
Adaptive Image Transformations for Transfer-based Adversarial Attack 19

Appendix

A Details of the Settings in the Experiment

A.1 Models

In order to avoid overfitting of the AITL model and ensure the fairness of the
experimental comparison, we use completely different models to conduct exper-
iments during the training and evaluation of the AITL model.

During the process of training AITL, we utilize totally eleven models to pro-
vide the attack success rate corresponding to the input transformation, includ-
ing ten normally trained models (i.e., ResNet-50 [23], Xception [8], DenseNet-
201 [26], VGG-19 [49], MobileNetv2-1.0 [47], MobileNetv2-1.4 [47], ResNeXt-
101 [72], SENet-101 [25], EfficientNetB4 [54] and EfficientNetv2S [55]) and one
adversarially trained model (i.e., AdvInceptionv3 [58]). All models are publicly
available6,7. In the process of training Adaptive Image Transformation Learner,
we utilize the MobileNetv2-1.0 as the source white-box model (as the grey model
in Fig. 2) to generate the adversarial examples, and regard the other models as
the target black-box models (as the other colorful models in Fig. 2) to evaluate
the corresponding attack success rates, i.e., qasr.

During the process of evaluation, we use seven normally trained models
(i.e., Inceptionv3 (Incv3) [52], Inceptionv4 (Incv4) [51], Inception-ResNetv2 (In-
cResv2) [51], ResNetv2-101 (Resv2-101) [24], ResNetv2-152 (Resv2-152) [24],
PNASNet [37] and NASNet [78]), three adversarially trained models (i.e.,
Ens3Inceptionv3 (Ens3-Incv3), Ens4Inceptionv3 (Ens4-Incv3) and EnsIncep-
tionResNetv2 (Ens-IncResv2) [58]). All models are publicly available8, 7. In
addition, another eight stronger defense models are also used to evaluate the
generated adversarial examples, including HGD [35], R&P [70], NIPS-r39, Bit-
Red [73], JPEG [21], FD [39], ComDefend [29] and RS [28].

A.2 Baselines

We utilize several input-transformation-based black-box attack methods (e.g.,
DIM [71], TIM [16], SIM [36], CIM [74], Admix [62]) to compare with our
method. By default, we incorporate these methods into MIFGSM [15], i.e., us-
ing the formula of Eq. (5). Besides, we also combine these input-transformation-
based methods together to form the strongest baseline, called Admix-DI-SI-CI-
MIFGSM (ADSCM). We also compare our AITL with recently proposed Au-
toMA [75].

In addition, we use a random selection method instead of the AITL model
to choose the combination of image transformations used in the attack, which

6 https://keras.io/api/applications
7 https://github.com/wowowoxuan/adv_imagenet_models
8 https://github.com/tensorflow/models/tree/master/research/slim
9 https://github.com/anlthms/nips-2017/tree/master/mmd

https://keras.io/api/applications
https://github.com/wowowoxuan/adv_imagenet_models
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/anlthms/nips-2017/tree/master/mmd


20 Z. Yuan et al.

is denoted as Random method. From the experiments in Sec. 4.3, we know that
the geometry-based image transformations are more effective than most color-
based image transformations (except Scale) to improve the transferability of
adversarial examples. So we exclude these color-based image transformations
(except Scale) from the transformation candidates, and finally choose 12 trans-
formations in Random method, including Admix, Scale, Admix-and-Scale, Crop,
Resize, Rotate, ShearX, ShearY, TranslateX, TranslateY, Reshape, Cutout.

For the hyperparameters used in baselines, the decay factor µ in
MIFGSM [15] is set to 1.0. The transformation probability p in DIM [71] is
set to 0.7. The kernel size k in TIM [16] is set to 7. For a fair comparison of dif-
ferent methods, we control the number of repetitions per iteration in all methods
to 5, i.e., the number of scale copies m in SIM [36] is set to 5, m1 and m2 in
Admix [62] are set to 1 and 5, respectively, m in AutoMA [75] is set to 5, and
N in our AITL is also set to 5.

A.3 Image Transformation Operations

Inspired by [11,12] and considering the characteristic in the task of adversar-
ial attack, we totally select 20 image transformation operations as candidates,
including Admix, Scale, Admix-and-Scale, Brightness, Color, Contrast,
Sharpness, Invert, Hue, Saturation, Gamma, Crop, Resize, Rotate, ShearX,
ShearY, TranslateX, TranslateY, Reshape, Cutout. In this section, we intro-
duce each transformation operation in detail, and give the range of magnitude
towards each operation.

