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Abstract. 3D point cloud classification models based on deep neural networks
were proven to be vulnerable to adversarial examples, with a quantity of novel at-
tack techniques proposed by researchers recently. It is of paramount importance
to preserve the robustness of 3D models under adversarial environments, consid-
ering their broad application in safety- and security-critical tasks. Unfortunately,
existing defenses are not general enough to satisfactorily mitigate all types of
attacks. In this paper, we design two innovative methodologies to improve the
adversarial robustness of 3D point cloud classification models. (1) We introduce
CCN, a novel point cloud architecture which can smooth and disrupt the adver-
sarial perturbations. (2) We propose AMS, a novel data augmentation strategy to
adaptively balance the model usability and robustness. Extensive evaluations in-
dicate the integration of the two techniques provides much more robustness than
existing defense solutions for 3D classification models. Our code can be found in
https://github.com/GuanlinLee/CCNAMS.

1 Introduction

A point cloud is a popular representation of 3D objects and shapes. It consists of a set
of data points with x, y and z coordinates to describe the external surface of an object.
Interpreting point cloud data becomes important in many scenarios, e.g., robotics [12],
manufacturing [2], construction [19], etc. Recently, researchers designed new models
based on Deep Neural Networks (DNNs) (e.g., PointNet [21], DGCNN [27]) for 3D
object classification, which achieve remarkable breakthrough over traditional methods.

Unfortunately, DNNs are well known to be vulnerable during training stage [31,32]
and inference stage [5]. In the inference stage, DNNs are easy to be attacked by Ad-
versarial Examples (AEs) [25], where imperceptible perturbations on a normal sample
can mislead the model to make wrong predictions. Over the years, a plethora of attacks
were designed to efficiently generate AEs [9,20].New techniques were further proposed
to attack point cloud models [15,36,30]. Such vulnerabilities can significantly threaten
the safe- and security-critical applications based on point cloud models.

Past works have extensively explored methods of defending 2D models against AEs.
In contrast, how to enhance the robustness of 3D models is relatively less studied. The
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unique features of point cloud data and models increase the difficulty of model pro-
tection: (1) point clouds usually have irregular formats determined by the sensors for
data collection; (2) adversaries have more choices to perform the attacks (e.g., adding
or removing points) in addition to changing the coordinate values; (3) 3D point clouds
have a larger perturbation space than the 2D image space, resulting in more qualified
AEs. These features make existing solutions less effective: they are not general enough
to cover different types of adversarial attacks [15,37,17], or can be easily bypassed by
adaptive attacks [18,24]. Hence, it is urgent but challenging to have a general and com-
prehensive defense mechanism.

In this paper, we propose new solutions to effectively defend point cloud classifica-
tion models against AEs in two aspects. First, we design Context-Consistency dynamic
graph Network (CCN), a new 3D network structure with higher adversarial robustness.
It is able to dilute the noise in the adversarial samples, and make them closer to the
clean samples in the feature space. Second, we introduce a new data augmentation strat-
egy, named adaptive augmentation with Adversarial and Mix-up Samples (AMS). Re-
searchers have proposed to train 3D point cloud models with adversarial examples [15]
or mix-up sampling [6,34]. However, these methods cannot achieve comprehensive pro-
tection due to the variety of techniques in crafting AEs. Hence, we propose to augment
the training set with different types of adversarial examples and mix-up samples. Sim-
ply incorporating all these data samples could easily affect the model accuracy over
clean samples or overfit some specific attack. To balance the trade-off between model
usability and robustness, we dynamically monitor the model’s behaviors during train-
ing, and adaptively select the samples that can best improve the model performance.
Compared to prior solutions that mainly focus on specific attacks, our solutions can
achieve the best adversarial robustness trade-off among all types of attacks.

To assess the adversarial robustness of our two methodologies, we leverage the
mutual information theory to theoretically explain the effectiveness of the proposed
network architecture and training strategy. We also perform comprehensive evalua-
tions over two commonly-used 3D point cloud datasets (ModelNet10 and ModelNet40)
against four state-of-the-art white-box attacks and one black-box attack. Experimental
results show that each solution exhibits advantages compared to the baselines with the
same configurations. The integration of CCN and AMS outperforms existing solutions
by about 8% on average adversarial accuracy.

2 Background and Related Works

2.1 Point Cloud Models

A point cloud is formally defined as an unordered set of points = {z;}~ ;, where
x; € R? is a 3D point with (x, y, z) coordinates, and NN is the number of points. A
point cloud classification model is thus a parameterized function fy : X +— ) that
predicts the corresponding label from a point cloud. Researchers have proposed dif-
ferent deep learning algorithms and neural networks to realize this classification task.
We describe three common models. (1) PointNet [21]: this network consists of single
variable-functions, a max pooling layer, and a function of the max pooled features to
handle unordered points with arbitrary dimensions. It converts the point cloud data to
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feature vectors with fixed lengths, and then learns the labels. (2) PointNet++ [22]: this is
a hierarchical neural network, which recursively applies PointNet over partitioned point
sets to learn the local structures. Both of PointNet and PointNet++ adopt the coordinates
of the points to produce the features. (3) DGCNN [27]: this Dynamic Graph Convolu-
tional Neural Network integrates a new module EdgeConv to point cloud models. This
module captures the local geometric structures by constructing a local graph and learn-
ing the embeddings for the edges. Then the integrated model can learn to semantically
group the points for more accurate classification. Different from PointNet and Point-
Net++, DGCNN considers the neighbors of the points and adopts high-order features,
i.e., distances between adjacent points, to predict the labels. As a result, it gives higher
robustness than the other two models. We also validate this conclusion in Section 5.3.

