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Abstract. Transfer-based adversarial attacks can evaluate model ro-
bustness in the black-box setting. Several methods have demonstrated
impressive untargeted transferability, however, it is still challenging to
efficiently produce targeted transferability. To this end, we develop a sim-
ple yet effective framework to craft targeted transfer-based adversarial
examples, applying a hierarchical generative network. In particular, we
contribute to amortized designs that well adapt to multi-class targeted
attacks. Extensive experiments on ImageNet show that our method im-
proves the success rates of targeted black-box attacks by a significant
margin over the existing methods — it reaches an average success rate
of 29.1% against six diverse models based only on one substitute white-
box model, which significantly outperforms the state-of-the-art gradient-
based attack methods. Moreover, the proposed method is also more effi-
cient beyond an order of magnitude than gradient-based methods.

1 Introduction

Recent progress in adversarial machine learning demonstrates that deep neural
networks (DNNs) are highly vulnerable to adversarial examples [13, 47], which
are maliciously generated to mislead a model to produce incorrect predictions. It
has been demonstrated that adversarial examples possess an intriguing property
of transferability [50, 19, 4] — the adversarial examples crafted for a white-box
model can also mislead other unknown models, making black-box attacks feasi-
ble. The threats of adversarial examples have raised severe concerns in numerous
security-sensitive applications, such as autonomous driving [10] and face recog-
nition [54, 55, 53].

Tremendous efforts have been made to develop more effective black-box at-
tacking methods based on transferability, since they can serve as an important
surrogate to evaluate the model robustness in real-world scenarios [32, 8]. The
current methods have achieved impressive performance of untargeted black-box
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attacks, intending to cause misclassification of the black-box models. However,
targeted black-box attacks, aiming at misleading the black-box models by out-
putting the adversary-desired target class, perform unsatisfactorily or require
computation scaling with number of classes [7, 57]. Technically, the inefficiency
of targeted adversarial attacks could result in an over-estimation of model ro-
bustness under the challenging black-box attack setting [16].

Existing efforts on targeted black-box attacks can be categorized as instance-
specific and instance-agnostic attacks. Specifically, the instance-specific attack
methods [12, 34, 25, 8, 27] craft adversarial examples by performing gradient up-
dates iteratively, which obtain unsatisfactory performance for targeted black-box
attacks due to easy overfitting to a white-box model [8, 51]. Recently, [58] pro-
pose several improvements for instance-specific targeted attacks, thus we treat
the method in [58] as one of the strong instance-specific baselines compared in
our experiments.

On the other hand, the instance-agnostic attack methods learn a universal
perturbation [57] or a universal function [43, 35] on the data distribution inde-
pendent of specific instances. They can promote more general and transferable
adversarial examples since the universal perturbation or function can alleviate
the data-specific overfitting problem by training on an unlabeled dataset. CD-
AP [35], as one of the effective instance-agnostic methods, adopts a generative
model as a universal function to obtain an acceptable performance when facing
one specified target class. However, CD-AP needs to learn a generative model for
each target class while performing multi-target attack [14], i.e., crafting adversar-
ial examples targeted at different classes. Thus it is not scalable to the increasing
number of targets such as hundreds of classes, limiting practical efficiency.

To address the aforementioned issues and develop a targeted black-box at-
tack in the practical scenario, in this paper we propose a conditional generative
model as the universal adversarial function to craft adversarial perturbations.
Thus we can craft adversarial perturbations targeted at different classes, using a
single model backbone with different class embeddings. The proposed generative
method is simple yet practical to obtain superior performance of targeted black-
box attacks, meanwhile with two technical improvements including (i) smooth
projection mechanism that better helps the generator probe targeted semantic
knowledge from the classifier; (ii) adaptive Gaussian smoothing with the focus
of making generated results obtain adaptive ability against adversarially trained
models. Therefore, our approach have several advantages over existing generative
attacks [35, 38, 39], as described in the followings.