Geometry-based Operations. Many image transformation operations are
based on affine transformation. Assuming that the position of a certain pixel in
the image is (x, y), the operation of affine transformation can be formulated as:x′

y′

1

 =

a11 a12 a13
a21 a22 a23
0 0 1


︸ ︷︷ ︸

A

x
y
1

 , (26)

where A is the affine matrix, and (x′, y′) is the position of the pixel after trans-
formation.

– Rotation. The affine matrix in the Rotation operation is:cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 , (27)

where θ is the angle of rotation. In implementation, we set θ ∈ [−30◦, 30◦].



Adaptive Image Transformations for Transfer-based Adversarial Attack 21

– ShearX. The operation of ShearX is used to shear the image along x-axis,
whose affine matrix is: 1 a 0

0 1 0
0 0 1

 , (28)

where a is used to control the magnitude of shearing. In implementation, we
set a ∈ [−0.5, 0.5].

– ShearY. The operation of ShearY is used to shear the image along y-axis,
whose affine matrix is: 1 0 0

a 1 0
0 0 1

 , (29)

where a is used to control the magnitude of shearing. In implementation, we
set a ∈ [−0.5, 0.5].

– TranslateX. The operation of TranslateX is used to translate the image
along x-axis, whose affine matrix is:1 0 a

0 1 0
0 0 1

 , (30)

where a is used to control the magnitude of translating. In implementation,
we set a ∈ [−0.4, 0.4].

– TranslateY. The operation of TranslateY is used to translate the image
along y-axis, whose affine matrix is:1 0 0

0 1 a
0 0 1

 , (31)

where a is used to control the magnitude of translating. In implementation,
we set a ∈ [−0.4, 0.4].

– Reshape. We use the operation of Reshape to represent any affine trans-
formation, which has a complete 6 degrees of freedom. In implementation,
we set a11, a22 ∈ [0.5, 1.5] and a12, a13, a21, a23 ∈ [−0.5, 0.5].

– Resizing. For the operation of Resizing, the original image with the size of
299× 299× 3 is first randomly resized to h×w× 3, where h,w ∈ [299, 330],
and then zero padded to the size of 330×330×3. Finally, the image is resized
back to the size of 299× 299× 3.

– Crop. The operation of Crop randomly crops a region of h×w×3 size from
the original image, where h,w ∈ [279, 299], and then resizes the cropped
region to the size of 299× 299× 3.

Color-based Operations.

– Brightness. The operation of Brightness is used to randomly adjust the
brightness of the image with a parameter α ∈ [0.5, 1.5] to control the mag-
nitude. α = 0 refers to a black image and α = 1 refers to the original image.



22 Z. Yuan et al.

– Color. The operation of Color is used to randomly adjust the color balance
of the image with a parameter α ∈ [0.5, 1.5] to control the magnitude. α = 0
refers to a black-and-white image and α = 1 refers to the original image.

– Contrast. The operation of Contrast is used to randomly adjust the con-
trast of the image with a parameter α ∈ [0.5, 1.5] to control the magnitude.
α = 0 refers to a gray image and α = 1 refers to the original image.

– Sharpness. The operation of Sharpness is used to randomly adjust the
sharpness of the image with a parameter α ∈ [0.5, 1.5] to control the mag-
nitude. α = 0 refers to a blurred image and α = 1 refers to the original
image.

– Hue. The operation of Hue is used to randomly adjust the hue of the image
with a parameter α ∈ [−0.2, 0.2] to control the magnitude. The image is
first converted from RGB color space to HSV color space. After adjusting
the image in the H channel, the processed image is then converted back to
RGB color space.

– Saturation. The operation of Saturation is used to randomly adjust the
saturation of the image with a parameter α ∈ [0.5, 1.5] to control the mag-
nitude. The image is first converted from RGB color space to HSV color
space. After adjusting the image in the S channel, the processed image is
then converted back to RGB color space.

– Gamma. The operation of Gamma performs the gamma transformation on
the image with a parameter α ∈ [0.6, 1.4] to control the magnitude.

– Invert. The operation of Invert inverts the pixels of the image, e.g.changing
the value of pixel from 0 to 255 and changing the value of pixel from 255 to
0.

– Scale. The operation of Scale is borrowed from SIM [36], which scales the
original image x with a parameter m ∈ [0, 4]:

x̃ =
x

2m
. (32)

Other Operations.

– Admix. The operation of Admix is borrowed from Admix [62], which in-
terpolates the original image x with another randomly selected image x′ as
follows:

x̃ = x+ η · x′, (33)

where η = 0.2 is used to control the magnitude of transformation.

– Admix-and-Scale. Since the operation of Admix changes the range of pixel
values in the image, the processed image is likely to exceed the range of
[0, 255]. So we combine the operation of Admix and Scale as a new operation
of Admix-and-Scale.

