/100 and ImageNet in Figs. 13, 14, and 15, respectively.
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Table 10. ACR Comparison of FACT and our FourierMix.

ACR ↑ CIFAR-10 CIFAR-10-C High Mid Low

FourierMix+JSD 0.522 0.444 0.504 0.454 0.375

FACT [62]+JSD 0.503 0.410 0.478 0.406 0.345

Table 11. Failure of Existing Methods: Average Certified Radius (ACR) of CIFAR10-
C with σ = 0.25 Using Test-Time Adaptation.

Adaptation mACR Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Gaussian 0.363 0.448 0.448 0.421 0.380 0.346 0.338 0.357 0.394 0.347 0.187 0.439 0.137 0.342 0.420 0.440

+BN 0.356 0.441 0.442 0.417 0.369 0.338 0.326 0.345 0.392 0.347 0.181 0.436 0.133 0.332 0.411 0.432

+TENT 0.357 0.442 0.442 0.419 0.369 0.337 0.328 0.346 0.394 0.345 0.182 0.436 0.132 0.330 0.412 0.434

F Sample Images from CIFAR-10/100-F

We visualize more sample images from our created datasets in Fig. 12 using
different classes. It is also worth noting that FourierMix augmented images
(Figs. 13 and 14) have different patterns with CIFAR-10/100-F.

It is worth noting that the generation protocol of CIFAR-10/100-F is gen-
eral and we plan to construct ImageNet-F from a representative subset of Ima-
geNet [12] as a future study.

G Discussion on Test-Time Adaptation

As discussed in Appendix A, another widely acknowledged approach to counter
distribution shifts is test-time adaptation. We thus perform a preliminary study
on how test-time adaptation will affect the certified robustness. Specifically, we
use BN [46] and TENT [56] as representative methods. Since the theorem de-
rived by Cohen et al . [9] requires the base classifier M to be deterministic, we
cannot apply BN and TENT in an online manner. To deal with such a problem,
while evaluating the ACR of corrupted data from a specific corruption type, we
randomly sample 500 (out of 10,000) images from the corruption test set for the
adaptation. We follow other settings specified in [46,56] for our experimentation.
Table 11 presents the detailed results on CIFAR-10-C. We find that test-time
adaptations fail to improve the ACR in under common corruptions. The reason
is that one-shot adaptation relies upon a small amount of data which is not suf-
ficient to correct the distribution shift caused by corruptions. In contrast, it may
cause the base classifier M to become biased towards the small subset of test
data used for adaptation. We highlight that certification of adaptive models is
also a potential direction that can help with certified robustness under common
corruptions. More theoretical support is needed in this direction, and we leave
it as a promising future work.
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Fig. 10. Amplitude Spectrum A of Different Corruptions in CIFAR-10/100-C with
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Blue Brown Checkerboard Circular Inv. Sparkle

Lines Pinch Ripple Sparkle Trans. Chromatic

Fig. 11. Amplitude Spectrum A of Different Corruptions in CIFAR-10/100-C̄ with
severity 3.
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(a) Examples of the Ship Class

(b) Examples of the Airplane Class

(c) Examples of the Car Class

(d) Examples of the Bird Class

(e) Examples of the Horse Class

Fig. 12. Sample Images from CIFAR-10/100-F with ϵ = 12. From top down row-wise,
the images are from α ∈ {0.5, 1, 2, 3} and from left to right column-wise, the images
are from fc ∈ {1, 2, ..., 16}
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Fig. 13. Sample Images from FourierMix Data Augmentation on CIFAR-10. To better
highlight the visual patterns of FourierMix, we utilize the highest severity level for A(·)
and P(·) in this figure.
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Fig. 14. Sample Images from FourierMix Data Augmentation on CIFAR-100. To better
highlight the visual patterns of FourierMix, we utilize the highest severity level for A(·)
and P(·) in this figure.
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Fig. 15. Sample Images from FourierMix Data Augmentation on ImageNet. To better
highlight the visual patterns of FourierMix, we utilize the highest severity level for A(·)
and P(·) in this figure.