One model for multiple target classes. The previous generative meth-
ods [35, 38] require costly training N models while performing a multi-target
attack with N classes. However, ours only trains one model and reaches an aver-
age success rate of 51.1% against six naturally trained models and 36.4% against
three adversarially trained models based only on one substitute white-box model
in ImageNet dataset, which outperforms CD-AP by a large margin of 6.0% and
31.3%, respectively.
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Hierarchical partition of classes. While handling plenty of classes (e.g.,
1,000 classes in ImageNet), the effectiveness of generating targeted adversarial
examples will be affected by a single generative model due to the difficulty of loss
convergence in adversarial learning [52, 1]. Thus we train a feasible number of
models (e.g., 10∼20 models on ImageNet) to further promote the effectiveness
beyond the single model backbone. Specifically, each model is learned from a
subset of classes specified by a designed hierarchical partition mechanism by
considering the diversity property among subsets, for seeking a balance between
effectiveness and scalability. It reaches an average success rate of 29.1% against
six different models, outperforming the state-of-the-art gradient-based methods
by a large margin, based only on one substitute white-box model. Moreover, the
proposed method achieves substantial speedup over the mainstream gradient-
based methods.

Strong semantic patterns. We experimentally find that these adversarial
perturbations generated by the proposed Conditional Generative models can
arise as a result of strong Semantic Pattern (C-GSP) as shown in Fig. 1(a).
Furthermore, we present more valuable analyses in Sec. 4.6, illustrating that the
generated semantic pattern itself achieves well-generalizing performance among
the different models and is robust to the influence of data. These analyses are
very instructive for the understanding and design of adversarial examples.

Technically, our main contributions can be summarized as:

– We propose a simple yet practical conditional generative targeted attack with
a scalable hierarchical partition mechanism, which can generate targeted
adversarial examples without tuning the parameters.

– Extensive experiments demonstrate that our method significantly improves
the success rates of targeted black-box attacks over the existing methods.

– As a by-product, our baseline experiments provide a systematical evaluation
on previous targeted black-box attacks, either instance-specific or instance-
agnostic, on the ImageNet dataset with plenty of classes and face recognition.

2 Related Work

In this section, we review related work on adversarial attacks belonging to dif-
ferent types.

Instance-specific attacks. Some recent works [34, 58] adopt gradient-based
optimization methods to generate the data-dependent perturbations. MIM [8]
introduces the momentum term into the iterative attack process to improve the
black-box transferability. DIM [51] and TI [9] aim to achieve the better transfer-
ability by input or gradient diversity. Recent works [20, 21] also attempt to costly
train the multiple auxiliary classifiers to improve the black-box performance of
iterative methods. In contrast, we improve the transferability performance over
instance-specific methods simultaneously with the inference-time efficiency.

Instance-agnostic attacks.Different from instance-specific attacks, instance-
agnostic attacks belong to image-independent (universal) methods. The first
pipeline is to learn a universal perturbation. UAP [33] proposes to fool a model
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Fig. 1: (a) shows the targeted adversarial examples crafted by MIM [8] and C-GSP given
the target class Viaduct with the maximum perturbation ϵ = 16. The predicted labels
and probabilities are shown by another black-box model. (b) presents an overview of
our proposed generative method for crafting C-GSP, including modules of conditional
generator and classifier. The generator integrates the image and conditional class vector
from Map network into a hidden incorporation. The generator is only trained in the
whole pipeline to probe the target boundaries of the classifier.

by adding a learned universal noise vector. Another pipeline of attacks introduces
learned generative models to craft adversarial examples. GAP [38] and AAA [39]
craft adversarial perturbations based on target data directly and compress im-
pressions, respectively. Previous methods, including universal perturbation and
function, require costly training the same number of models for multiple target
classes. Our method is capable of simultaneously generating adversarial samples
for specifying multiple targets with better attack performance.

Multi-target attacks. Instance-specific attacks have the ability for specify-
ing any target in the optimization phase. As elaborated in the introduction, these
methods have degraded transferability and time-consuming iterative procedures.
MAN [14] trains a generative model in the ImageNet under the constraint of ℓ2
norm to explore the targeted attacks, which specifies all 1,000 categories from
ImageNet for seeking extreme speed and storage. However, MAN does not fully
compare multi-target black-box performance with previous instance-specific or
instance-agnostic attacks, and the authors also claim that too many categories
make it hard to transfer to another model. Recent approaches [57, 36] reveal bet-
ter single-target transferability by learning universal perturbation or function,
whereas they require to train multiple times while specifying multiple targets.
As a comparison, our method can generate adversarial samples for specifying
multiple targets, meanwhile generated strong semantic patterns can outperform
existing attacks by a significant margin.