– Cutout. The operation of Cutout cuts a piece of 60 × 60 region from the
original image and pads with zero.



Adaptive Image Transformations for Transfer-based Adversarial Attack 23

Embedding

Reshape

Linear, ReLU, BNinput image

Feature Extractor

bs x 299 x 299 x 3

Linear, ReLU
bs x 1024

bs x 128

one-hot image 
transformation codes

bs x M x 20

bs x M x 128

bs x (Mx128)

Linear, ReLU, BN
bs x 128

Linear, ReLU, BN
bs x 128

bs x 128

Concat
bs x 256

Linear, ReLU, BN

Linear, ReLU, BN
bs x 128

Linear, ReLU, BN
bs x 128

Linear
bs x 128

bs x (Mx20)

Reshape
bs x M x 20

reconstructed one-hot 
image transformation codes

Linear, ReLU

Linear, ReLU
bs x 128

Linear, ReLU
bs x 128

bs x 128

Linear, ReLU

Linear, ReLU
bs x 128

Linear
bs x 128

bs x 1
predicted attack 

success rate

Transformation
Encoder

Transformation
Decoder

Attack Success 
Rate (ASR)

Predictor

Fig. 5: The specific structure of the Adaptive Image Transformation Learner.
The feature extractor utilizes the pre-trained MobileNetv2-1.0 [47] as initial-
ization and is further finetuned together with the whole structure. The image
features are extracted from the Global Pool layer. The bs represents the batch
size and M represents the number of image transformation operations in each
combination

A.4 The detailed structure of AITL

The specific structure of the AITL network is shown in Fig. 5. The feature
extractor utilizes the pre-trained MobileNetv2-1.0 [47] as initialization and is
further finetuned together with the whole structure. The image features are
extracted from the Global Pool layer. The bs represents the batch size and M
represents the number of image transformation operations in each combination.

B Discussion

The works most relevant to ours are AutoMA [75] and ATTA [68]. In this section,
we give a brief discussion on the differences between our work and theirs.



24 Z. Yuan et al.

B.1 Comparison with AutoMA.

Both AutoMA [75] and our AITL utilize a trained model to select the suitable
image transformation for each image to improve the transferability of generated
adversarial examples. The differences between the two works lie in the following
aspects: 1) AutoMA adopts a reinforcement learning framework to search for
a strong augmentation policy. Since the reward function is non-differentiable,
Proximal Policy Optimization algorithm [48] as a trade-off solution, is utilized
to update the model. Differently, we design an end-to-end differentiable model,
which makes the optimization process easier to converge, leading to better im-
age transformation combinations for various images. 2) AutoMA only takes the
single image transformation as augmentation, while we further consider serial-
ized combinations of different image transformations, so that more diverse image
transformation choices can be taken during the generation of adversarial exam-
ples. 3) More kinds of image transformations are considered in the candidate set
in our method (20 in our AITL vs. 10 in AutoMA). Extensive experiments in
Sec. 4.2 show that our method significantly outperforms AutoMA, which demon-
strates the superiority of our AITL.

B.2 Comparison with ATTA.

Both ATTA [68] and our AITL use transformed images to generate the adver-
sarial examples, but there are also significant differences between the two. ATTA
directly models the image transformation process through a pixel-to-pixel net-
work to generate the transformed image. Since the solution space is quite large
(H∗W ∗C), it may be difficult to approach the optimal solution. On the contrary,
our AITL turns to seek the optimal combinations of various existing transfor-
mations. The solution space of our method is reduced sharply to the number
of image transformation operations (∼20), so the optimization difficulty is well
controlled and thus more tractable. The detailed experimental comparison and
analysis between ATTA and our AITL are provided in Appendix C.7.

C Additional Experiments

C.1 Ablation Study

In this section, we analyze of effects of the number N of repetitions of the image
transformation combination used in each attack step and the numberM of image
transformation operations in each combination.

The effect of the number N . In order to alleviate the impact of the instability
caused by the randomness in image transformation on the generated adversarial
examples, many existing methods [36,62,74] repeat the image transformation
many times in parallel during each step of the attack. We change the number N
of repetitions of the image transformation combination used in each attack step,



Adaptive Image Transformations for Transfer-based Adversarial Attack 25

Table 4: The attack success rates under different number of repetitions of the
image transformation combination during each attack step, i.e., N in Fig. 1. The
adversarial examples are crafted on Incv3. ∗ indicates the white-box model

(a) The evaluation against 7 normally trained models

Incv3∗ Incv4 IncResv2 Resv2-101 Resv2-152 PNASNet NASNet

AITL (N=5) 99.8 95.8 94.1 88.8 90.1 94.1 94.0
AITL (N=10) 100 98.0 97.1 92.5 93.1 96.2 96.9
AITL (N=15) 99.9 98.5 98.2 94.3 94.4 97.1 97.0

