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Abstract. Learning lightweight and robust deep learning models is an
enormous challenge for safety-critical devices with limited computing
and memory resources, owing to robustness against adversarial attacks
being proportional to network capacity. The community has extensively
explored the integration of adversarial training and model compression,
such as weight pruning. However, lightweight models generated by highly
pruned over-parameterized models lead to sharp drops in both robust and
natural accuracy. It has been observed that the parameters of these mod-
els lie in ill-conditioned weight space, i.e., the condition number of weight
matrices tend to be large enough that the model is not robust. In this
work, we propose a framework for building extremely lightweight mod-
els, which combines tensor product with the differentiable constraints
for reducing condition number and promoting sparsity. Moreover, the
proposed framework is incorporated into adversarial training with the
min-max optimization scheme. We evaluate the proposed approach on
VGG-16 and Visual Transformer. Experimental results on datasets such
as ImageNet, SVHN, and CIFAR−10 show that we can achieve an over-
whelming advantage at a high compression ratio, e.g., 200 times.

Keywords: lightweight model, adversarial robustness, condition num-
ber, tensor product, convolutional neural networks, visual transformer
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1 Introduction

Deep Neural Networks (DNNs) have achieved impressive achievements on large-
scale machine learning tasks from computer vision to speech recognition and
natural language processing [3, 38, 42]. However, existing over-parameterized
deep learning models, including convolutional neural networks(CNNs) and Vi-
sion Transformers [8], are challenged by the following issues when they are de-
ployed on safety-critical resource-constrained devices. On the one hand, to fully
exploit the useful information hidden in the data, most deep learning models
increase the capacity of their networks, either by widening the existing layers or
by adding more layers [15,34,40]. Models with good performance usually require
millions of parameters to be estimated during training. However, many real-
time devices such as smartphones, wearable medical devices, self-driving cars
and unmanned aerial vehicles are highly resource-limited, thus cannot handle
such large models. Hence, the model size of DNNs is an enormous challenge for
applications of deep learning. Another related issue arises from the fact that
DNNs are vulnerable to perturbations from noisy environments or adversarially
crafted attacks [9, 20, 27, 47]. Such vulnerability is unacceptable and potentially
dangerous for safety-critical systems such as critical infrastructure. Therefore, it
is necessary to develop deep learning models that are both lightweight in terms
of the number of parameters, and robust to various perturbations.

Recent studies have shown that it is difficult to simultaneously achieve high
levels of natural accuracy and robustness for lightweight models [11, 52]. On
the one hand, most of the existing lightweight technologies, such as pruning
[13] and low-rank based factorization [7, 18], tend to either decrease the rank
of weight matrices or cause ill-conditioned matrices, which may result in the
models being vulnerable to perturbations from the environment. On the other
hand, the strategies focused on robust training are likely to limit the success of
achieving a lightweight model, as deep and wide model capacities contribute to
the robustness [26,51].

In this work, we propose a framework for building extremely lightweight
models (e.g., compression ratio > 10 for CNNs) that combines tensor product
with the differentiable constraints for reducing condition number and promot-
ing sparsity. Unlike the well-known low-rank based factorization, tensor product
preserves the rank of the matrix, maintaining impressive performance on highly
lightweight models. Furthermore, the proposed framework is incorporated into
adversarial training with the min-max optimization scheme. Note that the pro-
posed approach trains a lightweight and robust network from scratch instead of
compressing over-parameterized pre-trained models.

The main contributions of this paper are summarized as follows.

1. We proposed an extremely lightweight and robust model framework without
significantly sacrificing the model robustness and the classification accuracy.
Although our method focuses on the performance of extremely lightweight
models, it also achieves competitive results at low compression ratios.

2. We developed differentiable constraints on promoting the sparsity and re-
ducing the condition number, which can be imposed on each sub-matrix to



ARLST with Differentiable Constraints on Sparsity and Condition Number 3

control condition numbers of these matrices and further reduce the num-
ber of parameters. We theoretically prove that the sparsity and condition
number of original large-scale weight matrix are equivalent to the product
of the sparsity and condition number of these decomposed sub-matrices,
respectively.

3. The proposed extremely lightweight and robust framework can be incorpo-
rated into the well-known adversarial training framework associated with the
min-max optimization scheme, so as to improve the robustness of the model
against hand-crafted adversarial attacks.