3 Method

In this section, we introduce a conditional generative model to learn a universal
adversarial function, which can achieve effective multi-target black-box attacks.
While handing plenty of classes, we design a hierarchical partition mechanism to



Targeted Adversarial Examples via Hierarchical Generative Networks 5

make the generative model capable of specifying any target class under a feasible
number of models, regarding both the effectiveness and scalability.

3.1 Problem Formulation

We use xs to denote an input image belonging to an unlabeled training set
Xs ⊂ Rd, and use c ∈ C to denote a specific target class. Let Fϕ : Xs → RK

denote a classification network that outputs a class probability vector with K
classes. To craft a targeted adversarial example x∗

s from a real example xs, the
targeted attack aims to fool the classifier Fϕ by outputting a specific label c as
argmaxi∈C Fϕ(x

∗
s)i = c, meanwhile the ℓ∞ norm of the adversarial perturbation

is required to be no more than a threshold ϵ as ∥x∗
s − xs∥∞ ≤ ϵ.

Although some generative methods [38, 35] can learn targeted adversarial
perturbation, they do not take into account the effectiveness of multi-target
generation, thus leading to inconvenience. To make the generative model learn
how to specify multiple targets, we propose a conditional generative network Gθ
that effectively crafts multi-target adversarial perturbations by modeling class-
conditional distribution. Different from previous single-target methods [35, 38],
the target label c is regarded as a discrete variable rather than a constant.
As illustrated in Fig. 1(b), our model contains a conditional generator Gθ and a
classification network Fϕ parameterized by θ and ϕ, respectively. The conditional
generative model Gθ : (Xs, C)→ P learns a perturbation δ = Gθ(xs, c) ∈ P ⊂ Rd

on the training data. The output δ of Gθ is projected within the fixed ℓ∞ norm,
thus generating the perturbed image x∗

s = xs + δ.
Given a pretrained network Fϕ parameterized by ϕ, we propose to generate

the targeted adversarial perturbations by solving

min
θ

E(xs∼Xs,c∼C)[CE
(
Fϕ(Gθ(xs, c) + xs

)
, c)], s.t. ∥Gθ(xs, c)∥∞ ≤ ϵ, (1)

where CE is the cross-entropy loss. By solving problem (1), we can obtain a
targeted conditional generator by minimizing the loss of specific target class
in the unlabeled training dataset. Note that we only optimize the parameter θ
of the generator Gθ using the training data Xs, then the targeted adversarial
example x∗

t can be crafted by x∗
t = xt + Gθ(xt, c) for any given image xt in the

test data Xt, which only requires an inference for this targeted image xt.
We experimentally find that the objective (1) can enforce the transferability

for the generated perturbation δ. A reasonable explanation is that δ can arise
as a result of strong and well-generalizing semantic pattern inherent to the
target class, which is robust to the influence of any training data. In Sec. 4.5, we
illustrate and corroborate our claim by directly feeding scaled adversarial per-
turbations1 from different methods into the classifier. Indeed, we find that our
semantic pattern can be classified as the target class with a high degree of con-
fidence while the perturbation from MIM [8] performs like the noise, meanwhile
the scaled semantic pattern performs well transferability in different black-box
models.
1 The perturbation is linearly scaled from [-ϵ, ϵ] to [0, 255].
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3.2 Network Architecture

We now present the details of the conditional generative model for targeted at-
tack, as illustrated in Fig. 1(b). Specifically, we design a mapping network to
generate a target-specific vector in the implicit space of each target and train
conditional generator Gθ to reflect this vector by constantly misleading the clas-
sifier Fϕ.

Mapping network. Given the one-hot class encoding 1c ∈ RK from target
class c, the mapping network aims to generate the targeted latent vector w =
W(1c), where w ∈ RM and W(·) consists of a multi-layer perceptron (MLP)
and a normalization layer, which can construct diverse targeted vectors w for
a given target class c. Thus W is capable of learning effective targeted latent
vectors by randomly sampling different classes c ∈ C in training phase.