(b) The evaluation against 11 defense models

Incv3ens3 Incv3ens4 IncResv2ens HGD R&P NIPS-r3 Bit-Red JPEG FD ComDefend RS

AITL (N=5) 69.9 65.8 43.4 50.4 46.9 59.9 51.6 87.1 73.0 83.2 39.5
AITL (N=10) 75.7 73.5 50.7 60.5 55.8 69.5 57.7 93.8 78.2 88.5 46.6
AITL (N=15) 80.4 78.0 54.8 66.1 58.6 72.0 60.8 95.0 80.8 91.0 47.3

ranging from 5 to 15. As shown in Tab. 4, more repetitions mean higher attack
success rates, but it also brings about a higher computation cost. By increasing
N from 5 to 10, the improvements of attack success rates on both normally
trained models and defense models are significant. When further increasing N
to 15, the improvement is slightly smaller, especially on the normally trained
models. For a fair comparison of different methods, we control the number of
repetitions per iteration in all methods to 5, i.e., m = 5 in SIM [36], m2 = 5 in
Admix [62], m = 5 in AutoMA [75] and N = 5 in our AITL.

Table 5: The attack success rates under different number of image transformation
operations in each combination, i.e., M in Fig. 2 and Fig. 3. The adversarial
examples are crafted on Incv3. ∗ indicates the white-box model

(a) The evaluation against 7 normally trained models

Incv3∗ Incv4 IncResv2 Resv2-101 Resv2-152 PNASNet NASNet

AITL (M=2) 99.3 93.6 91.5 87.2 87.4 91.8 91.9
AITL (M=3) 99.2 94.5 92.6 88.1 88.7 93.0 93.0
AITL (M=4) 99.8 95.8 94.1 88.8 90.1 94.1 94.0

(b) The evaluation against 11 defense models

Incv3ens3 Incv3ens4 IncResv2ens HGD R&P NIPS-r3 Bit-Red JPEG FD ComDefend RS

AITL (M=2) 64.6 58.6 36.0 42.5 38.9 52.1 41.7 84.9 65.0 74.9 32.0
AITL (M=3) 67.8 63.8 38.9 48.2 43.4 56.6 45.7 86.0 67.4 80.6 36.8
AITL (M=4) 69.9 65.8 43.4 50.4 46.9 59.9 51.6 87.1 73.0 83.2 39.5



26 Z. Yuan et al.

The effect of the number M . We also investigate the effect of the number M
of image transformation operations in each combination on the attack success
rates. The experimental results are shown in Tab. 5. We find that increasing
M from 2 to 3 can bring an obvious improvement in the attack success rates,
but the improvement is marginal when further increasing M to 4. Therefore,
considering the computational efficiency, we set M to 4 in other experiments
instead of further increasing M . Noting that the number of transformations
used in the strongest baseline ADSCM is also 4 (e.g., Admix, resize, crop and
scale), which is the same as ours, formulating fair experimental comparisons.

C.2 More Results of Attack on the Single Model

We conduct the adversarial attack on more models under the setting of the single
model in this section. We choose Incv4, IncResv2 and Resv2-101 as the white-box
model to conduct the attack, respectively, and evaluate the generated adversarial
examples against both normally trained models and defense models. The results
are shown in Tab. 6, Tab. 7 and Tab. 8, respectively. From the results we can
clearly conclude that, when choosing different models as the white-box model
to conduct the attack, our proposed AITL consistently achieve higher attack
success rates on various black-box models, especially on the defense models. It
also shows that the optimal combinations of image transformations selected by
the well-trained AITL specific to each image can successfully attack different
models, i.e., our AITL has a good generalization.

C.3 Attacks under Different Perturbation Budgets

We conduct the adversarial attacks under different perturbation budgets ϵ, rang-
ing from 2 to 32. All experiments utilize Inceptionv3 [52] model as the white-box
model. The curve of the attack success rates vs. different perturbation budgets
is shown in Fig. 6. From the figure, we can clearly see that our AITL has the
highest attack success rates under various perturbation budgets. Especially in
the evaluation against the defense models, our AITL has an advantage of about
10% higher attack success rates over the strongest baseline ADSCM in the case
of large perturbation budgets (e.g., 16 and 32).

C.4 Visualization

The visualization of adversarial examples crafted on Incv3 by our proposed AITL
is provided in Fig. 7.