2.2 Adpversarial Attacks against Point Clouds

The concept of adversarial examples was first proposed in [25], where the adversary
tries to identify the imperceptible perturbation with the minimal scale to mislead the
2D image model. Then this attack was extended to the 3D point clouds with more
techniques. Generally, these attacks can be classified into the following three categories:
Point perturbing. Similar to 2D image attacks, the adversary can slightly perturb the
coordinates of certain critical points to fool the 3D model. Conventional approaches in
2D image tasks can be applied to 3D point clouds as well. For instance, Xiang et al.
[30] adopted the C&W technique [5] to identify the optimal perturbing scale. Liu et
al. [15] adopted the FGSM method [25] with various perturbation constraints to craft
adversarial point clouds.

Point adding. The adversary can inject a small set of new points into the clean point
cloud to attack the model. Xiang et al. [30] designed an initialize-and-shift approach to
calculate the added points with their positions. Zhang et al. [35] proposed a point-wise
gradient method to generate the optimal locations for point attachment.

Point dropping. The adversary can also remove some points from the original set to
alter the model output. Zheng et al. [36] constructed the saliency map to identify the
critical points and then drop them for attacks. A similar idea was also proposed in [35].

2.3 Adversarial Defenses for Point Clouds

A couple of approaches were proposed to defeat adversarial attacks against point clouds.
They can be briefly summarized with the following categories.

Denoising point clouds. The basic idea is to cleanse the point cloud data and possi-
bly remove the adversarial perturbations. For instance, Zhou et al. [37] designed a new
structure DUP-Net, with the SOR operation to drop outliers in the input samples. How-
ever, it is only effective for point perturbing attacks, but fails to thwart point adding or
dropping attacks. Dong et al. [8] designed a self-robust network with the self-attention
mechanism to remove adversarial local features. These defense methods have also been
defeated by new adaptive attacks [18,24].

Training robust models. Liu et al. [15] explored how to train a 3D point cloud model
with adversarial examples generated by PGD. They concluded this strategy can beat
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Fig. 1: Overview of CCN.

SOR and salient point removal approaches under certain attacks. Unfortunately, simple
adversarial training based on PGD is not robust to cover all types of attacks, which will
be demonstrated in our evaluation. Sun et al. [24] proposed a sorting-based parametric
pooling operation to overcome the frangibility of default-used fixed pooling operations
in point cloud models. Mix-up is a popular technique to augment training data with
linear interpolations of feature vectors and labels to defeat 2D adversarial images [33].
This idea was then extended to the point cloud scenario, based on which researchers
designed PointMixUP [6], and PointCutMix [34]. Our adaptive augmentation can out-
perform these purely mix-up strategies from the evaluation.
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Fig.2: The structure of CCM. Fig. 3: Feature map visualization.

Certified defenses. A couple of works designed certified defenses to defeat adversarial
attacks in a theoretical way. For instance, Liu et al. [16] used a downsampling method
to give an upper bound of the number of perturbed points. However, this method is
time-consuming and needs clean inputs as guides, which is not practical. Lorenz et al.
[17] studied the robustness of a model with transformations (e.g., rotating, shearing).
They only considered the FGSM attack while ignoring other techniques.

3 Methodologies

In this section, we present two methodologies to protect the point cloud models against
adversarial attacks: a new model structure and training strategy. Each method can en-
hance the model’s adversarial robustness from a different perspective, and their combi-
nation serves as an effective defense solution.
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3.1 Context-Consistency Dynamic Graph Network

From the aspect of model architecture, we design Context-Consistency dynamic graph
Network (CCN), a new 3D model structure for robustness enhancement. The core insight
behind our architecture is to decrease feature distances between clean and noisy samples
with an adaptive denoising mechanism. Fig. 1 shows the structure overview. It is mainly
built from the DGCNN model with the same spatial transform and EdgeConv layers. We
choose DGCNN because it exhibits higher robustness than PointNet and PointNet++,
due to the adoption of relation features, i.e., distances between points.