2 Related Work

2.1 Adversarial Training

Conventional methods to improve model robustness against adversarial noise in-
clude adversarial training [26], ensemble training [43], obfuscated gradients iden-
tification [2] and defensive distillation [29,30]. Among them, adversarial training
has been empirically proven to be the most effective way to defend adversarial
attacks.

The key objective of adversarial training is to minimize the training loss on
adversarial examples by optimizing the following min-max empirical risk prob-
lem:

min
A

E(X ,y)∼D

[
max

∥δ∥p≤ϵ
L(A,X + δ, y)

]
(1)

where pairs of input tensor signals X ∈ RI1×I2×···×IN and the corresponding
labels y ∈ [k] follow an underlying data distribution D; ∥ · ∥p with p ≥ 0 denotes
the ℓp norm of a tensor, δ is the adversarial perturbation added to each input
tensor signal X , belonging to perturbations set ϵ ⊆ Rd; A ∈ Rp represents the set
of weight parameters to be optimized and L(A,X +δ, y) is the loss function used
to train the adversarial model, e.g., cross-entropy loss for classification models.

In Eq.(1), the goal of the outer minimization problem is to retrain model
parameters so that the adversarial loss given by the inner attack problem is min-
imized; the inner maximization problem aims to generate adversarial examples
that can mislead the model. Therein, adversarial examples can be obtained by
iterative adversarial attacks, such as Projected Gradient Descent (PGD) based
attacks [26], under the following formulation:

X t+1 = ΠX+ϵ(X t + αsign(∇XL(A,X , y))) (2)

where α is the step size, t is the iterations, and sign(·) returns the sign of gradient
during back-propagation.

2.2 Lightweight Model

Since embedded devices such as mobile terminals are limited in terms of com-
puting power and storage resources, the mobile terminal model must meet the
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conditions of small-size, low computational complexity, and flexible deployment
environments. Therefore, lightweight models are of increasing interest among
researchers in the machine learning community.

Popular techniques for implementing lightweight models include network
pruning [13,45], quantization [12,46], low-rank factorization [36,50], and knowl-
edge distillation [16,33]. Network pruning was early proposed by Han et al. [13],
which prunes some connections with low weight magnitudes under the assump-
tion that they provide less effective information for the model output. The most
common practice is a three-step compression pipeline, which consists of pre-
training a network, pruning and fine-tuning afterwards. Since pruning the pre-
trained network will bring extra computational cost, pruning could be performed
during training [24]. The low-rank factorization [36,50] is under the assumption
that weight vectors are mostly distributed in low-rank subspace, so that a few
basis vectors can reconstruct the weight matrix. However, the matrix decompo-
sition involves massive computation, and the layer-by-layer decomposition is not
conducive to global parameter compression. In addition, the model needs to be
retrained to achieve convergence. Knowledge distillation [16] refers to using the
trained large model as a teacher model, which has learned a wealth of valuable
information from the data, to guide the training of small-sized student model.
While transferring knowledge from the teacher model to the student model en-
ables the student model to obtain comparable performance, it is generally used
for classification tasks with a softmax loss function. Quantization is often used
in conjunction with other compression methods, for example, the combination
of quantization and distillation [33], or pruning and quantization [12], and the
integration of pruning, factorization, and quantization [10]. Furthermore, some
other researchers compress model using Neural Architecture Search (NAS) [22],
which requires a pre-defined search space and can only search for optimal struc-
tures in this space. However, the effect of this method is limited by the search
space, search strategy and performance evaluation strategy.

The strategies mentioned above have been quite successful in learning light-
weight models to a certain degree. However, the extremely lightweight models
generated by these techniques, such as pruning and low-rank factorization, will
result in ill-conditioned weight matrix. Linear systems with ill-conditioned ma-
trices could amplify the instability of the gradients over multiple layers, resulting
in the networks being vulnerable to perturbations from the environment. In a
word, many of the current lightweight strategies may degrade model robustness.

2.3 Learning Both Robust and Lightweight Models

Some recent works have attempted to build models that are both robust and
lightweight by incorporating techniques for implementing lightweight models
into adversarial defense framework. Sehwag et al. [37] formulated the pruning
process as an empirical risk minimization problem within adversarial loss ob-
jectives. Madaan et al. [25] proposed to suppress vulnerability by pruning the
latent features with high vulnerability. Ye et al. [48] incorporated the weight
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pruning into the framework of adversarial training associated with min-max op-
timization, to enable model compression while preserving robustness. Other than
weight pruning, Lin et al. [23] proposed a novel defensive quantization method
by controlling the neural network’s Lipschitz constant during quantization. Re-
cently, Gui et al. [10] proposed a unified framework for adversarial training with
pruning, factorization and quantization being the constraints.