C.5 Combined with Other Base Attack Methods

We combine our AITL with other base attack methods (e.g., MIFGSM [15],
TIM [16], NIM [36]) and compare the results with AutoMA [75]. As shown
in Tab. 9, our method achieves significantly higher attack success rates than
AutoMA [75] in all cases, both for normally trained and adversarially trained
models, which clearly demonstrates the superiority of our AITL.



Adaptive Image Transformations for Transfer-based Adversarial Attack 27

Table 6: Attack success rates (%) of adversarial attacks against 7 normally
trained models and 11 defense models under single model setting. The ad-
versarial examples are crafted on Incv4. ∗ indicates the white-box model. † The
results of AutoMA [75] are cited from their original paper

(a) The evaluation against 7 normally trained models

Incv3 Incv4∗ IncResv2 Resv2-101 Resv2-152 PNASNet NASNet

MIFGSM [15] 65.9 100 55.0 37.3 38.0 48.6 46.6
DIM [71] 84.9 99.5 79.4 57.9 56.3 68.4 67.3
SIM [36] 87.2 99.9 81.9 69.4 69.0 72.8 75.4
CIM [74] 90.8 99.9 84.3 57.1 56.7 67.1 68.0
Admix [62] 81.9 99.9 76.3 63.9 61.4 68.3 69.6
ADSCM 92.6 99.8 89.5 77.1 78.2 82.2 82.7
Random 95.4 99.9 93.0 77.7 78.0 84.4 84.9

AITL (ours) 97.0 99.8 95.3 87.8 88.9 92.4 93.7

AutoMA-TIM† [68] 86.8 98.1 78.8 71.4 - - -
AITL-TIM (ours) 94.7 99.8 92.8 89.4 89.4 91.7 92.4

(b) The evaluation against 11 defense models

Incv3ens3 Incv3ens4 IncResv2ens HGD R&P NIPS-r3 Bit-Red JPEG FD ComDefend RS

MIFGSM [15] 20.1 18.6 9.4 9.3 9.0 13.7 21.0 37.5 38.4 29.7 17.2
DIM [71] 36.1 34.1 18.9 25.9 21.6 30.7 28.1 60.8 47.8 49.0 23.8
SIM [36] 55.0 50.8 32.9 35.5 33.4 42.1 38.7 71.8 57.8 62.5 32.1
CIM [74] 37.5 33.9 19.9 29.9 21.2 30.4 29.0 62.6 46.8 47.4 23.3
Admix [62] 41.4 39.2 24.8 22.8 23.8 31.4 34.0 61.2 53.6 53.1 27.9
ADSCM 62.1 57.6 39.7 45.7 43.7 53.0 47.0 80.6 66.8 73.0 37.6
Random 56.8 50.1 33.8 40.3 37.1 48.0 40.9 81.4 59.8 71.7 32.8

AITL (ours) 75.4 73.7 55.8 66.6 59.0 71.4 56.9 89.5 76.6 85.1 46.6

AutoMA-TIM† [68] 76.0 75.5 67.4 69.6 68.0 71.0 - - 82.1 - -
AITL-TIM (ours) 82.7 79.6 72.4 79.6 71.8 79.4 62.4 88.3 83.2 87.2 57.3

2 4 8 16 32
perturbation budget

20

30

40

50

60

70

80

90

100

at
ta

ck
 su

cc
es

s r
at

e 
%

MIFGSM
DIM
TIM
SIM
CIM
Admix
ADSCM
AITL (ours)

(a) The average attack success rates
against 7 normally trained models

2 4 8 16 32
perturbation budget

10

20

30

40

50

60

70

80

at
ta

ck
 su

cc
es

s r
at

e 
%

MIFGSM
DIM
TIM
SIM
CIM
Admix
ADSCM
AITL (ours)

(b) The average attack success rates
against 11 defense models

Fig. 6: The curve of the attack success rates vs. different perturbation budgets



28 Z. Yuan et al.

Table 7: Attack success rates (%) of adversarial attacks against 7 normally
trained models and 11 defense models under single model setting. The ad-
versarial examples are crafted on IncResv2. ∗ indicates the white-box model. †

The results of AutoMA [75] are cited from their original paper

(a) The evaluation against 7 normally trained models

Incv3 Incv4 IncResv2∗ Resv2-101 Resv2-152 PNASNet NASNet

MIFGSM [15] 72.2 63.4 99.3 47.4 46.5 51.9 52.0
DIM [71] 85.3 82.7 98.5 66.8 67.2 68.0 72.3
SIM [36] 92.0 88.2 99.8 77.9 77.8 77.1 81.0
CIM [74] 90.6 88.4 99.4 69.4 68.3 70.8 73.9
Admix [62] 87.0 81.4 99.8 70.7 71.5 72.6 75.4
ADSCM 94.0 91.3 99.6 85.0 84.4 84.7 86.9
Random 94.8 91.3 99.2 84.9 84.5 86.3 87.8

