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A Sampling Algorithm

We summarize the overall sampling procedure based on k-DPP [4] in Algo-
rithm 1.

– Compute the RBF kernel matrix L of ϕcls and eigendecomposition of L.
– A random subset V of the eigenvectors is chosen by regarding the eigenvalues

as sampling probability.
– Select a new class ci to add to the set and update V in a manner that

de-emphaseizes items similar to the one selected.
– Update V by Gram-Schmidt orthogonalization, and the distribution shifts

to avoid points near those already chosen.

By performing the Algorithm 1, we can obtain a subset with k size. Thus
while handling the conditional classes with K, we can hierarchically adopt this
algorithm to get the final K/k subsets, which are regarded as conditional vari-
ables of generative models to craft adversarial examples.

B Some Implementation Details

The study of smoothing mechanism. Smoothing mechanism has been proved
to improve the transferability against adversarially trained models. CD-AP [8]
uses direct clip projection to have a fixed norm ϵ, and adopts smoothing for
generated perturbation while the generator G is trained, i.e.,

Train: x∗
si = Clipϵ(G(xsi),

Test: x∗
si = W ∗ Clipϵ(G(xsi),

(1)

⋆ corresponding author.
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Algorithm 1 Sampling Algorithm by kDPP

Require: Weight Vector θcls; Subset size k.
Ensure: A subset C.
1: Compute RBF kernel matrix L of θcls;
2: Compute eigenvector/value {vn, λn}Nn=1 pairs of L;
3: // Phase I:
4: J ← ϕ, ek (λ1, . . . , λN ) =

∑
|J|=k

∏
n∈J λn;

5: for n = N, ..., 1 do

6: if u ∼ U [0, 1] < λn
en−1
k−1

en
k

and k > 0 then

7: J ← J ∪ {n}; k ← k − 1;
8: end if
9: end for
10: // Phase II:
11: V ← {vn}n∈J , Y ← ϕ;
12: while |V | > 0 do

13: Select ci from C with P (ci) =
1

|V |
∑

v∈V

(
v⊤ei

)2
;

14: C ← C ∪{ci}; V ← V⊥, an orthonormal basis for the subspace of V orthogonal
to ei;

15: end while

where W indicates Gaussian smoothing of kernel size of 3, ∗ indicates the con-
volution operation, and Clipϵ means clipping values outside the fixed norm ϵ.
As a comparison, we introduce adaptive Gaussian smoothing kernel to compute
adversarial images x∗

si from in the training phase, named adaptive Gaussian
smoothing as

Train & Test: x∗
si = ϵ ·W ∗ tanh(G(xsi) + xsi , (2)

which can make generated results obtain adaptive ability in the training phase.
We perform training in ImageNet dataset to report all results including compa-
rable baselines.

Network architecture of generator. We adopt the same autoencoder
architecture in [8] as the basic generator networks. Besides, we also explore Big-
GAN [2] as conditional generator network. An very weak testing performance is
obtained even in the white-box attack scenario, possibly explained by the weak
diversity of latent variable with the Gaussian distribution from BigGAN in the
training phase, whereas autoencoder can take full advantage of large-scale train-
ing dataset, e.g., ImageNet. Furthermore, we also train the autoencoder with
Gaussian noise as the training dataset and obtain similar inferior performance
in the white-box attack scenario, indicating that a large-scale training dataset
is very significant for generating transferable targeted adversarial examples.

C Additional Experimental Results

Results on different datasets. We craft adversarial examples on different
datasets, including ImageNet training set, MS-COCO and Comics dataset [1],
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Target model: Inc-v3    Target class: Viaduct    Train data:  ImageNet

Target model: Inc-v3    Target class: Viaduct    Train data:  MS-COCO

Target model: Inc-v3    Target class: Viaduct    Train data:  Comics

Fig. 1: Some examples of adversarial images with perturbation budget of ℓ∞ ≤ 16. We
separately adopt the ImageNet, MS-COCO and Comics dataset as the training dataset
to implement the generation of targeted perturbations.

Table 1: Comparison results of targeted black-box attacks on different datasets. Inv3
is the substitute model.

Dataset DN VGG-16 GN

ImageNet 79.9 81.9 73.2
MS-COCO 70.3 71.3 64.1
Comics 60.4 63.0 61.3

which consist of 1.2M, 82k and 50K images, respectively. MS-COCO dataset
can be applied to large-scale object detection and segmentation, and those im-
ages from Comics dataset are regarded as other domains different from normal
ones in ImageNet. Despite this diverse training types, we still find the common
property of crafted adversarial examples by our method. Specifically, we craft
some examples of adversarial images with perturbation budget of ℓ∞ ≤ 16, and
separately adopt the ImageNet, MS-COCO and Comics dataset as the training
dataset to implement the generation of targeted perturbations. As illustrated in
Fig. 1, we produce semantic pattern independent of any training dataset.

We also report the success rate of targeted black-box attack, as shown in
Table 1. We experimentally find that semantic pattern derived from ImageNet
dataset achieves better performance of black-box performance, possibly explained
by instructional effectiveness from more diverse data in ImageNet dataset.
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Table 2: Transferability results for untargeted attacks increase in error rate after attack
on subset of ImageNet (5k images) with the perturbation budget of ℓ∞ ≤ 16/32.