The aforementioned methods combine techniques for generating lightweight
models and adversarial defense strategies, with the main focus on achieving
adversarially robust models. While quantization reduces storage space, it does
not reduce the computational complexity required for model inference. Pruning
does reduce the number of parameters in the network, but it is impossible to
achieve an extremely lightweight model in order to ensure the accuracy and
robustness. In pursuit of models that are both lightweight and robust, it is
important to resolve the inherent contradictions between model compression
and robustness [52].

3 Learning Extremely Lightweight and Robust Model

In this section, we propose a novel framework for joint tensor product with the
differentiable constraints for reducing condition number and promoting sparsity,
to achieve extremely lightweight and robust models. Different from tensor fac-
torization based methods [32, 49], the tensor product preserves the rank of the
matrix so that the expressiveness of the weight matrix is not degraded.

3.1 The Model Pruning and the Condition Number

Most deep learning models consist of L hidden layers, including linear transfor-
mations, pooling layers and activation functions, associated with a task-driven
loss function. Considering that most pooling and activation functions are pre-
defined with fixed policies, the aforementioned learning capabilities are highly
dependent on the following linear transformation (omitting the bias term):

y = WL+1xl,

xl = σ(Wlxl−1 + bl),∀l = 1, · · · , L.
(3)

with xl ∈ Rm, y ∈ Rd, Wl ∈ Rd×m and bl ∈ Rd being the output of hidden
layers, output response, the corresponding linear transformation matrix and bias
vector. We define the input tensor x as x0. The linear system in Eq.(3) covers
prominent deep learning models. For example, for the Fully-Connnected (FC)
layer of CNNs or attention network layer, Wl is a common linear transformation
matrix.

Generally, given a multi-dimensional input signal X , one common practice is
to reshape X into one-dimensional tensor x and feed it into the system in Eq.(3).
This results in a large dimension of the corresponding linear transformation
matrix Wl, which increases the computational cost and memory load during
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Fig. 1. Condition number and robust accuracy for different pruning ratios based on un-
structured pruning. This example shows that compressing the VGG-16 network based
on unstructured pruning causes the condition number of weight matrix to become
ill-conditioned when pruning exceeds a certain threshold (such as 90%), which is the
reason for the sharp drop in robust accuracy.

model inference. In order to reduce the computational complexity, one common
approach is to prune small weights that contribute little to the output of model.

Definition 1 (s−sparse tensor). Given a tensor X ∈ RI1×I2×···×IN satisfies
sparsity condition ∥X∥0 ≤ s, for s ∈ Z+, we call the tensor X is s-sparse. Here,
∥X∥0 denotes the number of non-zero elements in X .

In practice, the pruned weights are set to zero, i.e., the connections between these
corresponding neurons are disconnected, resulting in a sparse weight matrix. For
the convenience of description, W refers to the linear transformation matrix of
each layer unless otherwise specified.

However, an example shown in Fig. 1 demonstrates that robust accuracy are
drastically decreased following the increase of the pruning ratio. Additionally,
Fig. 1 also shows that the high pruning rate (more than 90%) leads to the sharp
increase in the condition number of the weight matrix of networks, which is
known as an indicator of model robustness [6]. In this case, small perturbations
added to the input tensor, i.e., adversarial examples, can produce undesired
outputs when fed into the model.

Definition 2 (ℓ2−norm condition number [6]). The ℓ2−norm condition
number of a full-rank matrix A ∈ RK×I is defined as: κ(A) = σmax(A)/σmin(A),
where σmax(A) and σmin(A) are maximal and minimal singular values of A, re-
spectively.
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Condition number of a matrix is commonly used to measure the sensitive
of the matrix’s operation in the event of how much error in the output results
from an error in the input. A matrix with the condition number being close
to one is said to be ”well-conditioned”, while a matrix with a large condition
number is said to be ”ill-conditioned”, which causes the vanishing and exploding
gradient problem [39]. For example, the condition number of a unitary matrix
is one, while that of a low-rank matrix is equal to infinity. However, the unitary
transformation may degrade the expressiveness of deep learning models and
the low-rank transformation is sensitive to perturbations. Therefore, the linear
transformation with a moderate condition number is necessary for robust deep
learning models.