AITL (ours) 95.7 94.3 99.1 89.6 89.6 92.0 92.3

AutoMA-TIM† [68] 87.2 85.6 98.3 79.7 - - -
AITL-TIM (ours) 94.3 92.1 99.0 91.6 91.3 93.3 95.2

(b) The evaluation against 11 defense models

Incv3ens3 Incv3ens4 IncResv2ens HGD R&P NIPS-r3 Bit-Red JPEG FD ComDefend RS

MIFGSM [15] 28.8 23.0 15.0 17.1 14.2 18.1 25.0 48.5 43.9 38.7 18.8
DIM [71] 49.3 43.3 30.1 39.8 32.0 42.9 33.5 69.4 54.9 60.3 26.3
SIM [36] 63.3 55.1 48.5 47.3 41.2 51.8 43.8 80.6 62.5 70.9 33.3
CIM [74] 53.8 45.4 32.5 44.6 35.0 45.4 33.5 73.5 54.6 58.3 26.1
Admix [62] 51.6 44.3 35.1 32.2 30.2 39.9 39.6 70.5 58.1 61.7 30.1
ADSCM 70.4 65.4 51.7 56.9 55.1 63.1 53.8 83.1 72.3 77.5 40.1
Random 67.5 59.5 48.6 54.1 49.6 62.5 47.6 86.6 67.4 79.8 36.0

AITL (ours) 79.9 74.6 65.4 71.5 67.5 75.8 62.3 89.8 79.8 86.1 49.4

AutoMA-TIM† [68] 84.2 82.9 82.8 79.9 81.6 83.7 - - 87.2 - -
AITL-TIM (ours) 88.6 85.0 85.4 83.4 84.2 86.2 71.7 89.4 88.4 90.4 65.4



Adaptive Image Transformations for Transfer-based Adversarial Attack 29

Table 8: Attack success rates (%) of adversarial attacks against 7 normally
trained models and 11 defense models under single model setting. The ad-
versarial examples are crafted on Resv2-101. ∗ indicates the white-box model.
† The results of AutoMA [75] are cited from their original paper

(a) The evaluation against 7 normally trained models

Incv3 Incv4 IncResv2 Resv2-101∗ Resv2-152 PNASNet NASNet

MIFGSM [15] 50.5 40.6 41.9 98.9 86.5 61.4 60.6
DIM [71] 67.3 58.0 61.2 98.6 92.5 75.0 77.6
SIM [36] 59.4 49.8 53.4 99.5 93.8 75.3 76.4
CIM [74] 77.9 70.2 73.2 98.9 95.3 81.4 82.4
Admix [62] 54.2 45.4 46.3 99.7 90.2 71.7 70.4
ADSCM 73.9 63.3 68.5 99.5 94.9 83.3 84.0
Random 80.2 74.3 78.5 99.1 94.3 88.3 89.5

AITL (ours) 81.5 78.3 79.4 99.3 96.1 91.2 91.3

AutoMA-TIM† [68] 75.0 71.2 69.3 97.0 - - -
AITL-TIM (ours) 79.5 75.4 73.8 98.3 96.2 89.2 89.5

(b) The evaluation against 11 defense models

Incv3ens3 Incv3ens4 IncResv2ens HGD R&P NIPS-r3 Bit-Red JPEG FD ComDefend RS

MIFGSM [15] 34.3 29.9 20.1 22.7 20.2 25.2 28.6 41.3 47.3 43.5 26.0
DIM [71] 52.6 45.4 33.6 35.9 33.4 41.4 37.3 61.5 57.9 62.0 35.9
SIM [36] 46.2 43.0 29.0 32.3 29.6 36.9 37.9 52.4 58.3 59.2 36.5
CIM [74] 64.7 60.2 44.1 51.6 45.9 56.5 44.5 73.0 62.7 70.5 42.6
Admix [62] 37.5 35.1 21.9 25.1 21.7 28.1 34.0 45.7 53.4 52.4 32.2
ADSCM 60.2 55.3 41.1 43.4 41.0 51.1 49.0 67.6 66.8 70.2 47.5
Random 66.5 62.7 47.3 52.1 48.1 60.1 52.4 75.2 70.8 78.6 47.7

AITL (ours) 71.6 67.7 53.7 58.6 53.3 62.3 56.0 77.1 73.6 80.0 57.9

AutoMA-TIM† [68] 73.4 74.6 68.2 67.1 67.6 71.7 - - 82.3 - -
AITL-TIM (ours) 78.5 78.3 69.3 72.5 69.7 76.8 65.2 75.8 85.1 81.4 63.1