Generator. Given an input image xs, the encoder first calculates the feature
map F ∈ RN×H×W , where N , H and W refer to the number of channels,
height and width of the feature map, respectively. The target latent vector w,
derived from the mapping network W by introducing a specific target class c,
is expanded along height and width directions to obtain the label feature map
ws ∈ RM×H×W . Then the above two feature maps are concatenated along the
channels to obtain F ′ ∈ R(N+M)×H×W . The obtained mixed feature map is then
fed to the subsequent network. Therefore, our generator Gθ translates an input
image xs and latent target vector w into an output image Gθ(xs,w), which
enables Gθ to synthesize adversarial images of a series of targets. For the output
of feature map f ∈ Rd in the decoder, we adopt a smooth projection P (·) to
perform a change of variables over f rather than directly minimizing its ℓ2 norm
as [14] or clipping values outside the fixed norm [35], which can be denoted as

δ = P (f) = ϵ · tanh(f), (2)

where ϵ is the strength of perturbation. Since −1 ≤ tanh(f) ≤ 1, δ can automat-
ically satisfy the ℓ∞-ball bound with perturbation budget ϵ. This transformation
can be regarded as a better smoothing of gradient than directly clipping values
outside the fixed norm, which is also instrumental for Gθ to probe and learn the
targeted semantic knowledge from Fϕ.

Training objectives. The training objectives seek to minimize the classifi-
cation error on the perturbed image of the generator as

θ∗ ← argmin
θ

CE
(
Fϕ

(
xs + Gθ(xs,W(1c))

)
, c
)
, (3)

which adopts an end-to-end training paradigm with the goal of generating adver-
sarial images to mislead the classifier the target label, and CE is the cross entropy
loss. Previous studies attempt different classification losses in their works [57,
35], and we found that cross-entropy loss works well in our settings. The detailed
optimization procedure is summarized in Algorithm 1.
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Algorithm 1 Training Algorithm for the Conditional Generative Attack

Require: Training Data Ds; a generative network Gθ; a classification network Fϕ; a
mapping network W.

Ensure: Adversarial perturbations θ.
1: for iter in MaxIterations T do
2: Randomly sample B images {xsi}Bi=1;
3: Randomly sample B target classes {ci}Bi=1;
4: Forward pass ci into W to compute the targeted latent vectors wi;
5: Obtain the perturbed images by x∗

si = ϵ · tanh(G(xsi ,wi)) + xsi ;
6: Forward pass x∗

si to Fϕ and compute loss in Eq. (3);
7: Backward pass and update the Gθ;
8: end for

3.3 Hierarchical Partition for Classes

While handling plenty of classes, the effectiveness of a conditional generative
model will decrease as illustrated in Fig. 4, because the representative capacity
is limited with a single generator. Therefore, we propose to divide all classes
into a feasible number of subsets to train models when the class number K is
large, e.g., 1,000 classes in ImageNet, with the aim of seeking the effectiveness
of targeted black-box attack. To obtain a good partition, we introduce a repre-
sentative target class space, which is nearly equivalent to the original class space
C. Specifically, we utilize the weights ϕcls ∈ RD×K in the classifier layer for the
classification network Fϕ. Therefore, ϕcls can be regarded as the alternative class
space since the weight vector dc ∈ RD from ϕcls can represent a class center of
the feature embeddings of input images with same class c.

Note that once those subsets with closer metric distance (e.g., larger cosine
similarity) in the target class space ϕcls are regarded as conditional inputs of
generative network, they obtain worse loss convergence and transferability than
diverse them due to mutual influence among these input conditions, as illustrated
in Fig. 5. Thus we focus on selecting target classes that do not tend to overlap or
be close to each other as accessible subsets. To capture more diverse examples in
a given sampling space, we adopt K-determinantal point processes (DPP) [24,
23] to achieve a hierarchical partition, which can take advantage of the diver-
sity property among subsets by assigning subset probabilities proportional to
determinants of a kernel matrix.

First, we compute the RBF kernel matrix L of ϕcls and eigendecomposition
of L, and a random subset V of the eigenvectors is chosen by regarding the
eigenvalues as sampling probability. Second, we select a new class ci to add to
the set and update V in a manner that de-emphaseizes items similar to the one
selected. Each successive point is selected and V is updated by Gram-Schmidt
orthogonalization, and the distribution shifts to avoid points near those already
chosen. By performing the above procedure, we can obtain a subset with k size.
Thus while handling the conditional classes with K, we can hierarchically adopt
this algorithm to get the final K/k subsets, which are regarded as conditional
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variables of generative models to craft adversarial examples. The details are
presented in Appendix A.

4 Experiments

In this section, we present extensive experiments to demonstrate the effectiveness
of proposed method for targeted black-box attacks2.