Let δx be the perturbations added to the input signal x and δy be the
resulting error in output response y, we have

1

k(W )

∥δx∥
∥x∥

≤ ∥δy∥
∥y∥

≤ k(W )
∥δx∥
∥x∥

. (4)

The proof of Eq.(4) refers to Sec.1 of Supplementary Material. Therefore, im-
proving the condition number k(W ) of weight space of the linear system will
limit the variation of the corresponding output response, which can be seen
from Eq.(4). That is, improving the condition number promotes the robustness
of the system to the adversarial noise. In summary, to develop a both robust and
lightweight deep learning model, we expect the linear transformation in Eq.(3)
to have the following properties: i) W has small data sizes such as in lower di-
mensions, and its entries are sparse or quantized in a reduced data format. ii)
W is a well-conditioned matrix with robustness to perturbations. Before intro-
ducing the proposed framework for building extremely lightweight models, we
first introduce separable linear transformations.

3.2 Separable Linear Transformations

We recall the two properties of linear transformation matrix W mentioned in the
previous subsection. In order to achieve a transformation with both properties at
the same time, the crucial idea is to allow the transformation to have a separable
structure, where separable structure means that linear transformation W can
be replaced by the tensor product of several smaller weight matrices. Therefore,
we can effectively impose the condition number and the sparsity constraints on
these separable linear transformations. To interpret the product of a high-order
signal tensor and separable matrices, we first define the n−mode product as
follows, by referring to the concept of tensor operation in [5, 44].

Definition 3 (n−mode product). The n−mode matrix product of a tensor
X ∈ RI1×···×IN with a matrix A ∈ RKn×In is denoted by X ×n A, which is an
N− order tensor. The elements of the tensor X ×n A ∈ (I1 × · · · × In−1 ×Kn ×
In+1 × · · · × IN ) are defined as

(X ×n A)i1···in−1knin+1···iN =

In∑
in=1

Xi1i2···iNAknin (5)
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with Xi1i2···iN , Aknin being entries in X and A, respectively.

For more detailed introduction of n−mode products, we refer the interested
reader to [5, 44].

Suppose a tensor signal X ∈ RI1×I2×···×IN is multiplied by T separable linear
transformation matrices. The response Y ∈ RK1×K2×···×KN is formulated as the
n−mode product of X and these separable transformation matrices,

Y = X ×1 A
(1) ×2 A

(2) ×3 · · · ×T A(T ). (6)

The linear transformation in Eq.(6) can be conveniently converted to the one-
dimensional model of Eq.(3) as follows:

vec(Y) =
(
A(1) ⊗A(2) ⊗ · · · ⊗A(T )

)
vec(X ), (7)

where the vector space isomorphism vec : Ra×b → Rab is defined as the operation
that stacks the columns on top of each other, e.g., x = vec(X ) and y = vec(Y).
Therein, ⊗ denotes the tensor product operator [44].

We refer to a large linear transformation matrices W that can be repre-
sented as a concatenation of smaller matrices A := {A(1) ∈ RK1×I1 ,A(2) ∈
RK2×I2 , · · · ,A(T ) ∈ RKT×IT } as a separable linear transformation,

W = A(1) ⊗A(2) ⊗ · · · ⊗A(T ). (8)

Therefore, we can equivalently convert W into the tensor product of a chain of
small separable matrices.

The increase of T reduces the computational load of the model, however, it
may also degrade the expressiveness of the parameters [41]. This phenomenon
can be explained as the gradient flow vanishing in the chain of tensor matri-
ces during back-propagation. Hence, for the convenience of training lightweight
model, we replace the original large linear transformation matrix with the tensor
product of two small matrices. By regarding x ∈ Rm, y ∈ Rd, W ∈ Rd×m in
Eq.(3), its two-dimensional system with separable linear transformations can be
rewritten as

y = Wx = (A(1) ⊗A(2))x ⇒ Y = A(2)XA(1)⊤, (9)

where A(1) ∈ RK1×I1 and A(2) ∈ RK2×I2 . X ∈ RI2×I1 and Y ∈ RK2×K1 are
reshaped two-dimensional matrices from x and y. An example of replacing fully-
connected layers with Separable Linear Transformation is introduced in Sec.2 of
Supplementary Material.