The key component of CCN is a lightweight Context-Consistency Module (CCM),
which is inserted at many layers (Fig. 1). This module is responsible for collecting the
features of point cloud data and diluting the potential adversarial noise, which can move
the features of adversarial samples closer to that of clean ones. Since the adversarial
noise in the feature space increases significantly at deeper layers (observed in Fig. 4),
CCM extracts the neighbor features of every point (i.e., coordinates of each point’s
neighbors) before the next EdgeConv layer, which is relatively easier for denoising.
The output of CCM will be combined with the output of the next EdgeConv layer.

Fig. 2 shows the detailed structure of CCM, which consists of a convolutional layer
and a pooling layer. Specifically, (1) the 2D convolutional layer is used to simulate the
function of the Edge layer to reduce the noise from model parameters. It has a receptive
field size (i.e., kernel size) of [1, «] to process the context information (i.e., coordi-
nates) in the neighbors (the closest points generated by the KNN [27]) of each point.
It calculates new coordinates for the neighbors in the scope of «, which automatically
learns to smooth the noise in the neighbor features. The sliding window in this convo-
lutional layer can handle all the continuous scopes in the neighbor feature. In this way,
the feature distance between adversarial and clean samples can be minimized. (2) The
average pooling layer is following the convolutional layer to reduce the redundancy fea-
tures. This function chooses the proper elements in the features based on their values.
It can prevent noise accumulation during the model’s forward propagation process by
averaging elements in the features. (3) A residual connection transfers the adaptively
selected context information to the output of the next EdgeConv layer. With such oper-
ation, CCM can keep the features between different layers (i.e., contexts extracted from
inputs) consistent. As a result, it can prevent the adversarial noise in the features from
growing quickly at deeper layers.

It is worth noting that the receptive field size o in CCM can impact the model robust-
ness when the order of inputs changes. This is because in a point cloud, the correlation
between neighbor points is less tight than the correlation between neighbor pixels in a
2D image. Visiting too many points with a big receptive field can make the noise unac-
ceptably large. On the other hand, using a small receptive field to visit very few points
can make the information from points useless to calculate the correct coordinates. Cur-
rently, there are no theoretical guidelines for determining this hyperparameter, and we
figure out this optimal value empirically in Section 5.1.

To demonstrate the effects of CCM, we use the t-SNE method to visualize the fea-
ture map of DGCNN and our CCN with the ModelNet40 dataset, as shown in Fig. 3. We
randomly select 10 classes, and each class contains 50 point clouds (Visualization re-
sults for all the 40 classes can be found in the supplementary material). Different classes
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are represented with different colors. We use circles and triangles to denote the clean
and perturbed point clouds, respectively. From Fig. 3a, we can see that in DGCNN,
some perturbed data are far from the clean data in the same class, or even overlapped
with data from other classes. This implies misclassification for those data. In contrast,
for CCN (Fig. 3b), the perturbed and clean data in the same class are much closer, and
there is less overlap among different classes. This indicates that CCM can effectively
remove the noise, making the perturbed and clean data much closer in the feature space.

3.2 Adaptive Augmentation with Adversarial and Mix-up Samples

In addition to CCN, we also introduce a novel data augmentation strategy to enhance the
robustness of a point cloud model. In the conventional 2D image tasks, there are gener-
ally two types of training strategies for defeating adversarial examples. Unfortunately,
they cannot achieve satisfactory performance when extended to 3D point cloud models.
The first strategy is adversarial training, which augments the training set with adver-
sarial examples crafted by the PGD technique. However, there are essentially various
types of methods to generate adversarial point clouds with distinct features. Adversarial
training with one type of AEs cannot provide comprehensive protection for other types
of attacks [15], while simply incorporating all these sorts of AEs can significantly harm
the model accuracy for clean samples. The second strategy is to mix up clean samples
with different labels for model training [33]. This strategy is applied to the point cloud
classification [6,34], which have limited robustness improvement.

Our adaptive augmentation strategy (AMS) considers the adversarial examples (of
different types), mix-up samples as well as clean samples for model training. However,
it is challenging to decide the type and quantity of samples to be used before the train-
ing task, as the training process is dynamic and relatively random. To overcome this
challenge, AMS adaptively selects the desired samples in each epoch based on the cur-
rent model. This dynamic selection can efficiently balance the model robustness and
accuracy over clean samples for the complex 3D point cloud classification tasks.

Our training algorithm is shown in Algorithm 1. At every training epoch, for each
batch (X, Y") from the training set @, we first generate three types of batches from each
sample in the batch': (1) X 4,0 is a batch of AEs with the point dropping technique us-
ing the function AE-Gen®*°P; (2) X perturb 18 a batch of AEs with the point perturbing
technique using the function AE-GenPe=t¥r?; (3) X, i, is a batch of mix-up samples
with the corresponding mix-up labels Y},ix using the function MS—Gen. Second, we
compute the accuracy of clean and AE batches from the current model, as acc,, accarop
and accperturb, respectively. We compute accpmin = min(accdrop, @CCperturb ), and com-
pare it with the weighted mean accuracy of the clean batches accays = T * mean(acc),
where acc is a collection of clean accuracy acc, at the current training epoch. If accpiy
is higher than acc,yg, then this model is regarded as robust enough to defend against
different types of AEs. So we perform mix-up augmentation to improve the model’s
generalization and utility, i.e., training the model with the clean batch (X,Y") and mix-
up batch (Xpix, Yimix). Otherwise, we perform adversarial augmentation to improve

!'We do not consider point adding as the generation complexity is extremely high. Experiments
show the incorporation of the other two AEs can defeat the point adding AEs as well.
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Algorithm 1: Adaptive Augmentation with Adversarial and Mix-up Samples.