Table 9: The comparison of AutoMA [75] and our AITL when combined with
other base attack methods. The adversarial examples are crafted on Incv3. ∗

indicates the white-box model. † The results of AutoMA [75] are cited from
their original paper

Incv3∗ Incv4 IncResv2 Resv2-101 Incv3ens3 Incv3ens4 IncResv2ens

MIFGSM [15] 100 52.2 50.6 37.4 15.6 15.2 6.4
AutoMA-MIFGSM† [75] 98.2 91.2 91.0 82.5 49.2 49.0 29.1
AITL-MIFGSM (ours) 99.8 95.8 94.1 88.8 69.9 65.8 43.4

TIM [16] 99.9 43.7 37.6 47.4 33.0 30.5 23.2
AutoMA-TIM† [75] 97.5 80.7 74.3 69.3 74.8 74.3 63.6
AITL-TIM (ours) 99.8 93.4 92.1 91.9 81.3 78.9 69.1

NIM [36] 100 79.0 76.1 64.8 38.1 36.6 19.2
AutoMA-NIM† [75] 98.8 88.4 86.4 80.2 41.5 39.3 21.8
AITL-NIM (ours) 100 93.6 92.2 83.6 51.0 46.5 27.7



30 Z. Yuan et al.

C
le

an
A

dv
er

sa
ria

l
Pe

rtu
rb

at
io

n

Fig. 7: Visualization of adversarial examples crafted on Incv3 by our proposed
AITL

C.6 Compared with Ensemble-based Attack Methods

We also conduct experiments to compare our AITL with several ensemble-based
attack methods. Liu et al. [?] first propose novel ensemble-based approaches to
generating transferable adversarial examples. MIFGSM [15] studies three model
fusion methods and finds that the method of fusing at the logits layer is the
best. Li et al. [?] propose Ghost Networks to improve the transferability of
adversarial examples by applying feature-level perturbations to an existing model
to potentially create a huge set of diverse models. The experimental results of
comparison between our AITL with these methods are shown in Tab. 10. The
experimental setup is consistent with Tab. 3 in the manuscript, and our method
achieves the best results among them.

Table 10: The comparison of our AITL and other ensemble-based attack methods
Liu et al. [?] Li et al. [?] MIFGSM [15] AITL(ours)

avg. of normally trained models 74.33 89.76 82.46 97.36
avg. of defense models 36.12 58.49 45.97 84.57

C.7 Compared with ATTA and Some Clarifications

The comparison between our AITL and ATTA [68] is presented in Tab. 11. The
results of ATTA are directly quoted from their original paper, since the authors
haven’t released the code, and the details provided in the article are not enough
to reproduce it. We also have tried to email the authors for more experimental
details, but received no response.



Adaptive Image Transformations for Transfer-based Adversarial Attack 31

Here we provide some explanations and clarifications for this comparison. We
have some doubts about ATTA’s experimental results, since the attack success
rates against advanced defense models (e.g., HGD, R&P, NIPS-r3 and so on) is
significantly higher than that against normally trained models (e.g., Incv4, In-
cResv2, Resv2-101), which is obviously counterintuitive. Their method seems to
overfit the advanced defense models. Also, the results of some baseline methods
(e.g., MIFGSM, DIM, TIM) in their paper are quite different from other works
(e.g., NIM, AutoMA and ours). The inconsistency of experimental results may
come from different experimental settings. We will do further comparisons with
ATTA in the future.

Table 11: The comparison between ATTA [68] and our AITL. The adversarial
examples are crafted on Incv3. ∗ indicates the white-box model. † The results of
ATTA [68] are cited from their original paper

(a) The comparison between ATTA and AITL

The evaluation against 7 models

Incv3∗ Incv4 IncResv2 Resv2-101 Incv3ens3 Incv3ens4 IncResv2ens

ATTA† [68] 100 52.9 53.2 44.8 25.1 27.9 18.8
AITL (ours) 99.8 95.8 94.1 88.8 69.9 65.8 43.4

The evaluation against 6 advanced defense models

HGD R&P NIPS-r3 FD ComDefend RS

ATTA† [68] 85.9 83.2 89.5 84.4 79.9 47.4
AITL (ours) 50.4 46.9 59.9 73.0 83.2 39.5

(b) The comparison between ATTA-TIM and AITL-TIM

Incv3∗ Incv4 IncResv2 Resv2-101 Incv3ens3 Incv3ens4 IncResv2ens

ATTA-TIM† [68] 100 55.9 57.1 49.1 27.8 28.6 24.9
AITL-TIM (ours) 99.8 93.4 92.1 91.9 81.3 78.9 69.1

D Algorithms

The algorithm of training the Adaptive Image Transformation Learner is sum-
marized in Algorithm 1.