3.3 Extremely Lightweight and Robust Model

Although the separable linear transformations proposed in Section 3.2 greatly
reduces the number of parameters and computational complexity, it is far from
enough for some devices with extremely limited resources. In this subsection, we



ARLST with Differentiable Constraints on Sparsity and Condition Number 9

combine the separable linear transformation with sparsity constraint to develop
an extremely lightweight model. Moreover, we also propose two condition number
constraints to guarantee the proper condition number of model weights.

Given the multi-dimensional tensor operations in the model, it is difficult to
directly impose constraints on the linear system. However, the common trans-
formation between multi-dimensional model and one-dimensional model enables
solving multi-dimensional transformation problems to take advantage of the clas-
sical and efficient algorithms of the one-dimensional model. In order to develop a
learning paradigm for combining separable parameter matrices with sparsity to
construct an extremely lightweight model, we now derive the following proposi-
tions between the multi-dimensional model and the one-dimensional model, and
hence construct appropriate regularizers.

Differentiable Constraint on Sparsity Promotion. The linear trans-
formation with a collection of separable parameters A does drastically reduce
the number of parameters. In order to further reduce the computation and com-
plexity to achieve extreme model compression, one approach is to sparse the
separable linear transformation matrices.

Proposition 1. Given W = A(1)⊗A(2) with W ∈ RK1K2×I1I2 , A(1) ∈ RK1×I1

being sA−sparse and A(2) ∈ RK2×I2 being sB−sparse, the sparsity of W is
sAsB.

The weight pruning is to make T separable matrices A(T ) with few nonzero
elements, while ensuring the the matrices set A without reducing expressiveness.
As shown in Proposition 1, the sparsity of the whole system is determined by
that of each separable matrix. Therefore, a nature way for pruning is to promote
the sparsity of each element in A(t),

g(A) =

T∑
t=1

∑
inkn

g
(
A

(t)
in,kn

)
(10)

with A
(t)
inkn

being an element of A(t). However, this sparse penalty term is non-
differentiable and cannot update parameters during gradient back-propagation.
In practice, we use the following penalty term to enforce the sparsity of A(T ) by
minimizing ℓp norm with 0 ≤ p ≤ 1 instead of Eq.(10) ,

g(A) =
1

2k1

T∑
t=1

k1∑
i=1

(
1

p
∥A(t)

i,: ∥
p
p)

2, (11)

with A
(T )
i,: being the ith row of A(T ). It is known that above ℓp norm is non-

smooth. In order to make the global cost function differentiable, we exchange
Eq.(11) with a smooth approximation that is concretely given as

g(A) =
1

2k1

T∑
t=1

k1∑
i=1

(

k2∑
j=1

(A
(t)
ij

2
+ϖ)p/2)2, (12)
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with 0 < ϖ < 1 being a smoothing parameter. Therein, the sparsity measure-
ment function g is chosen to be separable, i.e., its evaluation is computed as the
sum of functions of the individual components of its argument.

Differentiable Constraints on Reducing Condition Number. A ro-
bust linear system like Eq.(3) often requires the transformation matrix is as
”well-conditioned” as possible. The key question is whether the condition num-
ber of the tensor product of separable matrices is equivalent to that of the
original linear transformation matrix. In other words, does the tensor product
change the condition number of the original linear transformation matrix? If
the tensor product does not change the condition number of the matrix, we can
impose condition number constraints on these separable small matrices, which
is equivalent to improving the robustness of the original matrix.

Theorem 1 (Theorem 4.2.12 in [17]). Let A ∈ RK1×I1 , B ∈ RK2×I2 . Fur-
thermore, let λ ∈ σ(A) with corresponding eigenvector x, and let µ ∈ σ(B) with
corresponding eigenvector y. Then λµ is an eigenvalue of A ⊗ B with corre-
sponding eigenvector x⊗ y. Every eigenvalue of A⊗B arises as such a product
of eigenvalues of A and B.

Proof: Suppose Ax = λx and Bx = µy with x,y ̸= 0, then (A⊗B)(x⊗y) =
λx ⊗ µy = λµ(x ⊗ y). Schur’s unitary triangularization theorem ensures that
there are unitary matrices U ∈ RK1×I1 and V ∈ RK2×I2 such that U⊤AU = ∆A

and V⊤BU = ∆B. Then

(U⊗V)⊤(A⊗B)(U⊗V) = (U⊤AU)⊗ (V⊤BU) = ∆A∆B

is upper triangular and is similar to A⊗B. The eigenvalues of A, B and A⊗B
are exactly the main diagonal entries of ∆A, ∆B and ∆A ⊗ ∆B, respectively,
and the main diagonal of ∆A ⊗ ∆B consist of the n2 pairwise products of the
entries on the main diagonals of ∆A and ∆B.