4.1 Experimental Settings

Datasets. We consider the following datasets for training, including a widely
used object detection dataset MS-COCO [30] and ImageNet training set [5].
We focus on standard and comprehensive testing settings, thus the inference is
performed on ImageNet validation set (50k samples), a subset (5k) of ImageNet
proposed by [28] and ImageNet-NeurIPS (1k) proposed by [37].

Networks. We consider some naturally trained networks, i.e., Inception-v3
(Inv3) [46], Inception-v4 (Inv4) [44], Resnet-v2-152 (R152) [15] and Inception-
Resnet-v2 (IR-v2) [44], which are widely used for evaluating transferability. Be-
sides, we supplement DenseNet-201 (DN) [17], GoogleNet (GN) [45] and VGG-16
(VGG) [42] to fully evaluate the transferability. Some adversarially trained net-
works [48] are also selected to evaluate the performance, i.e., ens3-adv-Inception-
v3 (Inv3ens3), ens4-adv-Inception-v3 (Inv3ens4) and ens-adv-Inception-ResNet-v2
(IR-v2ens).

Implementation details. As for instance-specific attacks, we compare our
method with several attacks, including MIM [8], DIM [51], TI [9], SI [29] and the
state-of-the-art targeted attack named Logit [58]. All instance-specific attacks
adopt optimal hyperparameters provided in their original work. Specifically, the
attack iterations M of MIM, DIM and Logit are set as 10, 20, 300, respectively.
And ∥W∥1 = 5 is used for TI [9] as suggested by [11, 58]. We choose the same
ResNet autoencoder architecture in [22, 35] as the basic generator networks,
which consists of downsampling, residual and upsampling layers. We initialize
the learning rate as 2e-5 and set the mini-batch size as 32. Smoothing mech-
anism is proposed to improve the transferability against adversarially trained
models [9]. Instead of adopting smoothing for generated perturbation while the
training is completed as CD-AP [35], we introduce adaptive Gaussian smoothing
kernel to compute δ from Eq. (2) in the training phase, named adaptive Gaus-
sian smoothing, with the focus of making generated results obtain adaptive
ability. More implementation details and discussion with other networks (e.g.,
BigGAN [2]) are illustrated in Appendix B.

4.2 Transferability Evaluation

We consider 8 different target classes from [57] to form the multi-target black-box
attack testing protocol with 8k times in 1k ImageNet NeurIPS set.

2 Code at https://github.com/ShawnXYang/C-GSP.
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Table 1: Transferability comparison for multi-target attacks on ImageNet NeurIPS
validation set (1k images) with the perturbation budget of ℓ∞ ≤ 16. The results are
averaged on 8 different target classes. Note that CD-AP† indicates that training 8
models can obtain results, while our method only train one conditional generative
model. * indicates white-box attacks.

Method
Time
(ms)

Model
Number

Naturally Trained Adversarially Trained
Inv3 Inv4 IR-v2 R152 DN GN VGG-16 Inv3ens3 Inv3ens4 IR-v2ens

In
v
3

MIM ∼130 - 99.9∗ 0.8 1.0 0.4 0.2 0.2 0.3 <0.1 0.1 < 0.1
TI-MIM ∼130 - 99.9∗ 0.9 1.1 0.4 0.4 0.3 0.5 0.1 0.2 0.1
SI-MIM ∼130 - 99.8∗ 1.5 2.0 0.8 0.7 0.7 0.5 0.3 0.3 0.1
DIM ∼260 - 95.6∗ 4.0 4.8 1.3 1.9 0.8 1.3 0.1 0.2 0.1

TI-DIM ∼260 - 96.0∗ 4.4 5.1 1.4 2.4 1.1 1.8 0.3 0.4 0.2
SI-DIM ∼260 - 98.4∗ 5.6 5.9 2.8 3.0 2.3 1.6 0.9 0.9 0.3
Logit ∼3900 - 99.6∗ 5.6 6.5 1.7 3.0 0.8 1.5 0.2 0.3 0.1

CD-AP† ∼15 8 94.2∗ 57.6 60.1 37.1 41.6 32.3 41.7 1.5 2.2 1.2

CD-AP-gs† ∼15 8 69.7∗ 31.3 30.8 18.6 20.1 14.8 20.2 5.0 5.8 4.5
Ours ∼15 1 93.4∗ 66.9 66.6 41.6 46.4 40.0 45.0 39.7 37.2 32.2