Method
inv3ens3 inv3ens4 IR-v2ens

ϵ = 16 ϵ = 32 ϵ = 16 ϵ = 32 ϵ = 16 ϵ = 32

inv3
UAP [7]
GAP [10]
RHP [6]

1.00
5.48
32.5

7.82
33.3
60.8

1.80
4.14
31.6

5.60
29.4
58.7

1.88
3.76
24.6

5.60
22.5
57.0

inv4
UAP [7]
RHP [6]

2.08
27.5

7.68
60.3

1.94
26.7

6.92
62.5

2.34
21.2

6.78
58.5

IR-v2
UAP [7]
RHP [6]

1.88
29.7

8.28
62.3

1.74
29.8

7.22
63.3

1.96
26.8

8.18
62.8

CD-AP [8] 28.34 71.3 29.9 66.72 19.84 60.88
CD-AP-gs [8] 41.06 71.96 42.68 71.58 37.4 72.86

Ours 46.20 72.58 42.98 72.34 37.9 73.26

Results of untargeted black-box attack. We evaluate our method and
other generative methods including UAP [7], GAP [10] and RHP [6]. Untargeted
transferability from naturally trained models to adversarially trained models oc-
curs due to differences in model sources, data types and other factors, thus
enabling challenging comparison. As illustrated in Table 2, we report the untar-
geted attacks increase in error rate of adversarial and clean images to evaluate
different methods. Our method is steadily improved in different black-box models
under untargeted black-box manner.

Results of different ϵ. We also presented the results with the reduced per-
turbation budget of ℓ∞ ≤ 10 in Table 3 for verifying the consistent effectiveness.
Furthermore, we chose the smaller perturbation budget of ℓ∞ ≤ 8 in experi-
ments to make the adversarial examples more imperceptible. In this setting, the
proposed generative method still outperforms the SOTA iterative attack method
named Logit [12] with a large margin.

Compared results with TTP [9]. TTP proposes a generative approach
for highly transferable targeted perturbations by introducing mutual distribu-
tion matching. For demonstrating the performance, we conduct multi-target
black-box experiments by adopting 8 mutually exclusive targeted sets. 1) Effi-
ciency : TTP needs to train 8 models while performing an 8-class targeted attack,
whereas our conditional generative method only trains one model to inference
the results. 2) Effectiveness: TTP obtained comparable black-box attack success
rates with ours as shown in Table 4. Overall, the proposed conditional generative
method can be a better baseline in targeted black-box attacks regarding both
effectiveness and efficiency.

D Impersonation Attack of Face Recognition

We list attack methods of face recognition as follows. Given an input x and
an image xr belonging with another identity, an attack method can generate an
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Table 3: Comparison results of targeted black-box attacks on different ϵ.

Source Method
VGG-16 R152

eps=16 eps=12 eps=8 eps=16 eps=12 eps=8

inv3
Logit [12] 4.4 3.4 2.1 1.2 1.1 0.8

Ours 61.9 53.7 36.1 49.6 31.0 16.3

Table 4: Comparison results of targeted black-box attacks with TTP.

Source Method Inv4 IR-v2 R152 DN GN VGG-16

inv3
TTP 65.4 55.3 39.4 44.0 35.9 36.1
Ours 66.9 66.6 41.6 46.4 40.0 45.0

adversarial example xadv with perturbation budget ϵ under the ℓp norm (∥xadv−
x∥p ≤ ϵ). Therefore, impersonation attack aims to perform this objective of

C(xadv,xr) = I(Df (x
adv,xr) < δ), (3)

where I is the indicator function, δ is a threshold, and Df (x
adv,xr) = ∥f(xadv)−

f(xr)∥22.
Basic Iterative Method (BIM) [5] extends FGSM by iteratively taking

multiple small gradient updates as

xadv
t+1 = clipx,ϵ

(
xadv
t − α · sign(∇xDf (x

adv
t ,xr))

)
, (4)

where clipx,ϵ projects the adversarial example to satisfy the ℓ∞ constrain and α
is the step size.

Momentum Iterative Method (MIM) [3] introduces a momentum term
into BIM for improving the transferability of adversarial examples as

gt+1 = µ · gt +
∇xDf (x

adv
t ,xr)

∥∇xDf (xadv
t ,xr)∥1

;

xadv
t+1 = clipx,ϵ(x

adv
t − α · sign(gt+1)).

(5)

The training objectives of our generative method seek to minimize the clas-
sification error on the perturbed image of the generator as

min
θ

E(x∼X ,c∼C)[Df

(
x+ Gθ(x, c),x

r
c

)
], (6)

where xr
c refers to xr with the corresponding identity c. In the training phase, we

randomly select 1, 000 identities from CASIA-WebFace [11] as training dataset
to craft adversarial examples. Therefore, our method can be applied not only in
image classification.



6 X.Yang et al.

Target model: Inc-v3    Target class: Viaduct    Success Rate: 99.5% 

Target model: Dense-201 Target class: Viaduct    Success Rate: 99.7%

Target model: Res-152 Target class: Viaduct    Success Rate: 99.0%

Target model: VGG-16    Target class: Viaduct    Success Rate: 99.6% 

Fig. 2: Some examples of adversarial images with perturbation budget of ℓ∞ ≤ 16. We
separately adopt the ImageNet, MS-COCO and Comics dataset as the training dataset
to implement the generation of targeted perturbations.

E More Examples

We also show more semantic patterns from different target models, as illustrated
in Fig. 2.
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