Input : Q: point cloud training set
Output: M: robust point cloud model
1 Initialize(M);
2 foreach training epoch do

3 acc = [|;

4 foreach barch (X,Y) ~ Q do

5 Xperturb = AE-GENP*"" "™ (XY, M);

6 Xdrop = AE-GEN¥P(X,Y, M);

7 (Xmix, Ymix) = MS-GEN(X,Y);

8 calculate accuracy accy, aCCperturb and accdrop for X, Xperturb and Xarop;
9 acc.append(accy ), actmin = MIN(acCperturb, ACCdrop);
10 if accmin > T * mean(acc) then

1 | train M with (X, Y") and (Xumix, Ymix);

12 else

13 | train M with (Xperturb, Y), (Xarop, Y) and (X, Y);

14 return M

the model’s robustness, i.e., training it with the clean batch (X,Y") and two types of
adversarial batches (Xdrop, Y), (Xperturb, ¥)-

In practice, we implement MS—Gen with the PointCutMix approach [34]. We adopt
the Saliency Map Attack [36] to craft AEs by dropping points for AE-Gen®*°P, For
AE-GenPsrtuP we utilize the 3D L.-BIM technique [14], which is a basic version of
Lo-PGD [30]?. Besides, we calculate the averaged accuracy of acc,, for clean samples
to avoid overfitting of 7" on a specific model and make the algorithm better generalize
to other models. The optimal value of 7" will be empirically determined in Section 5.2.

For training complexity, compared to the pure adversarial training strategies, we
need to generate two types of AEs for each clean sample. To keep the same training
cost, we craft each AE with half the number of iterations. Our experiments in Sec-
tion 5.2 indicate that AMS can help the model obtain higher robustness than conventional
adversarial training methods under the same computational complexity constraint.

4 Explaining the Effectiveness of Our Methodologies

In this section, we perform an in-depth analysis to understand why our proposed so-
lutions can improve the model robustness. Past works have developed frameworks to
study the vulnerability of adversarial examples for 2D image models based on the mu-
tual information theory [11,38]. Inspired by those frameworks, we aim to disclose the
factors that can affect the robustness of point cloud models.

Specifically, we apply mutual information to calculate the correlation between the
features of perturbed and clean point clouds. A high correlation indicates the feature
context of noisy data is more consistent with that of clean data, and the model is more

2 We do not use L.-PGD because when we randomly project the point cloud to an initialization
position, the model has a high chance to give a wrong prediction initially, and the adversary
will obtain less useful information than starting from the original position.
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Fig.4: Cosine distance of features between clean and perturbed samples at different
layers. The perturbation is generated from a Gaussian distribution (¢ = 0, o = 0.05).

robust to predict correct labels from noisy samples. However, it is computationally in-
feasible to directly calculate such mutual information, due to the high dimensions of
the input space and feature space. Alternatively, we can estimate the mutual informa-
tion with a substitute measurement, i.e., the k-Measurement M;.. This measurement is
based on the cosine distance, which can represent both the direction and magnitude
of a distance in a high dimension at the same time. Formally, we have the following
definition for k-Measurement:

Definition 1 (k-Measurement) Let f be a function that maps a point cloud to the fea-
ture space: {X;|X; € R%i € [N} = {Y;|Y; € RP i € [N]}, where d is the
dimension of the point coordinate in point clouds, D is the dimension of f’s outputs
for each point and N is the number of points in a point cloud. Consider a clean point
cloud S = {X;|X; = (v4,9i,2:i),i € [N]}. Sk is a perturbed point cloud with k
different points compared with S, ie., S, = {X;,|X;, = (z;,,vj,.%;,) € S,jJi €
[N - k]} U {Xhi + €n, |Xhi = (l‘hw Yhis Zhi) €S e, = (GO,hz’ ) €1,h4 5 62,hi>7 h; € [k]}
Then the k-Measurement My, for f, S and Sy are defined as:

N , N |

£(8) = 2=t IO g — 2ma [0
S HS)
MilF.8.50) = 1= re@ 7@l

We introduce a general theorem to prove that under the same value of k, a small
My(f, S, Sk) implies a large mutual information I (Sg, f(.5)). The proof can be found
in the supplementary material.