R
1
5
2

MIM ∼185 - 0.5 0.4 0.6 99.7∗ 0.3 0.3 0.2 0.1 0.1 < 0.1
TI-MIM ∼185 - 0.3 0.3 1.0 96.5∗ 0.5 0.3 0.3 0.3 0.2 0.3
SI-MIM ∼185 - 1.3 1.2 1.6 99.5∗ 1.0 1.4 0.7 0.3 0.4 0.2
DIM ∼370 - 2.8 3.1 5.0 93.6∗ 3.5 1.7 1.3 0.4 0.4 0.3

TI-DIM ∼370 - 4.3 4.1 5.8 92.9∗ 4.3 2.1 1.4 0.8 0.7 0.4
SI-DIM ∼370 - 7.2 8.4 10.4 97.4∗ 7.6 6.4 2.6 0.8 0.7 1.3
Logit ∼5550 - 10.1 10.7 12.8 95.7∗ 12.4 3.7 3.5 1.1 0.9 0.4

CD-AP† ∼10 8 33.3 43.7 42.7 96.6∗ 53.8 36.6 34.1 15.7 15.2 12.0

CD-AP-gs† ∼10 8 7.8 11.3 10.0 53.6∗ 20.4 8.7 12.5 4.9 6.4 6.2
Ours ∼10 1 37.7 47.6 45.1 93.2∗ 64.2 41.7 45.9 31.6 32.0 29.9

Efficiency of multi-target black-box attack. Among comparable meth-
ods, instance-specific methods, i.e., MIM, DIM, and Logit, require iterative
mechanism with M steps by computing gradients to obtain adversarial exam-
ples. Given the cost tFP

C and tBP
C of forward and backward passing the classifier,

computing cost T IS of single data can be defined as T IS = tFP
C ∗M + tBP

C ∗M
in Table 1. Instance-agnostic methods only require the inference cost from the
trained generator as T IA = tFP

G , thus possessing the priority for those attack
scenarios within limited time. However, instance-agnostic methods require to
train 8 models to obtain all predictions from 8 different classes. Due to time-
consuming training and more storage, we only reproduce an excellent generative
method CD-AP [35] as a baseline, which already fully demonstrate the superior
performance than other generative methods such as GAP [38] in their work.
As a comparison, our conditional generative method only trains one model to
inference the results and outperforms other methods w.r.t efficiency.

Effectiveness of multi-target black-box attack. Table 1 shows the trans-
ferability comparison of different methods on both naturally and adversarially
trained models. The success rate of instance-specific attacks are very unsatis-
factory, possibly explained by the data-point overfitting that makes it hard to
transfer another model. The instance-agnostic attack CD-AP obtains acceptable
performance, yet inferior to proposed method w.r.t black-box transferability. The
primary reason for such a trend lies in some distinctions as 1) direct clip pro-
jection in CD-AP and our smooth projection in Eq. (2) and 2) their Gaussian
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Fig. 2: Comparison of different projection functions and modes of Gaussian Smoothing.
Results are reported with Inv3 network on ImageNet NeurIPS validation set.

Table 2: The untargeted fooling ratio (UT-FR) and targeted fooling ratio (T-FR) for
adversarial attacks on ImageNet validation set (50k images) with the perturbation
budget of ℓ∞ ≤ 10. The attack is performed in same setting [57] with the target class
‘sea lion’ and the training dataset MS-COCO. * indicates white-box attacks.

Method
VGG-16 VGG-19 R152

UT-FR T-FR UT-FR T-FR UT-FR T-FR

VGG-16
UAE [57]

Ours
93.62∗

95.30∗
82.90∗

83.54∗
82.99
90.13

13.69
38.59

36.03
35.15

0.01
0.14

VGG-19
UAE [57]

Ours
83.40
88.20

44.53
48.96

92.53∗

92.69∗
75.61∗

73.96∗
35.36
35.96

0.01
0.14

R152
UAE [57]

Ours
55.05
83.90

1.63
29.81

55.12
83.24

1.05
24.81

82.58∗

91.14∗
70.20∗

80.47∗

Smoothing and our adaptive Gaussian Smoothing, as described in Sec. 4.1 and
Appendix B. Fig. 2 empirically shows the comparison results of single-target
black-box attacks based on the CD-AP framework. Thus proposed conditional
generative method can be a reliable baseline w.r.t targeted black-box attacks,
regarding both effectiveness and efficiency.