According to Theorem 1, we can get

κ(W ) = κ(A(1) ⊗A(2) ⊗ · · · ⊗A(T )) = κ(A(1))κ(A(2) · · ·κ(A(T )). (13)

As shown in Eq.(13), the condition number of whole tensor linear system are
heavily depending on the construction of each separable matrix A(t). Therefore,
imposing condition number constraints on each separable small matrix A(t) to
keep an appropriate condition number is equivalent to limiting the condition
number of the original large matrix. We review the definition of ℓ2−norm condi-
tion number, one feasible way is to develop some smooth regularization terms to
prevent every singular values from being essentially small and extremely large.

Let {σi}ki=1, k = min{a, b} denote the singular values of a separable matrix
A(t) ∈ Ra×b arranged in descending order, and σmax(A

(t)) denote the largest

one. It is known that ∥A(t)∥2F =
∑k

i=1σ
2
i ≥ σmax(A

(t))2. Thus, we propose the
following regularization term to prevent σmax(A

(t)) from being too large,

ρ(A) =
1

2Tk2

T∑
t=1

∥A(t)∥2F , (14)



ARLST with Differentiable Constraints on Sparsity and Condition Number 11

Furthermore, the Gram matrix A(t)⊤A(t) is positive definite, which implies

det(A(t)⊤A(t)) =
∏

σ2
i > 0. Therefore, the constraint term in Eq.(15) is pro-

vided to avoid the worst case of det(A(t)⊤A(t)) being exponentially small or
large.

h(A) =
1

4Tk log(k)

T∑
t=1

(
log

[
ν +

1

k
det(A(t)⊤A(t))

])2

(15)

with 0 < ν ≪ 1 being a small smoothing parameter. Additionally, the penalty
h(A) also promotes the full rank of A(t), as well as the full rank of A in matrix-
vector-product, shown in Eq.(9). More Details of Eq.(15) refers to Sec.3 of Sup-
plementary Material. Such two constraints ρ(A) and h(A) work together to
achieve a moderate condition number for the whole tensor system.

3.4 Adversarial Training for Lightweight and Robust Model

As introduced in Section 3.3, the separable linear transformations and the spar-
sity promotion reduces the computational load of model. Furthermore, the set-
tings for condition number within the framework of adversarial training associ-
ated with min-max optimization could exactly improve the robustness against
various perturbations. By combining the regularizers discussed above, we con-
struct the following cost function to jointly learn robust and lightweight param-
eters with separable structures, as

min
A

{
E(X ,y)∼D[ max

∥δ∥p≤ϵ
L(A,X + δ, y)] + µ1ρ(A) + µ2h(A) + µ3g(A)

}
, (16)

with the three hyperparameters µ1, µ2, µ3 > 0, control the impact of the three
regularizers on the final solution. In this work, we refer to it as the Adversarially
Robust and Lightweight model with Separable Transformations (ARLST) .

4 Experimental Results

In this section, we investigate the performance of the proposed ARLST from
two aspects: the size of model parameters and robustness against different per-
turbations. Our method is validated by experiments on image datasets, such
as SVHN [28],Yale-B [31], MNIST [21], CIFAR-10 [19], CIFAR-100 [19] and
ImageNet (ILSVRC2012) [35]. Three well-known and most related methods,
ADMM [48], ATMC [10], and HYDRA [37] are used for the comparison. All
networks are trained with 100 epochs for all experiments in this paper, and they
are conducted on NVIDIA RTX 2080Ti GPU (10 GB memory for each GPU).
Unless otherwise specified, the results of all tables are presented in percent.