Theorem 1 Let [ be a function that maps a point cloud to the feature space, and () be
the distribution of clean point clouds. S is sampled from Q. Q* (S, €) is the distribution
of noisy point clouds, in which each element Sy, is perturbed from S with an additional
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noise €, and the difference of numbers of points between S and Sy is smaller than a
constant k, i.e., —k < |Si| — |S| < k. Then for every S ~ Q and Sy, ~ Q*(S,¢), the
mutual information 1(Sy, f(S)) has a lower bound, which is negatively correlated with
the k-measurement My (f, S, Si).

Theorem 1 can help us establish a connection between Mj,(f, S, Si) and model ro-
bustness. A small k-measurement M (f, S, Si) could increase the mutual information
value I(Sk, f(S)). According to the observation in [38], with a larger I(Sk, f(S)), the
corresponding point cloud model is more robust, as the confidence of correctly predict-
ing f(S) from the perturbed sample Sy is higher. Therefore, a small k-measurement
My (f, S, Sk) indicates a more robust point cloud model.

With the above conclusion, we now explain the mechanisms of our proposed strate-
gies. For the network architecture, as described in Section 3.1, the introduction of CCM
is to increase the similarity of clean and perturbed samples in the feature space, which
can lead to a small My(f,S,Sk). For model training, our AMS adopts both AEs and
mix-up samples for data augmentation. According to [1], training with AEs can be
regarded as the process of feature purification, which can purify the non-robust direc-
tion in the features and build a tight connection between features and correct labels,
i.e., increasing the mutual information between features and labels and decreasing Mj,.
From [33], mix-up samples can provide a generic vicinal distribution, and sampling
from such a distribution can generate virtual feature-target vector pairs to force the
model to minimize the Empirical Risk, which equals to minimizing M}. We adaptively
select different kinds of samples based on the model behaviors, which can take advan-
tage of both methods and further reduce the k-measurement.

We also empirically verify the effectiveness of CCN and AMS in reducing the k-
measurement. We consider three network architectures®: PointNet has five convolu-
tional layers, with the first four used for feature extraction; both DGCNN and CCN have
four EdgeConv layers for feature extraction. We compute the cosine distances between
the features of clean and perturbed point clouds at these four layers*. Fig. 4 compares
the differences of different architectures and training strategies versus the number of
perturbed points in clean point clouds. We have the following observations. (1) CCN
and models trained with AMS always give smaller distances, indicating their efficacy in
increasing the mutual information and enhancing the robustness. (2) For each layer, the
distance decreases as the number of perturbed points increases. This is because when
more points are perturbed in the point cloud, its distribution is closer to some augmented
clean samples during the model training, leading to relatively smaller distance. (3) The
distance increases from layer 1 to layer 3, indicating the noise is amplified at deeper
layers. Therefore, we adopt the neighbor features from the previous EdgeConv instead
of the current one in CCM.

5 Evaluations

We perform extensive experiments to evaluate our solutions. Below, we describe the
detailed experimental setup.

3 The results for PointNet++ can be found in the supplementary material
* For CCN, we choose a = 4, which is identified in Section 5.1.
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Network | Clean Adversarial Examples
Structure |Sample|SMA—40| APP | AIC | ATH |AAUA|LAUA
PointNet | 90.83 | 63.11 [82.55/76.14]69.56| 72.84 | 63.11
DGCNN | 91.88 | 79.91 |74.88|76.01|68.47| 74.82 | 68.47
CCN (a=20)| 92.71 | 82.04 |(80.21|73.78|66.44| 75.62 | 66.44
CCN (a=16)| 92.53 | 80.80 |[78.21|73.70|64.41| 74.28 | 64.41
CCN (a=12)| 92.74 | 80.64 |79.55|75.04|66.44| 75.42 | 66.44
CCN (a=8) | 92.05 | 81.66 |78.81|71.14|63.92| 73.88 | 63.92
CCN (a=4) | 92.25 | 81.17 |79.46|76.46|68.30| 76.35 | 68.30
CCN (a=1) | 92.37 | 80.60 |78.45|74.88|66.60| 75.13 | 66.60
Table 1: Results for different architectures and hyperparameters (%).

Datasets and Models. We perform comprehensive experiments to validate the effec-
tiveness of CCN, AMS, and their combination. We mainly consider the PointNet and
DGCNN models. The evaluation results for PointNet++ give the same conclusion, and
can be found in the supplementary material. We adopt the ModelNet40 dataset [29],
which contains 12,311 CAD objects from 40 different classes. These objects are split
into a training set of 9,843 samples and a test set of 2,468 samples. For the training
process, all the models are trained for 250 epochs with a learning rate of 0.001 and
the Adam optimizer [13]. The size of an input point cloud is 1,024 * 3, i.e., there are
1,024 points in each point cloud with three coordinates. We also perform evaluations
on ModelNet10, a subset of ModelNet40, and the results can be found in the supple-
mentary material. Note that there are also some more realistic point cloud datasets (e.g.,
ScanNet [7], ScanObjectNN [26]). We do not consider them as currently there are no
works evaluating the attacks and defenses over them, and the feasibility of attacking
these datasets is unknown. We will consider this as future work.