Results of single-target black-box attack. Recent related works, e.g.,
UAE [57] and TTP [36] report excellent single-target black-box performances
based on universal perturbations or functions. We obtain single-target degraded
version of our model by specifying an input target label during the training
process. The performance of black-box targeted attack between different meth-
ods is presented in Table 2. Besides, we also make some analyses about TTP
and present compared results in Appendix C. Furthermore, some other instance-
agnostic adversarial methods, e.g., UAP [33], GAP [38] and RHP [28], have ten-
dency towards the untargeted black-box problem. Despite this, we also follow
the corresponding untargeted setting and compare these methods in Appendix
C. Our method is steadily improved under black-box targeted and untargeted
black-box manner.
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Table 3: Transferability comparison with the perturbation budget of ℓ∞ ≤ 16. White-
box substitute model is Inv3 for all attacks, following the standard protocol [9] with
1,000 stochastic target classes.

Targeted Black-box Attack in NeurIPS 2017 Competition (1,000 target classes)

Method Inv4 IRv2 R152 DN GN VGG-16

MIM 0.1 <0.1 <0.1 0.3 0.1 <0.1
TI-MIM 0.3 0.3 <0.1 0.4 <0.1 0.1
SI-MIM 0.6 0.6 0.1 0.4 0.3 0.1
DIM 2.9 2.5 0.6 1.2 0.2 0.6
TI-DIM 2.9 2.5 0.5 1.7 0.3 1.0
SI-DIM 4.3 4.1 1.7 1.9 1.8 1.1
Logit 4.7 2.4 1.2 2.4 0.4 0.8
Ours 35.9 37.4 25.0 26.8 22.9 26.6

Table 4: The success rate of black-box impersonation attacks on face verification with
the perturbation budget of ℓ∞ ≤ 16. ArcFace is chosen as white-box model.

Black-box Impersonation Attack in Face Recognition

Protocol Method FaceNet CosFace SphereFace MobileFace

I
MIM
DIM
Ours

34.4
38.8
65.2

16.6
21.2
56.2

22.4
27.4
52.2

35.0
44.3
83.5

II
MIM
DIM
Ours

31.3
36.1
66.8

13.6
16.4
49.1

21.1
24.4
47.9

22.3
31.9
67.8

4.3 Effectiveness on NeurIPS 2017 Competition

To illustrate the effectiveness of our proposed attack methods in practical 1,000
classification, we here follow the official setting from NeurIPS 2017 adversar-
ial competition [26] for testing targeted black-box transferability. Considering
limited resource, previous instance-agnostic attacks are not required as compa-
rable methods due to training 1,000 models, thus we focus on various excellent
instance-specific attacks for comparison, including official top attack methods in
NeurIPS 2017 adversarial competition. Compared with other instance-agnostic
attacks, our hierarchical partition mechanism can make conditional generative
networks be capable of specifying any target class via a feasible number of mod-
els for the scalability. Specifically, we consider 20 models, with each specifying 50
diverse classes from k-DPP hierarchical partition in this setting, to implement
targeted attack by only once inference for each target image. As shown in Ta-
ble 3, our method can obviously outperform all other methods. In addition, these
trained generative models can directly be applied to craft adversarial examples,
which is more convenient and efficient when required to handle large-scale (e.g.,
millions of images) datasets than instance-specific attacks.
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Fig. 3: Generative examples of adversarial images with perturbation budget of ℓ∞ ≤ 16.
We separately adopt the ImageNet and MS-COCO dataset as the training dataset to
implement the generation of targeted perturbations. Our method can generate semantic
pattern independent of training dataset.
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4.4 Effectiveness on Realistic Face Recognition

Adversarial perturbations added to original face images have ability to evade
being recognized or impersonate another individual [41, 56]. In this section, we
consider the transferability of impersonation attack to further illustrate the gen-
eralization of our method, which is also corresponding to targeted attack in the
image classification task.