Implementation settings.We report the model performance on robustness
under the Fast Gradient Sign Method (FGSM) [9],Projected Gradient Descent
(PGD) [26], AutoAttack (AA) [4] and the Square Attack (SA) [1]. The PGD
attack is known as the strong first-order attack, and AA is an ensemble of com-
plementary attacks which combine the PGD with SA. The SA is a black-box
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Fig. 2. (a) Weight distribution of two separable linear transformation matrices in the
last FC layer of VGG-16 with (yellow part) and without (dark part) sparsity constraint;
(b) Impact of condition number constraints on robust accuracy of CIFAR-10.

attack, which is an adversary attack without any internal knowledge of the tar-
geted network. Unless otherwise specified, we set the PGD attack and the AA
attack with the perturbation magnitude ϵ = 8/255, iteration numbers t = 10,
and step size α = 2/255. For FGSM, we set ϵ = 4/255, and the number of queries
in SA to 100. We evaluate the model performance by using the following met-
rics, i) Compression Ratio (CR): compression ratio refers to the ratio of the
model size before compression to that after compression; ii) Natural Accuracy
(NA): the accuracy on classifying benign images; iii) Robustness Accuracy
(RA): the accuracy on classifying images corrupted by adversarial attack.

Ablation study of regularization term. We investigate the impact of
the three regularizers g, ρ and h on the performance of the ARLST under
the PGD attack on the CIFAR-10 dataset. Firstly, we evaluate the impact of
sparse regularization term on the weight distribution. As shown in the Fig. 2(a),
two separable linear transformation matrices in the last fully-connected layer
of VGG-16 with sparse constraint(µ3 = 0.00001 ) are more sparser than these
without constraint. In other words, the sparse regularization term can further
reduce the number of parameters on the basis of tensor product of sub-matrices.
Then we test the effect of two condition number constraints on robust accuracy,
as shown in Fig. 2(b). Experimental results show that suitable choices of µ1 and
µ2 can improve the performance of the ARLST method, e.g., µ1 = 0.0001 and
µ2 = 1 achieve the superior performance.

4.1 ARLST with VGG-16

In this experiment1, we compare the proposed ARLST with aforementioned
baseline methods on the CIFAR-10, SVHN and ImageNet datasets. We selected
the VGG-16 network for experiment. For more details on this experiment refer
to Sec.4 of Supplementary Material.

1 https://github.com/MVPR-Group/ARLST

https://github.com/MVPR-Group/ARLST
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It is worth noting that the ARLST achieved an overwhelming advantage
when the model is extremely compressed, as shown in Table. 1. Even at a com-
pression factor of 200, we obtain gains up to 2.0, 7.0 and 1.4 percentage points
in robust accuracy, while simultaneously achieving state-of-the-art natural accu-
racy, compared to HYDRA, ADMM, ATMC for CIFAR-10 dataset, respectively.
This advantage may be traced to the joint optimization of the pruning and the
condition number constraint, which prevents the parameter matrix from being
ill-conditioned. Since the experiments on SVHN are similar to those on CIFAR,
we present the experimental results in Sec.4 of Supplementary Material. While
our method mainly focuses on the performance of extremely compressed models,
it also achieves competitive results at low compression ratios. Table. 1 gives a
simple comparison on the ImageNet-1K dataset at low compression ratios.

Table 1. Comparison of our approach with other pruning-based baseline methods.
We use CIFAR-10 and ImageNet dataset with VGG-16 networks, iterative adversarial
training from [51] for this experiment.

Method HYDRA ADMM ATMC ARLST

CR NA/RA NA/RA NA/RA NA/RA

10× 75.7/46.2 75.9/44.8 75.6/44.8 76.6/46.3
CIFAR− 10 20× 74.5/44.9 74.7/43.7 73.9/42.9 75.8/45.6

100× 69.8/40.2 68.8/40.4 69.8/41.1 70.0/41.3
200× 62.4/35.5 60.6/30.5 64.0/36.1 64.3/37.5

5× 43.2/28.7 41.2/27.9 45.1/29.5 45.4/30.0
ImageNet− 1K 10× 41.6/27.0 40.1/26.0 42.9/27.8 43.9/28.7

In previous experiments, we tested ARLST and other baselines against the
PGD attack at certain fixed perturbation levels. Furthermore, we tested these
models against the FGSM attack, Square Attack (SA) and AutoAttack (AA) on
CIFAR-100 dataset when the compression ratio is 100×. As shown in Table. 2,
our proposed method shows the best performance against various attacks.

Table 2. Comparison of our approach with other pruning-based baseline methods
against various adversarial attacks. We use CIFAR-100 dataset and VGG-16 networks
for this experiment.