Attacks. We find most of previous works only focus on the point perturbing attack.
In contrast, we also consider point adding, point dropping and black-box adversarial
attacks. We test five state-of-the-art adversarial attacks (four white-box and one black-
box). All of them are implemented as untargeted attacks. Specifically,

e SMA—F [36] is a point dropping attack which drops 5 x k points in k iterations based
on the saliency map.

e APP [30]is a point perturbing attack which shifts points with 10 binary searches and
100 iterations for each search to craft AEs. Note that the GeoA? attack [28] can be
regarded as APP with an external curve loss to attack models equipped with SOR.
Since our CCN and AMS do not adopt SOR, evaluations on APP and GeoA3 will be
the same. So we do not specifically consider GeoA3.

e ATIC [30] is a point adding attack which conducts 10 binary searches and 100 it-
erations for each search to add 512 points to the point cloud. Chamfer distance is
adopted to measure the point locations.

e ATH [30] is similar as AIC with the Hausdorff distance.

e BIM-—Fk’ is a point perturbing attack using the L, basic iterative method: each sam-
ple is generated with k iterations, ¢ = 0.03 and step size = 0.0005. We do not adopt
the PGD attack as the adversarial point cloud will get disrupted at the beginning

5 Results can be found in supplementary materials.
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of sample generation. Different from 2D image attacks, a little perturbation in 3D
point cloud can change the shape of the original object significantly. We find when
€ = 0.03 under L,-norm, the point clouds are difficult for humans to recognize, so
we do not use the PGD attack to avoid the disruption of point clouds at the start.

e AdvPC [10] is a state-of-the-art black-box attack with higher transferability than
others. We follow the same hyperparameters in the original paper, and use a larger
number of iterations (500) to improve its performance.

It is also worth noting that there are some physical attacks against point cloud mod-
els (e.g., attacking the LiDAR sensor in autonomous driving [4,3]). Those attacks are
very different from our focus with physical constraints. The defenses against them are
beyond the scope of this paper.

Baselines. We select a couple of baseline methods to compare with our solution. (1)
For the ablation study of CCN, we choose the conventional PointNet and DGCNN as
the baselines. (2) For the ablation study of AMS, we compare it with normal training, ad-
versarial training and mix-up training. For adversarial training, we consider two strate-
gies: AT-BIM trains the model using the 3D L,-BIM point perturbing technique [14],
with the configurations of 20 iterations, e = (.02 and step = 0.005; AT-SMA trains the
model using the point dropping technique [36], with the configurations of 20 iterations
and 5 points dropped in each iteration. For mix-up training, we select PointCutMix-
K [34], as it achieves the highest robustness in the white-box scenario. (3) For evaluat-
ing the integration of the two techniques, we consider the following state-of-the-art so-
lutions: adversarial training (AT-BIM and AT-SMA); mix-up training (PointCutMix-R
and PointCutMix-R [34]), SRS [35], SOR with the configuration of k=2 and a=1.1 [23]
and DUP-Net [37]. Since these solutions target different phases in the model pipeline,
some of them can be integrated to further enhance the model robustness, which we will
consider as well in our evaluations.

Metrics. We measure the model accuracy over clean samples and different types of ad-
versarial examples for its usability and robustness, respectively. For adversarial robust-
ness, (1) AAUA measures the Average Accuracy Under Attacks in our consideration;
(2) LAUA measures the Lowest Accuracy Under Attacks, which is the worst situation.
Formally, we consider n different attacks. For each attack i, we measure the model’s
accuracy over the generated AEs as acc;. The two metrics can be calculated as:

" ace

AAUA = 27, LAUA = min{acc;},i € [n]
n

5.1 Ablation Study of CCN

As discussed in Section 3.1, the size « of the receptive field in CCM can affect the
model’s robustness against different types of attacks. We first perform ablation studies
on the hyperparameter cv. We compare the performance of our CCN for different o
values with PointNet and DGCNN under four white-box attacks. Each model is trained
with PointCutMix-K, which gives the best results compared to other training strategies
except our AMS. Table 1 presents the results. First, we observe that PointNet has the
best robustness against the point perturbing attack (APP) and adding attack (AIH), as
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Training Clean Adversarial Examples
Strategy |Sample|SMA—40| APP | AIC | ATH [AAUA|LAUA
Normal 88.76 | 41.88 |55.64(49.68(43.43| 47.66 | 41.88
PointCutMix-K| 90.83 | 63.11 |82.55|76.14|69.56| 72.84 | 63.11
AT-BIM 88.23 | 45.41 [85.39|84.98(86.36| 75.54 | 45.41
AT-SMA 87.38 | 67.37 |79.79(75.73|74.92| 74.45 | 67.37
AMS (T'=0.7) | 88.64 | 51.30 |86.69|85.31/85.96| 77.32 | 51.30
AMS (T'=0.5) | 89.45 | 48.99 (87.01(86.49(87.26| 77.44 | 48.99
AMS (T'=0.3) | 89.65 | 46.02 (87.30(86.00{86.77| 76.52 | 46.02
AMS (T'=0.1) | 89.20 | 42.98 |80.24|79.87|81.01| 71.03 | 42.98

Table 2: Results for different training methods and hyperparameters with PointNet (%).