Dataset and models. We conduct the experiments on Labeled Faces in
the Wild (LFW) [18] and introduce two test protocols. For Protocol I defined
as single-target impersonation attack, we choose 1 target identity and 1k source
face images belonging with different identities from LFW as the attackers, thus
forming 1k pairs. For Protocol II named multi-target impersonation attack, 5
target identities and 1k source face images are selected to form 1k attack pairs,
meaning that we need to implement 5k attacks. We involve some excellent face
recognition models for conducting black-box testing, including Sphereface [31],
CosFace [49], FaceNet [40] and MobileFace [3]. These models lie in different
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Fig. 6: We show the adversarial examples and
extracted perturbation scaled in image-pixel
space in the second column and the third col-
umn. The predictive confidence is presented
by directly feeding extracted perturbation
into the classifier in the last column.
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model architectures and training objectives. In all experiments, we only use one
model ArcFace [6] as substitute model to craft adversarial samples, and test
attack performance against other unknown models.

Evaluation metrics. We first compute the optimal threshold of every face
recognition models from LFW dataset by following standard protocols. If the
similarity of a pair of images exceeds the threshold, we regard them as same
identity, otherwise different identities.

Black-box attack results. We adjust the optimization object function to
adapt face recognition for chosen attack methods (detailed in Appendix C), and
report the success rate of black-box impersonation attacks in Table 4, which
illustrates that our method can achieve nearly two times of the success rates
than DIM in Protocol I and Protocol II. The results indicate that our method is
superior to other methods not only in image classification.

4.5 Comparison Study about Target Classes

We conduct an extensive study to investigate two key points about target classes.

Different numbers of target classes. We conduct effectiveness for differ-
ent numbers of target classes in Fig. 4. It can be seen that the results perform
well within a feasible number of targets, whereas to a certain extent effectiveness
tend to decay. Therefore, the effectiveness of conditional generative networks is
influenced by the number of conditional classes, due to the representative capac-
ity of single generator. We aim to divide all classes into a feasible number of set
while handling plenty of classes.

Comparison of different multi-target conditions. We select closer con-
ditional classes with larger cosine similarity in the target class space ϕcls and
diverse conditional classes from k-DPP method. In Fig. 5, closer conditional
classes have worse loss convergence and transferability than diverse them due to
mutual influence among conditions.
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4.6 More Analyses

Targeted adversarial samples from proposed generative method can produce se-
mantic pattern inherent to the target class in Fig. 3. Why does generative se-
mantic pattern work?

First, generative methods can produce strong targeted semantic pattern that is
robust to the influence of data, which is obtained by minimizing the loss of spe-
cific target class in the training phase. To corroborate our claim, we directly feed
scaled crafted perturbations by instance-specific attack MIM and our generative
method into the classifier. Indeed, we find that our generative perturbation is
considered as target class with a high degree of confidence whereas the perturba-
tion from MIM performs like the noise, as shown in Fig. 6. Furthermore, we plot
the logit relationship by computing PCC (Pearson correlation coefficient) values
from scaled crafted perturbation and adversarial image in Fig. 7. The numerical
performance is also consistent with our mentioned claim.

Second, the generated adversarial semantic pattern achieves well-generalizing
performance among the different models. We feed 1k images from ImageNet test
set into the generator trained by Inv3 model to obtain 1k semantic patterns,
which are scaled to image pixel space and then fed into different classifiers. We
compute the mean confidence of 0.46 for DN, 0.44 for Inv4, and 0.35 for R152,
whereas the perturbation from MIM is lower than 0.01. The results show that
our scaled semantic pattern can directly achieve well-generalizing performance
among models, possibly explained by utilizing similar feature knowledge from
the same class on different classifiers trained on same training data distribution.
Thus similar pattern can be instrumental for transferability among models.

5 Discussion and Conclusion

Transferability of targeted black-box attack is simultaneously affected by data
and model. Therefore, instance-specific methods easily overfit the data point
and white-box model, resulting in weak transferability. As a comparison, the
proposed generative method with powerful learning capacity reduces the depen-
dency for data point by adopting the unlabeled training data, thus enabling
the model to learn semantic pattern and improve the transferability of targeted
black-box attack. Extensive experiments demonstrate that proposed generative
method can significantly improve the success rates of targeted black-box attacks
against various models, meanwhile achieving faster speedup beyond an order
of magnitude than gradient-based methods. Therefore, this method can be re-
garded as a new baseline method in terms of targeted black-box attacks, which
provides a novel framework to explore the vulnerabilities of DNNs.
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