HYDRA ADMM ATMC ARLST

Attacks NA/RA NA/RA NA/RA NA/RA

FGSM 44.9/29.7 41.1/27.7 46.2/31.5 47.1/32.1
PGD 33.3/19.9 32.2/17.7 36.6/21.3 37.6/22.1
SA 43.0/31.7 41.9/30.3 42.9/33.6 44.1/34.7
AA 31.9/17.7 30.9/16.9 35.0/19.9 35.2/20.8
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4.2 ARLST with Visual Transformer

To the best of our knowledge, there are few existing studies on the robustness
of lightweight Transformers. In this experiment, we conduct a simple set of ex-
periments based on Compact Convolutional Transformer (CCT) [14], comparing
our method with HYDRA on CIFAR-10 dataset. We apply FGSM attack to gen-
erate adversarial examples. We set the perturbation magnitude ϵ = 4/255 and
all models are trained on CIFAR-10 dataset for 100 epochs. As shown in Ta-
ble. 3, our ARLST achieves the best natural and robust accuracy on CIFAR-10
dataset at the same compression ratio. Note that the model completely loses its
expressiveness when compressed by 20× based on the HYDRA. Experimental
results show the overwhelming advantage of our proposed method, especially
on high compression ratio. This is because our method prevents the condition
number from being too large, while HYDRA leads to be not full-rank at high
compression ratio.

Table 3. Comparison of HYDRA with our methods for CCT trained on CIFAR-10
dataset with adversarial training. ∆ represents the difference in accuracy.

Method HYDRA ARLST (Ours) ∆

CR NA/RA NA/RA

5× 74.43/55.54 83.11/61.04 +8.38/+ 5.50
10× 54.56/36.45 80.52/56.98 +25.96/+ 20.53
20× − 73.39/49.24 > +50.0

5 Conclusions

In this work, we proposed a novel framework for learning extremely lightweight
and robust models, which combines tensor product with the constraints on spar-
sity and condition number. Moreover, we theoretically prove that the sparsity
of original large-scale weight matrix is equivalent to the product of sparsity of
these sub-matrices, as well as the condition number. The proposed extremely
lightweight and robust framework is incorporated into adversarial training with
the min-max optimization scheme, to further improve the robustness of model
against hand-crafted adversarial attacks. Experimental results performed on
VGG-16 and Compact Convolutional Transformer showed that our ARLST sur-
passes several baseline methods, achieving better robustness to various adver-
sarial perturbations with very fewer network parameters.
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43. Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., McDaniel, P.:
Ensemble adversarial training: attacks and defenses. International Conference on
Learning Representations (ICLR) (2018)

44. Van Loan, C.F.: The ubiquitous kronecker product. Journal of computational and
applied mathematics 123(1-2), 85–100 (2000)

45. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep
neural networks. In: Advances in neural information processing systems (NeurIPS).
pp. 2074–2082 (2016)

46. Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional neural
networks for mobile devices. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 4820–4828 (2016)

47. Xu, K., Liu, S., Zhao, P., Chen, P.Y., Zhang, H., Fan, Q., Erdogmus, D., Wang,
Y., Lin, X.: Structured adversarial attack: Towards general implementation and
better interpretability. In: International Conference on Learning Representations
(ICLR) (2019)

48. Ye, S., Xu, K., Liu, S., Cheng, H., Lambrechts, J.H., Zhang, H., Zhou, A., Ma,
K., Wang, Y., Lin, X.: Adversarial robustness vs. model compression, or both?
In: Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV). pp. 111–120 (2019)

49. Yin, M., Sui, Y., Liao, S., Yuan, B.: Towards efficient tensor decomposition-
based dnn model compression with optimization framework. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp.
10674–10683 (2021)

50. Yu, X., Liu, T., Wang, X., Tao, D.: On compressing deep models by low rank
and sparse decomposition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 7370–7379 (2017)



18 Xian Wei, Yangyu Xu et al.

51. Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., Jordan, M.I.: Theoretically
principled trade-off between robustness and accuracy. In: International Conference
on Machine Learning (ICML). pp. 7472–7482 (2019)

52. Zhao, Y., Shumailov, I., Mullins, R., Anderson, R.: To compress or not to compress:
Understanding the interactions between adversarial attacks and neural network
compression. In: Proceedings of Machine Learning and Systems (MLSys). pp. 230–
240 (2019)


	Learning Extremely Lightweight and Robust Model with Differentiable Constraints on Sparsity and Condition Number