Network Training Clean Adversarial Examples

Structure| Strategy |Sample/SMA-40|APP |AIC |AIH |AAUA|LAUA
Normal 90.87 | 67.94 |57.47|61.04|53.37| 59.96 | 53.37
AT-SMA 90.75 | 84.17 |74.51]70.05|64.98| 73.43 | 64.98

CCN AT-BIM 90.05 | 67.37 |88.80(83.77|79.75| 79.92 | 67.37
PointCutMix-K| 92.25 | 81.17 [79.46|76.46/68.30( 76.35 | 68.30
AMS 9241 | 77.72 |90.50(86.09|84.05| 84.74 | 77.72

Table 3: Results for different training strategies with CCN (%).

it only uses individual points to generate features, avoiding the noise accumulation.
However, it has very bad performance for the point dropping attack (SMA—40). Second,
our CCN provides more satisfactory accuracy for both clean and adversarial examples.
The accuracy values for different AEs change with the hyperparameters, and o = 4
can give the best trade-off considering all the point adding, dropping and perturbing
attacks. For AAUA, it is 3.51% higher than PointNet, and 1.53% higher than DGCNN.
For LAUA, it is 5.19% higher than PointNet, and only 0.17% lower than DGCNN. We
conclude that CCN is a more robust architecture than PointNet and DGCNN when
we comprehensively consider all the types of attacks.

5.2 Ablation Study of AMS

Next, we focus on the evaluation of our adaptive augmentation strategy. One important
hyperparameter in AMS is 7', which determines the kind of batch samples for training.
We perform an ablation study to select the optimal T’ value. We use the PointNet model,
which is simple and easy to obtain the results. We generate X4, using the Saliency
Map Attack (10 iterations, 10 points dropped in each iteration) and Xperturh, USing
the 3D L..-BIM attack (10 iterations, e = 0.02 and step = 0.005). (Xmix, Ymix) are
generated by PointCutMix-K. Four white-box attacks are used for evaluation. Table 2
presents the accuracy of models trained with different strategies.

From Table 2, we observe that PointCutMix-K can achieve high accuracy over clean
samples and AEs generated from SMA—40. However, it behaves much worse under the
other three attacks. For AMS, the value of T can affect the model accuracy over different
types of samples. With 7' = 0.5, the model has the highest robustness against ATIC and
ATH attacks. Although LAUA in this configuration is lower than PointCutMix-K and
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Clean Adversarial Examples
Sample| SMA—40| APP | AIC | ATH |AAUA|LAUA
PointNet + Normal 88.76 | 41.88 |55.64|49.68|43.43| 47.66 | 41.88
PointNet + PointCutMix-K | 90.83 | 63.11 |82.55(76.14]69.56| 72.84 | 63.11
PointNet + AT-BIM 88.23 | 45.41 |85.39|84.98/|86.36| 75.54 | 45.41
PointNet + AT-SMA 87.38 | 67.37 |79.79(75.73|74.92| 74.45 | 67.37
DGCNN + Normal 91.03 | 65.87 [46.10(54.06(48.78| 53.70 | 46.10
DGCNN + PointCutMix-R | 90.91 | 72.65 |71.63|62.26|56.53| 65.77 | 56.53
DGCNN + PointCutMix-K | 91.88 | 79.91 |74.88|76.01|68.47| 74.82 | 68.47
DGCNN + AT-BIM 91.27 | 66.68 |89.98(81.37|76.99| 78.76 | 66.68
DGCNN + AT-SMA 91.80 | 84.66 |72.00(71.75|64.25| 73.17 | 64.25
DGCNN + SOR + Normal | 91.00 | 66.00 [86.83|51.82(54.38| 64.76 | 51.82
DGCNN + SOR + AT-BIM | 91.77 | 65.52 [84.97|58.59|58.27| 66.84 | 58.27
DGCNN + SOR + AT-SMA| 91.05 | 80.59 [86.91|59.85|60.25| 71.90 | 59.85

Defense Solutions

SRS” 83.00 | 35.10 |64.70(59.50|58.80| 54.53 | 35.10
DUP-Net* 86.30 | 43.70 [84.50(61.40|62.70| 63.08 | 43.70
PointNet + AMS 89.45 | 48.99 [87.01(86.49|87.26| 77.44 | 48.99
DGCNN + AMS 9221 | 75.41 |90.83|85.47(83.93| 83.91 | 75.41
CCN + AMS 92.41 | 77.72 |90.50(86.09(84.05| 84.74 | 77.72

Table 4: Results for different solutions under the white-box attacks (%). *Data of SRS
and DUP-Net are adopted from [37].