The algorithm of generating the adversarial examples with pre-trained Adap-
tive Image Transformation Learner is summarized in Algorithm 2.



32 Z. Yuan et al.

Algorithm 1 The training of Adaptive Image Transformation Learner

Input: the total training step T
Input: the learning rate β
Input: training set (X ,Y), which represent the image and the corresponding

label, respectively
Input: a source classifier model f , n target classifier models f1, f2, · · · , fn
Output: Transformation Encoder fen, Transformation Decoder fde, ASR Pre-

dictor fpre, Feature Extractor fimg (denote their overall parameters as Θ)
1: for i ∈ {0, · · · , T − 1} do
2: Get an image and corresponding label (x, y) from the dataset (X ,Y)
3: Extract the image feature from the feature extractor fimg

himg = fimg(x)

4: Randomly sample M image transformation operations t1, t2, · · · , tM as
a combination, and represent them into one-hot codes c1, c2, · · · , cM

5: Embed one-hot codes into transformation features

a1, a2, · · · , aM = Embedding(c1, c2, · · · , cM )

6: Concatenate the transformation features into an integrated image trans-
formation feature vector

a = Concat(a1, a2, · · · , aM )

7: Encode and decode the transformation feature vector

htrans = fen(a)

a′ = fde(htrans)

8: Reconstruct the image transformation operations

c′1, c
′
2, · · · , c′M = FC(a′)

9: Predict the attack success rate

hmix = Concat(htrans, himg)

pasr = fpre(hmix)

10: Generate the adversarial examples xadv by incorporating image trans-
formation t1, t2, · · · , tM into MIFGSM, i.e., replacing Eq. (2) in MIFGSM
by

gt+1 = µ · gt +
∇xadv

t
J (f(tM ◦ · · · ◦ t1(xadv

t )), y)

∥∇xadv
t

J (f(tM ◦ · · · ◦ t1(xadv
t )), y)∥1



Adaptive Image Transformations for Transfer-based Adversarial Attack 33

11: Calculate the corresponding actual average attack success rate qasr by
evaluating xadv on f1, f2, · · · , fn

qasr =
1

n

n∑
i=1

1(fi(x
adv) ̸= y)

12: Calculate the loss function Ltotal

13: Update the model parameter

Θ = Θ − β · ∇ΘLtotal

14: end for

Algorithm 2 Generating adversarial examples with AITL

Input: the original image x
Input: the number T of iteration steps during attack
Input: the number r of iterations during optimizing image transformation fea-

tures
Input: the number N of repetitions of image transformation combination used

in each attack step
Output: the adversarial example xadv

T
1: Extract the image feature from the feature extractor fimg

himg = fimg(x)

2: for i ∈ {0, · · · , N − 1} do
3: Randomly sample M image transformation operations ti1, t

i
2, · · · , tiM as

a combination, and represent them into one-hot codes ci1, c
i
2, · · · , ciM

4: Embed one-hot codes into transformation features

ai1, a
i
2, · · · , aiM = Embedding(ci1, c

i
2, · · · , ciM )

5: Concatenate the transformation features into an integrated image trans-
formation feature vector

ai = Concat(ai1, a
i
2, · · · , aiM )

6: Encode the transformation feature vector

hi
trans = fen(a

i)

7: Initialize the optimized transformation feature embedding

hi,0
trans = hi

trans



34 Z. Yuan et al.

8: for j ∈ {0, · · · , r − 1} do
9: Predict the attack success rate

hj
mix = Concat(hi,j

trans, himg)

pjasr = fpre(h
j
mix)

10: Update the transformation feature embedding

hi,j+1
trans = hi,j

trans + γ · ∇hi,j
trans

pjasr

11: end for
12: Decode the transformation feature embedding

aiopt = fde(h
i,r
trans)

13: Reconstruct the one-hot image transformation vectors

c̃i1, c̃
i
1, · · · , c̃iM = FC(aiopt)

14: Achieve the corresponding image transformation operations t̃i1, t̃
i
1, · · · , t̃iM

15: end for
16:

xadv
0 = x, g0 = 0

17: for i ∈ {0, · · · , T − 1} do
18:

z =
1

N

N∑
j=1

∇xadv
t

J (f(t̃jM ◦ · · · ◦ t̃j1(xadv
t )), y)

∥∇xadv
t

J (f(t̃jM ◦ · · · ◦ t̃j1(xadv
t )), y)∥1

gt+1 = µ · gt + z

xadv
t+1 = xadv

t + α · sign(gt+1)

19: end for
20: return xadv

T