AT-SMA (due to the bad performance in SMA—40), the average accuracy AAUA is still
the highest. This validates the advantage of AMS, and we will adopt 7' = 0.5 for the
following experiments. Table 3 shows the similar comparisons of training strategies
with the CCN architecture. AMS gives much higher AAUA and LAUA than others.

5.3 End-to-End Evaluations and Comparisons

After identifying the optimal hyperparameters, we comprehensively compare our two
methodologies and their integration with existing works of different network architec-
tures (PointNet, DGCNN, DGCNN with SOR, SRS and DUP-Net) and training strate-
gies (Normal, PointCutMix-R, PointCutMix-K, AT-BIM, AT-SMA).

Table 4 summarizes the comparison results for white-box attacks. There can be a
lot of combinations with these solutions. Since PointNet has the least robustness among
these architectures, we mainly compare the DGCNN architecture. First, we observe that
our solution achieves the highest accuracy over clean samples. Second, for adversarial
attacks, our solution also gives the best result for APP and AIC attacks. For SMA—40,
our solution is worse than DGCNN+AT-SMA; for AIH, our solution is slightly worse
than PointNet + AT-BIM. Nevertheless, it still gives the highest AAUA and LAUA, due
to its comprehensive robustness. Furthermore, PointNet and DGCNN trained with our
AMS can outperform other defense solutions when using the same model.

We further evaluate our methodologies against a black-box attack (AdvPC). The
adversary crafts AEs from a different source model, and then leverages the transfer-
ability to attack the target victim model. We consider two constraints to generate AEs
for testing. The results are shown in Table 5. We observe that for the source model of
DGCNN with € = 0.18, the integration (CCN + AMS) is slightly worse than DGCNN +
AT-BIM. For the source model of DGCNN with € = 0.45, our solution is slightly worse
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Target 4 Source Model
Model Defense PointNet DGCNN CCN
€ =0.18|¢ = 0.45|e = 0.18|¢ = 0.45]e¢ = 0.18]¢ = 0.45
Normal 84.50 84.50 86.27 86.27 86.98 85.56

Normal + SRS | 81.61 82.48 | 8299 | 84.32 | 83.88 | 85.65
Normal + SOR| 6546 | 6590 | 67.64 | 67.90 | 68.08 | 69.78
PointNet AT-BIM 86.11 84.70 | 87.88 | 87.88 | 85.76 | 86.82
AT-BIM + SRS | 80.52 | 83.93 | 83.05 | 84.55 | 81.17 | 84.26
AT-BIM + SOR| 74.36 | 7426 | 7338 | 73.67 | 72.06 | 74.11
AMS 86.59 | 85.51 88.02 | 86.95 | 88.02 | 88.02
Normal 89.21 89.21 87.02 | 86.30 | 83.38 | 85.57
Normal + SRS | 61.88 | 60.97 | 63.72 | 59.61 62.97 | 58.24
Normal + SOR | 39.13 | 34.58 | 33.67 | 3595 | 33.67 | 3595
DGCNN AT-BIM 89.08 | 90.54 | 89.81 | 89.08 | 88.71 89.08
AT-BIM + SRS | 63.32 | 63.78 | 57.36 | 6343 | 6343 | 63.25
AT-BIM + SOR| 38.54 | 38.54 | 37.63 | 40.38 | 39.15 | 40.62
AMS 88.89 | 89.26 | 89.63 | 89.63 | 90.00 | 90.73
Normal 89.42 | 8833 | 89.05 | 88.33 | 8542 | 85.42
Normal + SRS | 70.42 | 65.88 | 64.52 | 66.79 | 6497 | 67.24
Normal + SOR | 41.80 | 43.16 | 41.80 | 4095 | 42.71 | 42.25
CCN AT-BIM 88.61 88.61 88.61 88.25 | 88.25 | 88.97
AT-BIM + SRS| 64.53 | 6439 | 60.78 | 63.04 | 63.94 | 68.85
AT-BIM + SOR| 47.25 | 46.38 | 4548 | 46.83 | 4322 | 4590
AMS 9093 | 90.56 | 89.45 | 90.19 | 90.56 | 90.19

Table 5: Results for different solutions under the black-box attacks (%).

than DGCNN + AMS. For the rest of cases, it gives the highest accuracy. This indicates
the effectiveness of our proposed solution under the black-box attack.

We compare our methodologies with more baselines, model architectures and at-
tack configurations. The results can be found in the supplementary material. All the
results confirm that our proposed CCN trained with AMS has the best robustness against
different types of AEs.

6 Conclusion

Numerous research works have been done to increase our understanding about the in-
herent features of adversarial examples and model robustness in 2D image tasks. How-
ever, studies of adversarial defenses in the point cloud domain are still at an early stage.
We advance this research direction with two contributions. For network architecture,
we propose CCN, which can denoise the adversarial point clouds and smooth the pertur-
bations in the feature space. For model training, we propose AMS, which can adaptively
select clean, mix-up or adversarial samples to balance the model utility and robustness.
Comprehensive evaluations show that our solution outperforms a variety of baselines
under different types of white-box and black-box attacks.
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